
Modeling Security Concerns in
Service-Oriented Architecture

Simon Johnston

Architect

IBM Software Group

Rational Software Architect

June 2004

Abstract
Many enterprises are implementing service-oriented architecture
(SOA) using Web services, and are designing those services
according to the principles of Model Driven Architecture (MDA).
Because the UML used to express MDA lacks model elements for
indicating the security needs of business processes, system architects
are forced either to ignore security concerns in their models, or to
indicate their intentions in ways that are implementation-specific.
This paper proposes a candidate profile for UML that presents
security-related intent elements as stereotypes that business users
and software architects can apply to UML elements when working
with business stakeholders to capture business requirements. Using a
profile such as the one proposed here would allow architects to
specify the business intent of security in their designs without
violating the MDA prohibition against implementation-specific
details in high-level, behavioral models.

Contents
Introduction..2

Architectural versus Implementation Models... 3

Revisiting Security Concerns.. 3

Generalization of Security Issues...4

Who Are You?...5

What Can You Do?... 6

What Can You, and Others, See?.. 7

It Wasn't Me!... 8

Applying the Primitives to a Model...8

Example Mapping from Primitives to Implementation... 9

Protocols and Patterns... 10

Implementation Choices..11

Profile Details.. 12

stereotype audit..12

stereotype authenticate.. 13

stereotype authorize...13

stereotype private...14

stereotype signed... 14

stereotype tamperproof..15

stereotype trusted...15

References..16

Introduction
A service-oriented architecture (SOA) is a way of designing software to provide
services to applications, or to other services, through published and discoverable
interfaces. Each service provides a discrete chunk of business functionality
through a loosely coupled (often asynchronous), message-based communication
model. System architects who take advantage of SOA can incorporate one or
more services into their applications as components.

Much of the software industry's focus so far has been on the underlying
technology for implementing Web services and their interactions. Insufficient
attention has been given to the techniques and tools required for architecting
enterprise-scale software solutions using Web services. The design of a high-
quality software solution, like any other complex structure, requires early
architectural decisions supported by well-understood design techniques,
structural patterns, and styles. These patterns address common service issues
such as scalability, reliability, and security.[1]

Business stakeholders depend on the IT organization to provide solutions to their
business requirements. For both financial and market-driven reasons,
stakeholders want to shorten the investment in time and money it takes to deliver
IT solutions. They also want to increase the value they derive from IT solutions

Modeling Security Concerns in Service-Oriented Architecture Page 2

by maximizing the requirements coverage each software project provides.
Because so many of those projects today involve Web services, it is very
important that we have better tools and techniques for the rapid and successful
implementation of those business requirements using SOA. We consider
modeling to be especially important because of its ability to separate concerns[2]
and present a unified view of those concerns. Security in service
implementations is a major concern because many applications operate across
organizational boundaries. The purpose of this paper is to provide a set of
primitive modeling elements that allow the business stakeholders to specify the
intent of security within the requirements process.

Architectural versus Implementation Models
As IT professionals rush to deliver applications using Web services, they often
find themselves in the position of coming up to speed on an architectural model
(SOA) and an implementation model (Web services) simultaneously. As one
might expect under the circumstances, the distinctions between the model and
the implementation sometimes get lost. This paper assumes the use of a Model
Driven Architecture[3] approach that carefully avoids commingling the
platform-independent model of an application's architecture and behavior with
the technologies and platforms used to implement that modeled behavior. System
architects employ either domain-specific languages or profiles for Unified
Modeling Language (UML)[4] to model the concerns of the service domain. The
principles that require architects to keep platform and language concerns out of
this model also require them to keep implementation-specific security concerns
out. For example, a model that includes abstract notions of services and
messages should not also include details of how messages can use public-key
encryption and certificates to implement service authentication and message
signatures, because doing so violates a very fundamental principle (the need to
separate concerns) by introducing the details of a particular technical
implementation into the platform-independent model. On the other hand it is not
possible to treat security as an afterthought. Security implementations are
complex; they can have serious impacts on performance, and they can place
additional requirements on the IT infrastructure supporting the services. It is
therefore in everyone's best interests to model security concerns as carefully as
any other concerns.

By separating concerns, the IT organization can successfully engage the business
stakeholders in understanding and describing the business need to maximize
requirements coverage. We intend to show how to specify security intents in
these high-level models while isolating behavioral concerns from
implementation and platform-specific ones, consistent with the principles of
MDA.

Revisiting Security Concerns
The team that developed the RosettaNet[5] family of B2B standards raised
issues that were similar to the ones we just discussed, and made a start toward
addressing them. The idea was to present a simplified set of choices to the
business architects — the primary stakeholders from whom the RosettaNet team
gathered data and processing requirements. These business architects were not
versed in the technical details of the security concerns, but they were able to
distinguish data that needed to be passed in a secure manner from data that could
be sent without security measures.

Modeling Security Concerns in Service-Oriented Architecture Page 3

However, one problem with this approach was that a simplified terminology was
vital. As soon as the terms became complex or opaque, the business stakeholder
would request every available kind of security, just to be safe, and that resulted
in sub-optimal designs. It was this behavior on the part of stakeholders that led
the architecture group to set out simple guidelines on the specification of such
constraints as well as descriptions that the user could understand. Doing so gave
stakeholders the insight they needed to make informed cost/benefit trade-off
decisions. For example, the RosettaNet team used examples to help the business
user understand when the cost of encrypting data was far greater than the value
of the data being protected.

Generalization of Security Issues
There are many texts on general software security issues, and many more on
particular security implementations and technologies. However, we want to be
able to address the underlying intent that drives security-related technical
implementations. Specifically, we would like to be able to specify a set of
descriptive primitive intents that are easy to understand, and that can be used to
identify particular technical implementations.

What underlying issues and concerns does the term "security" include? Let us
take a common example: withdrawing cash from an ATM machine. First, when I
walk up to an ATM machine, I am asked to provide two things: my ATM card
(which acts as formal identification) and a personal identification number (PIN),
which is a "shared secret" known to me and my bank, but to no one else. The
ATM can now take the identification information and PIN and ask my bank
whether the person standing in front of it can be assumed, with an acceptable
level of confidence, to be the account holder. If the issuing bank approves the
supplied details, it sends back to the ATM a set of security credentials that
provide additional information on the account holder. Based on this account-
specific information, the ATM then displays the list of actions I am authorized,
as the account holder, to perform — actions that might include "withdrawal",
"deposit," and so on. Note that this set of options actually represents the
intersection of two sets:

 The set of all operations this specific ATM is capable of performing

 The set of all operations the issuing bank certifies that I am eligible to
perform

The credentials sent by the bank typically include a limit on the amount of cash I
can withdraw in any single transaction-a limit that the ATM itself can enforce.
The ATM system architect must also provide an audit trail by logging all the
information flowing to and from the ATM.

How is this communication between bank and ATM accomplished? How can the
bank trust the information it gets from the ATM and vice versa? Technical
details like these, related to security protocols, data encryption and so on, are
both important and interesting — but these are precisely the kind of details that
are outside the scope of any high-level behavioral model.

The ATM example illustrates three categories of security concerns or domains:

 Who are you? (Identification, Authentication)

 What can you do? (Authorization)

 What can you, and others, see? (Privacy)

Modeling Security Concerns in Service-Oriented Architecture Page 4

A fourth domain is less obvious, but it is intertwined with the other three
domains:

 What happened? (Audit)

The audit domain often tends to be an afterthought in the development of many
IT applications. On the other hand, in some business areas, such as core security,
and in applications such as EDI (Electronic Data Interchange), where regulatory
concerns require significant audit capabilities, the audit function is an explicit
and important security concern. Our approach treats auditing as an implicit
intent; consequently, the primitives we introduce all imply an audit trail of their
detailed behavior. So, for example, when we mark that party A requires that
before it can collaborate with party B, it must authenticate party B, this implies
that that authentication request and response with the date/time as well as other
implementation details must all be audited.

Figure 1 demonstrates the dependencies between these domains. For example, it
is not possible to implement authorization without authentication. On the other
hand both authorization and authentication rely on auditing, not for
implementation but to ensure that any exceptions are captured for analysis and
non-repudiation.

Figure 1: Dependencies between Security Domains

This paper goes on to address the primitive intents that are common in these
domains and then describes how such primitives, once introduced into a model,
can drive implementations in any given technology.

Who Are You?
This domain is primarily concerned with the identification of one or more parties
to a communication or collaboration. We can actually separate this into two
distinct concerns: the static notion of identification and the dynamic notion of
authentication. In the ATM example, the ATM card is the static, bank-issued
identification, whereas the card/PIN pair allows the ATM to authenticate me
dynamically as the account holder. It is far more important to model the notion
of authentication than identification; in general, identification becomes much
more entwined in the technical details of its implementation than does
authentication. So, for example, we can state very simply that in a particular
collaboration between a set of parties there is a need for authentication between
those parties. This can be done explicitly or implicitly; for example, another
notion, that of trust, can be used to describe trust zones. Parties within the same
trust zone can assume they do not need to authenticate each other, whereas for
all sensitive communication across trust boundaries, authentication is required.

While the trust zone is a useful concept, it does not meet all needs. Trust zones
are often hierarchical, and some communication with external parties can be

Modeling Security Concerns in Service-Oriented Architecture Page 5

accomplished without needing to authenticate the incoming party. A business
might see itself as a single trust zone in the sense that no one except employees
can access network resources inside the firewall. However, a single-zone picture
like this will be misleading if, as often happens, there is also a trust zone
separating the ERP (Enterprise Resource Planning) and CRM (Customer
Relationship Management) applications, because each of these implements and
maintains its own application-level security. The business might also see itself as
a member of an external trust zone through its membership of a trading extranet.
In this regard, we propose that trust and authentication are explicit, yet
overlapping, intents that can be applied to a collaboration model.

What Can You Do?
This domain is primarily responsible for ensuring that, once we know who you
are, we can restrict your options to only those operations you are authorized to
perform. This requires the ability to perform authentication, because we must
know who you are before we can decide what you are able to do. The business
stakeholder wishes to identify those functions that need to be made secure, in the
sense that we know who might perform them and we know (through audit) when
they were performed. There are of course functions that do not require
authorization, either because we want them to be accessible to everyone, or
because, for performance reasons, we have identified a trust zone within which
services can safely assume the requester's right to access them.

This trust zone notion becomes important when we consider performance as
another, sometimes competing, concern, because there is a cost associated with
implementing security, and sometimes that cost is quite high. Consider a
function to return the number of outstanding orders for a customer — a very
simple query from a database. If we ask for authentication, authorization, and
privacy (see below), we are forced accept significant costs:

 We have to ask the requester to provide credentials

 We have to check those credentials, probably with a remote service

 We have to encrypt the returned information

If we know that the requester and provider are both services of the same
application, we can identify them as a single trust zone, dispense with the
overhead, and reap the benefit in increased performance. From an architectural
standpoint it is also important to understand all the communication that goes on
between trust zones. Such communication should be minimized and controlled as
much as possible because it represents the most likely point of failure (or attack)
in the overall security implementation.

In terms of implementation, there are two primary approaches to authorization
that are interesting to note here.

 Authorization of Individual Parties — Every party can be assigned an
explicit set of access rights to functions (although to optimize the process,
we might agree to treat the absence of an explicit access right as either and
implicit approval or disapproval of that access right).

 Authorization through Roles — Various roles can be created for each
application, and access rights assigned as described above to those roles
instead of to individual parties. When each party is authenticated, the
credentials supplied for the party include the party's role, which then
determines whether the party is authorized to access a particular function.

Modeling Security Concerns in Service-Oriented Architecture Page 6

The important point to note here is that we always want to exclude details such
as these from our high-level behavioral models. Our intent at the high-level
modeling stage is simply to note, for example, that a given function requires
authorization before it can be performed, without detailing how that
authorization will be accomplished.

What Can You, and Others, See?
The concern of the privacy domain is to ensure that you see only the information
that is you are authorized to see, and that other parties do not see information
they are not authorized to see. Businesses both consume and generate large
amounts of data, which is stored, manipulated and passed around to support the
running of the business. We have to ensure that information that is sensitive in
nature is protected and that we provide a way to know who is requesting or
providing information and services. That is to say, we need to know not simply
which service was the requester or provider, but which authenticated end user
was a party to the transaction through that service.

There are two distinctly different intents associated with the privacy domain:

 The intent to sign a message or document (potentially using multiple
signatures) identifying the end user(s) or service(s) that created the message
or document. This intent, which relies on a number of common standards for
digital signatures, is used in B2B commerce, government commerce, and
even more widely in corporate email communications. A document may
have a number of signatures, for example a supply requisition may be signed
by the originator, their manager (approver) and finally the purchasing
department when the order is placed; all of these signatures travel with the
document.

 The intent to ensure the privacy of a message, either by sending it over a
secure medium or by encrypting or otherwise securing the content. This
intent is probably the area with the most variability in the choices for
implementation. For example, in assuming a digital message transferred
between services we can consider that the message itself is encrypted by the
sender and then sent over an insecure channel, that the message is sent as
plain text over a secure transport such as HTTPS or TLS (both of which in
fact provide encryption as a part of the service, but outside of the sender's
control) or even that the message contains an identifier for a document sent
by some other secure means (such as printed on copy-proof paper and sent
by courier).

Another concern that is often cited is that of data integrity — the need to ensure
that the contents of a message or document cannot be altered en route between
the various parties to the transaction. A message or document that has data
integrity is said to be tamperproof. The expectation is that if a message is noted
as private it should be tamperproof as well; however, it should also be possible
to indicate that a message is simply tamperproof without requiring a privacy
solution.

Ultimately, the implementer's role is to provide a solution that meets the
requirements of data privacy in common with guidelines laid down by the
business. For example, it would not be acceptable for an e-commerce Web site
to use a courier to transmit each customer's credit card number to the bank for

Modeling Security Concerns in Service-Oriented Architecture Page 7

verification, whereas couriers might be an excellent choice for delivering top-
secret government documents.

It Wasn't Me!
Another area of concern is the notion of non-repudiation of origin and content, a
term you will find in many EDI documents. Non-repudiation is a grand title for
the notion that at some point in the future one of the parties to a transaction
might deny having completed the transaction. Alternatively, one of the parties to
a transaction might acknowledge that the transaction took place, but dispute a
specific detail of that transaction. For example, having purchased 100,000 shares
of a stock that subsequently lost value, party A might attempt to claim that the
transaction was for only 100 shares. In many industries and geographies there
are legislative regulations that require the keeping of records for lengthy periods
to arbitrate such disputes.

In this regard the auditing concern we introduced earlier should provide the
necessary capabilities to store messages. While auditing alone does not
necessarily suffice for the purposes of non-repudiation, auditing of the message
exchange (proof of content) along with authentication (proof of origin) generally
does provide the required level of proof.

Applying the Primitives to a Model
The following is an example of how our candidate profile, described fully in the
"Profile Details" section of this paper, might be used to denote security intents in
a simple, high-level model of a document exchange between two parties. The
table below summarizes the intent elements used in the example.

Intent Comments
audit Used to denote that the specified communication is to be

audited. One can assume that the audit will contain both the
authenticated identity of all parties as well as any data
communicated between the parties.

authenticate Used to denote a party that has to be authenticated in the
scope of a given collaboration.

authorize Used to denote that a communication between two parties
must ensure that the requester is authorized to perform the
request.

private Used to denote that the marked information should be treated
as private and that all reasonable effort (considering technical
implications) should be made to ensure the data is both
private (protected against unauthorized viewing) and
tamperproof (guaranteed to arrive at its destination without
modification).

signed Used to denote that the marked information includes the
digital signatures of parties related to the document.

tamperproof Used to denote that the data transferred between parties must
be guaranteed to reach the recipient in the same form and
with the same content and meaning as when it left the sender.

Modeling Security Concerns in Service-Oriented Architecture Page 8

Intent Comments
trusted Used to denote a set of parties in a collaboration that

participate in an explicit trust zone.

The following is a snippet of a UML activity model that demonstrates the
exchange of purchase orders between a buyer and seller. Notice that the intent
elements in this example are realized as UML stereotypes applied to the general
model elements.

Figure 2 illustrates three security intents for this collaboration:

 The buyer needs to be authenticated by the seller

 The "Accept PO" action requires authorization

 The purchase order object flow must be signed and in one case must also be
tamperproof.

Figure 2: Security Intents in Purchase Transaction

It is clear that the model contains no additional technology concerns: no mention
of service, end-points, interfaces, schemas, XML, and so forth. This is the high-
level platform independent view that we recommend as a vehicle for eliciting
security-related requirements from the business stakeholders.

It is worth noting that the profile presented in the "Profile Details" section of this
paper assumes very little about the modeling tools or methods you might wish to
employ in developing the platform-neutral model. For example, whereas Figure
2 uses an activity diagram to model business behavior, Figure 4 uses a sequence
diagram, and it is also possible to use collaboration diagrams and even state
machines to model behavior of business applications.

Example Mapping from Primitives to Implementation
The following examples demonstrate potential mappings from some of the
primitives introduced above to particular technology designs. We will address
actual implementation choices later in the paper. Again, we assume an MDA

Modeling Security Concerns in Service-Oriented Architecture Page 9

approach where the high-level models are transformed into implementation-
specific models through the use of model-to-model transformations, which in
this case are embodied in the patterns described below.

Protocols and Patterns
First, we need a way to express the technical implementation. In the UML,
templated collaborations are used to represent patterns that can then be bound to
particular model elements to expand them with additional details. In our case, we
would need to develop patterns that represent technology-specific
implementations for each of the intents in the model.

Figure 3 shows the pattern for authorization of a method using a trusted
validation service. Notice that the IT group might well have a catalog of patterns
to choose from for different implementations or potentially different
characteristics such as performance. In the example, you can see that the pattern
takes three parameters: the requester object, the method to be authorized, and the
validation service to use. Figure 3 also demonstrates the use of our trust zone
notation (the box that encloses the provider and validater objects), which
visually brings to our attention the requirement that our validation service be
trusted by the provider of the authorized method. This is important because the
knowledge that a trust zone exists allows us to dispense with implementing
security between two services that might interact frequently, in which case we
would want to optimize them for performance.

Figure 3: Pattern for Authorization

Within the pattern we can then describe the behavior of the implementation.
Figure 4 shows how the provider calls the authenticator to validate the
requester's credentials and, depending on the authenticator's reply, either
executes the method or signals an authorization exception.

Figure 4: Implementation Behavior

This example makes use of a UML message sequence diagram that shows the
sequence of events between all three of the parties defined in Figure 3. Note that
additional stereotypes have been introduced in Figure 4, and in particular, that

Modeling Security Concerns in Service-Oriented Architecture Page 10

any message response from the validation service denoting a failed authorization
is to be audited.

We mentioned earlier that most of the explicit intents imply an audit
requirement. Yet in Figure 4, you can see that the NotAuthorized reply from the
Authenticator is explicitly marked with the stereotype audit. The reason is that
there is a business requirement (in addition to any implied security requirement)
to audit this event.

Note that the stereotype exception is part of the core UML specification and not
a part of our proposed profile. Note also that the constraint {OR} is used to
model on a single diagram both possible outcomes of the authorization method.

To connect the pattern to our example activity model, we have to replace the
parameters in the pattern with elements from our model, as shown in Figure 5.
We create a binding that has the Buyer object as the requester, the Accept PO
action as the guarded method, and a service called XWSKeySvr as the validater.
This is creates an instance of the pattern in the model. We can then bind the
same pattern to many other instances of messages such as "Accept PO" within
our platform-neutral model.

Figure 5: Binding the Pattern to the Model

This binding persists in the model, and therefore allows us at a later date to
manipulate the bindings to create alternate implementations (for example,
changing the validater from one service to another).

Implementation Choices
When developing the design patterns that are used to drive the implementation
of intents, such as authorization or privacy, there are a number of design
approaches and platform-specific technical solutions. For example, we have
already discussed the notion of separating parties from roles in implementing
authorization. In fact this is a very common approach and can be seen in both the
J2EE and Microsoft .NET middleware. It is not the focus of this paper to go into
detail on these design decisions and patterns, but we do expect that specific SOA
patterns will appear, either as variations of common patterns such as the Gang-
of-Four[6] or as entirely new patterns specific to the technical constraints and
realities of a service-oriented application infrastructure.

Standards will also play a large part in the adoption of SOA, and in shaping
exactly what SOA becomes. Base standards such as those from the World Wide
Web Consortium (W3C) or the Organization for the Advancement of Structured
Information Standards (OASIS) will form the foundation. Industry standards
such as those from RosettaNet will provide the content and processes that will tie
businesses together both internally and with their partners. However, we should
be careful not to paint too rosy a picture. Many of these standards are relatively
new, there are many commercial and academic interests represented in the
development of them, and even an organization set up to administer standards to
organize the standards (WS-I).

The following table represents a snapshot of the current specifications relevant
to security in the web services space. The issue with these specifications, apart

Modeling Security Concerns in Service-Oriented Architecture Page 11

from the web of relationship between these specifications and between them and
the base W3C and OASIS XML specifications, is that they are complex and are
of course subject to change.

XML Messaging Security Related
XML SOAP XML Encryption WS-Policy

XML Namespaces MTOP WS-Security WS-PolicyAssertions

XML InfoSet WS-Addressing WS-SecureConversation WS-PolicyAttachment

XInclude WS-Routing WS-Trust WS-SecurityPolicy

XPath WS-Federation XML Query

Active Requestor Profile

Passive Requestor Profile

Web Services Security
Kerberos Binding

Web Services Security
Kerberos Binding

We feel service-oriented architecture and the Web service implementation to be
a great advantage to many IT organizations in the integration opportunities it
opens up. We also feel strongly that attempts to re-architect existing applications
using Web services should be carefully modeled and thoroughly understood, and
that all significant concerns should be addressed separately in collaboration with
the business stakeholders.

Profile Details
This section describes a candidate profile for UML that presents the intent
elements as stereotypes that can be applied to UML elements in capturing the
requirements of the business stakeholders.

stereotype audit

Meta Classes
ActivityNode, Message

Description
Used to denote that the specified communication is to be audited. One can
assume that the audit will contain both the authenticated identity of all parties as
well as any data being communicated between the parties.

Auditing is implicit in any communication stereotyped "authorize", it is also
explicit in the implementation of authentication as well as in the exception
handling for signed and private data.

Modeling Security Concerns in Service-Oriented Architecture Page 12

In applying to an ActivityNode you can annotate actions, structured activities
and control nodes (decisions for example) in an Activity diagram. In applying to
a Message on an interaction you can annotate the messages sent between the
represented model elements.

Properties
None.

Notation
No required notation.

stereotype authenticate

Meta Classes
ActivityPartition, Lifeline

Description
Used to denote a party that has to be authenticated in the scope of a given
collaboration. The stereotype is applied to elements in a behavioral model that
represent instances of a party in a collaboration.

In applying to either an ActivityPartition (for Activity diagrams) or Lifeline (for
Interaction diagrams) you may annotate the represented model elements.

Properties
None.

Notation
No required notation.

stereotype authorize

Meta Classes
ActivityNode, Message

Description
Used to denote that a communication between two parties must ensure that the
requester is authorized to perform the request. This stereotype is applied to
messages and flows in behavioral models to denote that the behavior being
invoked is guarded by an authentication check.

Modeling Security Concerns in Service-Oriented Architecture Page 13

Properties
None.

Notation
No required notation.

stereotype private

Meta Classes
ObjectNode, Class

Description

Used to denote that the data transferred in a communication should be treated as
private and that all reasonable efforts (considering technical implications) should
be made to ensure the data is tamperproof and secure.

Do not apply the stereotypes tamperproof and private to the same element
because private implies tamperproof. That is, applying the stereotype private
specifies that the data will be both private (protected against unauthorized
viewing) and tamperproof (guaranteed to arrive at its destination without
modification). By contrast, applying the stereotype tamperproof specifies that the
data will be guaranteed to arrive at its destination without modification without
being protected against unauthorized viewing.

When applied to a Class (or derived UML element), it denotes that this element
is signed whenever it appears in a behavioral model. The stereotype can also be
applied to an instance in a behavioral model to denote that in this particular case
the element is to be treated specially.

Properties
None.

Notation
No required notation.

stereotype signed

Meta Classes
ObjectNode, Class

Description
Used to denote that the data transferred in a communication includes some
notion of a signature identifying a party. Note it is important that the element
need not be signed by the party communicating, and that multiple signatures can

Modeling Security Concerns in Service-Oriented Architecture Page 14

be included. Note that the profile does not specify whose signature is required,
nor does it specify how many signatures are required.

When applied to a Class (or derived UML element), it denotes that this element
is signed whenever it appears in a behavioral model. The stereotype can also be
applied to an instance in a behavioral model and denote that in this particular
case the element is to be treated specially.

Properties
None.

Notation
No required notation.

stereotype tamperproof

Meta Classes
ObjectNode, Class

Description
Used to denote that the data transferred between parties must be guaranteed to
reach the recipient in the same form and with the same content and meaning as
when it left the sender.

Do not apply the stereotypes tamperproof and private to the same element
because private implies tamperproof. That is, applying the stereotype
tamperproof specifies that the data will be guaranteed to arrive at its destination
without modification without being protected against unauthorized viewing. By
contrast, applying the stereotype private specifies that the data will be both
private (protected against unauthorized viewing) and tamperproof (guaranteed to
arrive at its destination without modification).

Properties
None.

Notation
No required notation.

stereotype trusted

Meta Classes
ConnectableElement

Modeling Security Concerns in Service-Oriented Architecture Page 15

Description
Used to denote a set of parties in a collaboration that participate in an explicit
trust zone.

The ConnectableElement in this case is intended to be the set of elements
representing the roles in a collaboration (as shown in figure 6).

Properties

Name Type Comments
Zone String The name of the zone and the participants in a

zone become the set of elements in a given model
with the same zone name.

Notation
It is useful to be able to denote, graphically, a zone boundary specifically in a
collaboration diagram. An example of this is shown in the specification of the
Authorization pattern. As shown in Figure 6, the trust zone is denoted by a
dotted boundary drawn about its participants.

Figure 6: Denoting a Trust Zone Boundary

References
[1] Brown, A., Johnston, S., and Kelly, K, Using Service-Oriented

Architecture and Component-Based Development to Build Web Service
Applications, Rational Software White Paper

[2] Lopes, C.V. and Hursch, W.L., Separation of Concerns, Tech Report of
College of Computer Science, Northeaster University, Boston, MA,
Feb. 24, 1995.

[3] OMG, MDA, An Introduction, OMG

[4] OMG, UML 2.0 Superstructure Specification, OMG

[5] RosettaNet Consortium [www.rosettanet.org]

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns,
Elements of Reusable Object-Oriented Software, Addison Wesley

Modeling Security Concerns in Service-Oriented Architecture Page 16

Note that this paper is a reprint of an original article published by the IBM
developerWorks web site.

© Copyright 2004 IBM Corporation

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
All Rights Reserved
March 2005.

IBM, the IBM logo, Rational, Rational Rose, Tivoli, WebSphere and XDE are
trademarks of International Business Machines Corporation in the United States,
other countries or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries or both.

Microsoft and Visual Studio are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks
of others.

References in this publication to IBM products or services do not imply that
IBM intends to make them available in all countries in which IBM operates.

All statements regarding IBM future direction or intent are subject to change or
withdrawal without notice and represent goals and objectives only. ALL
INFORMATION IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT ANY
WARRANTY OF ANY KIND.

The IBM home page on the Internet can be found at ibm.com

Modeling Security Concerns in Service-Oriented Architecture Page 17

	Introduction
	Architectural versus Implementation Models
	Revisiting Security Concerns

	Generalization of Security Issues
	Who Are You?
	What Can You Do?
	What Can You, and Others, See?
	It Wasn't Me!

	Applying the Primitives to a Model
	Example Mapping from Primitives to Implementation
	Protocols and Patterns
	Implementation Choices

	Profile Details
	stereotype audit
	stereotype authenticate
	stereotype authorize
	stereotype private
	stereotype signed
	stereotype tamperproof
	stereotype trusted

	References

