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ABSTRACT
This  paper  describes  the  use  of  the  BPM  Method 
simulations  for  estimating  the  appropriate  number  of 
resources  in  the software  process  to  balance  its  cost  and 
duration. Extensions to the BPM Method that are necessary 
to model the sharing and managing of limited resources are 
defined and the case study for a software process of a local 
software development company is presented.

INTRODUCTION

Business  processes  represent  the  core  of  each 
organization's behavior (Madison 2005). They define a set 
of  activities  that  have  to  be  performed  to  satisfy  the 
customers' needs and requirements, roles and relationships 
of the employees that are needed for actually performing 
these activities and objects that are consumed or produced 
by these activities (Šmída 2007). The software process is 
also a business process that is highly dependent on human 
creativity, competencies, experience and interaction (Dutoit 
et  al.  2006).  Human-based  processes  tend  to  be  more 
uncertain and risky than automated processes performed by 
machines  and  properly trained  employees  are  one  of  the 
main  sources  of  the  company's  competitive  advantage 
(Hatch and Dyer 2004).

Due  to  this  uncertainty  and  the  scale  of  the  software 
process  it  is  problematic  to  exactly  predict  the  duration, 
cost and quality of the process and to balance these three 
indicators (Rus et al. 1999). This problem can be solved by 
running  simulations  of  the  process  that  can  work  with 
stochastic  parameters  and  probability  distributions  to 
approximately model the uncertainty.  After running many 
simulations their results can be statistically evaluated and 
can  provide  an  approximation  of  the  duration,  cost  and 
quality of the process.

As  the  quality  of  the  process  mainly  depends  on  the 
capability  and maturity of  the  process  (Persse  2006) and 
competency  of  its  workers  (Hatch  and  Dyer  2004),  the 
duration  and  cost  greatly  depend  on  the  number  of 
resources allocated in the process. But how many resources 
should be allocated to strike a balance between these two 
indicators?  This  paper  tries  to  answer  this  question  by 
running  and  evaluating  simulation  experiments  for  the 

software  process  of  a  local  middle-sized  software 
development company.

BPM METHOD

A  modeling  and  simulation  method  that  is  able  to 
sufficiently  model  human-based processes  was needed  to 
execute these experiments. For these purposes we used the 
BPM Method (Vondrák et al. 1999a, Vondrák et al. 1999b) 
that  already  provides  simulation  environment  with 
stochastic parameters (Kuchař and Kožusznik 2010). This 
method  defines  three  basic  models  of  the  process  – 
architecture of the process, objects and resources utilized in 
the  process  and  the  behavior  of  the  process.  The  most 
important one of these models for performing simulations is 
the behavioral model. This model is called the Coordination 
model  and  it  specifies  the  behavior  of  the  process  as  a 
sequence of activities. It  also specifies what resources the 
activities  demand  and  which  artifacts  they  consume  and 
produce.  Alternative  flow  in  the  coordination  model  is 
enabled by multiple activity scenarios and concurrency of 
the activities can also be modeled. This model can also be 
converted  to  a  Petri  net  to  provide  exact  semantics  for 
performing simulations (Kuchař and Kožusznik 2010).

The  Coordination  model  is  visualized  by  the 
Coordination diagram and a simple example of this diagram 
is shown in Figure 1.

Figure 1: Coordination Diagram



This  diagram  describes  a  part  of  the  Software 
Construction  subprocess.  The  Designer  and  Developer 
places describe the roles of employees in the process and 
the Task place defines the task objects that serve as input 
for  the  Construction  activity.  System  block  can  be 
constructed  when the  Task  is  created  and  the  Developer 
resource  is  available.  The  yellow  arrow  shows  that  the 
Developer  is  responsible  for  executing  the  Construction 
activity.  By completing this activity the state of the Task 
changes to implemented, new System block is created and 
the Developer is ready to implement another task.

The  subsequent  activity  is  Code  verification  that  is 
performed by the Designer and consumes the implemented 
Task and created System block. This activity can end up in 
two ways. The first scenario signifies that the constructed 
code is correct and its outputs are marked by number 1. The 
second  scenario  shows  that  there  were  errors  in  the 
implementation and the process will continue by reporting 
and repairing the error. Outputs of the second scenario are 
marked by number 2.

PARALLELISM IN THE BPM METHOD

The previous example shows that activity scenarios are 
used  to  branch  the  workflow  to  a  number  of  alternate 
branches but no specific modeling elements for parallelism 
are  contained  in  the  BPM Method.  Parallel  flows  in  the 
BPM Method can be modeled in several ways:
1. One  activity  can  be  performed  concurrently  many 

times,  but  each  such  activity  instance  consumes 
appropriate  input  object  instances.  If  there  were  for 
example  three  Developers  available  and  five  Tasks 
created,  then  the  Construction  activity  in  Figure  1 
could  be  performed  three  times  concurrently.  Each 
activity  instance  would  consume one  Developer  and 
one  Task  leaving  two Tasks  for  the  Developers  that 
finish their Tasks first.

2. Several different activities in the same process instance 
can be performed in parallel by structuring the model 
correctly.  The correct structure is based on the AND-
split structure of the Petri nets where multiple branches 
start from one activity and AND-join structure where 
multiple flows merge into one activity.

3. Every  process  instance  runs  concurrently  with  other 
running process instances be they of the same process 
or  of  another  processes.  Each  process  instance  is 
independent  from  other  instances  and  only  share 
common resources (Kuchař and Kožusznik 2010).

SHARING LIMITED RESOURCES

All  of  these  concurrency  methods  have  to  deal  with 
sharing  limited  number  of  resources.  The  first  one  is 
directly solved by standard Petri nets behavior because each 
resource  type  for  one  activity  is  contained  in  one  input 
place of this activity. When this activity starts all its input 
resources  are  consumed  and  are  not  available  until  it 
finishes.  The only extension in  the BPM Method needed 
here was to enable the multiple-server semantics for each 
activity in the process (Boyer and Diaz 2001).

The second concurrency method can be solved directly 
by sharing the same input place among all activities in the 
parallel  branches that  utilize resources  in this place.  This 
will fill the more complex models with a lot of additional 
arcs but it does not matter for the automatic processing in 
the simulations.

The third  concurrency  method is  the  most  problematic 
because  it  needs  to  share  resources  between  multiple 
instances  of  the  process.  This  can  be  implemented  by 
introducing the pools of limited resources to the objects in 
the Coordination model. Objects with the same shared pool 
are then linked together and when one of the resources in 
the pool is used to perform an activity, it is taken from all 
linked objects. When the activity finishes, the used resource 
is returned to the pool and thus returns to all linked objects. 
To  add  this  behavior  to  the  BPM  Method's  simulation 
engine we had to find a way to convert the idea of these 
pools into the Petri nets formalism to be compatible with 
the rest of the simulation model. This problem was solved 
by adopting the notion of fusion places (Huber et al. 1991).

Fusion places are special places in Petri nets that always 
share all their tokens. When a token is consumed from any 
fusion place, all linked fusion places lose that token. When 
a token is added to any fusion place, all linked fusion places 
gain that token.

Each shared pool in the BPM Method corresponds to a 
set  of  linked  fusion  places  that  are  shared  between  all 
concurrent  simulation  instances  of  the  process.  These 
fusion  places  are  then  set  as  both  the  input  and  output 
places for all activities that require shared resources from 
the  appropriate  shared  pool.  Figure  2  shows  the  the 
Coordination  diagram  with  shared  pools  and  Figure  3 
depicts the corresponding Petri net with fusion places.

Figure 2: Shared Resource Pools
Both  Analyst  objects  in  the  Coordination  diagram  are 

taken from the shared pool of analyst resources. This pool 
is then represented as a set of two linked fusion places in 
the Petri net which serve as both input and output place for 
the  Reuse  Architecture  and  Complete  Architecture 
activities. Standard places for both Analyst objects are still 
used  to  ensure  correct  flow of  the  process  if  they  were 
activated by previous activities.



Figure 3: Petri Net with Fusion Places
Fusion  places  can  also  be  used  to  solve  the  second 

concurrency method instead of the pure Petri net solution 
mentioned earlier.

CHAINED EXECUTION

Notation of the Coordination diagram can also describe 
chained execution (Aalst 1998). Chained execution defines 
that  the  same  resource  is  used  to  perform  several 
subsequent activities in one process instance. In  this way 
experience acquired by the resource during the first activity 
can be easily reused in subsequent activities (e.g. when all 
activities  work  with  the  same  set  of  data).  The  BPM 
Method models the chained execution by using one object 
as an output place for one activity and at the same time as 
an input place for subsequent activity. When this happens 
the same shared resource will be used for both activities. 
When the  process  is  modeled  as  shown in  Figure  4  and 
John  Smith  as  an  Analyst  is  chosen  to  specify  the 
requirements, the same John Smith is then responsible for 
analyzing these requirements.

Figure 4: Chained Execution
Chained execution can be easily converted to a Petri net 

by  adopting  some  colored  properties  (see  Colored  Petri 

nets,  e.g.  (Jensen  1998)),  coloring  the  chained  shared 
resource and then matching the color  when choosing the 
resources for all activities in the chain.

RESOURCE UTILIZATION AND UNAVAILABILITY

The  last  extension  added  to  the  BPM  Method  is 
determining the utilization of each shared resource in the 
process. This utilization is measured by simply counting up 
the time when the resource is performing any activity.

Utilization is an interesting result of the simulation but it 
is  not  very  useful  in  optimizing  the  performance  of  the 
process. When optimizing the number of resources in the 
process  we  aren't  interested  in  answering  how  long  one 
resource  was  doing  something  in  the  process,  but  rather 
how long did the process have to wait for the resource when 
it was needed to perform another activity. One resource can 
not perform two activities at the same time but activities 
and processes run concurrently and they very often need the 
same resource  to  be  able  to  continue their  run  (e.g.  one 
developer  is  needed  to  implement  a  new  feature  in  one 
system  and  at  the  same  time  needs  to  repair  a  fault  in 
another  system).  When  this  happens  the  resource  has  to 
somehow perform these tasks sequentially:
– finish the first task and then start the second one, or
– pause the first task and return to it after finishing the 

second one, or
– switch back and forth between these tasks.

In  either  way  one  task  will  have  to  wait  for  the 
completion of the other (or partial completion in the case of 
the  third  option).  It  is  therefore  important  to  be  able  to 
simulate  and  measure  these  waiting  times.  The  BPM 
Method can easily model this, but is able to model only the 
first sequencing option. Whenever an activity is enabled but 
the resource isn't  available,  the BPM Method counts and 
notes the time needed for the resource to become available 
to perform the activity. Total waiting time for one resource 
is then computed by adding up these noted times for this 
appropriate resource.

CASE STUDY

We  have  cooperated  with  a  middle-sized  software 
development company from Czech Republic to model and 
improve  their  software  development  processes.  Having 
made some improvements in the process (see (Kožusznik et 
al.  2011))  a  question of  how many employees should be 
allocated to an instance of this process arose. By extending 
the BPM Method's modeling and simulation software tool 
called BPStudio with the mechanisms described in previous 
chapters it was possible to run simulation experiments with 
varying  number  of  employees  and  analyze  the  results  to 
find the best configuration.

The first step was to identify the roles in the process that 
would  influence  the  total  duration  of  process  execution. 
This  can  be  done  by  running  a  simulation  with  small 
number of resources in different roles and then running a 
simulation with more resources. By watching waiting times 
of  these  resources  bottlenecks  in  the  process  can  be 
identified. When the waiting time is high and is changing 



with the number of resources then the process could benefit 
from adding resources to this role. Utilization and waiting 
times for one of these simulations performed in this case 
study is shown in Figure 5.

Figure 5: Utilization and Waiting Times of Resources
This simulation showed that only three out of five roles – 

Developer, Designer and Tester – have significant waiting 
times  so  further  simulations  focused  on  finding  optimal 
number of employees in these roles. It is also important to 
note, that all workers of one role have same skills and are 
therefore  interchangeable.  This  can  be  also  seen  on  the 
approximately  equal  utilization  and  waiting  times  of  the 
developers in Figure 5.

The second step was to run simulations with all resource 
configurations that were feasible in the process. Developers 
are the most utilized role in the process and by adding more 
workers their waiting time decreases slowly.  This lead to 
setting the range of possible developers to 2-20. Figure 5 
also  shows  that  the  lone  designer  is  overburdened  with 
work because designers also play a role of team leaders in 
this process. Based on this information the range of feasible 
designers  was  set  to  1-5.  The  tester  has  also  a  lot  of 
unavailable  time  on  his  hands  but  not  so  much  as  the 
designer, so the number of testers was set to 1-4.

After establishing the feasible ranges of workers in each 
role  200  simulations  for  every  combination  of  these 
resource  numbers  were  performed  to  get  the  adequate 
statistical  image  of  the  simulations  considering  their 
stochastic  properties  and  risks  in  the  process.  These 
combinations  were  divided  to  20  groups  with  the  same 
number  of  designers  and  testers  for  better  understanding 
and  more  transparent  analysis  (i.e.  one  group  was  for  1 
designer, 1 tester and 2-20 developers; another group was 
for 1 designer, 2 testers and 2-20 developers, etc.). Finally a 
statistical  analysis  was  done  for  each  of  these  groups 
concerning the duration and total cost of the process. Figure 
6 shows the chart with duration results of the group with 2 
designers and 2 testers.

The  best  duration  average  in  this  group  has  the 
configuration with 20 developers because the waiting time 
of these developers still hasn't decreased to 0. But statistical 
comparison  of  this  configuration  with  the  other 
configurations shows that it is not significantly better than 
the configurations with 16,  17,  18 and 19 developers  (at 
95% confidence level). It is therefore better to use the lower 
number of developers, because such unallocated developers 
can  be  sent  to  work  on  another  project.  The  chart  also 

shows that starting around the 10 developers mark the slope 
of  the  decrease  is  very  small  and  the  process  does  not 
benefit much from adding more developers.

Figure 6: Durations for 2 Designers and 1 Tester Group
This  trend  is  also  confirmed  by  the  total  process  cost 

chart of the same group in Figure 7. The chart shows that 
the cost of allocating additional developers to the process is 
higher then the decrease in the duration for 10 and more 
developers.  The  best  configuration  optimizing  the  total 
process cost  in this group is 9 developers with 8 and 10 
being statistically comparable. This means that 8 developers 
should be used to free the ninth developer for other projects.

Figure 7: Total Costs for 2 Designers and 1 Tester Group
After analyzing all groups in this manner the best local 

configurations can be compared with each other in the same 
way to find the best  global  configuration that  minimizes 
either  the  duration  or  the  process  cost.  The  best  global 
configuration  minimizing  the  process  duration  is  3 
designers,  3 testers and 19 developers with 289.08 hours 
and  1  568  254  CZK.  The  best  global  configuration 



minimizing the process cost  is 1 designer,  1 tester and 8 
developers with 637.64 hours and 1 376 698 CZK.

These  configurations  optimized  only  one  indicator 
without  worrying  about  the  other.  But  how  to  find  a 
configuration  that  balances  both?  The  first  step  is  to 
normalize  average  values  of  both  indicators  for  each 
configuration in each group by using the following formula:

where  n is  the  number  of  configurations  in  actually 
examined  group  and  cj for  j∈{1,  ..., i,  ..., n}  describes 
actually examined indicator's values for  all simulations of 
the j-th configuration in actually examined group.

The balancing value of each configuration is then:
balance (ci)=α∗navgduration(c i)+β∗navgcost (c i)

where α∈<0,1> is the duration indicator weight, β∈<0,1> 
is the cost indicator weight and α + β = 1.

The best balanced local configuration of each group is the 
one  that  minimizes  this  balancing  value.  These  best 
balanced local configurations can then be collected to one 
common group and among them the best balanced global 
configuration can be identified by the same procedure.

The final problem is to correctly set the α and β weights 
so that they really balance the duration and cost. It is clear 
that  if  α=1  and  β=0  then  only  duration  is  taken  into 
consideration  and  the  configuration  with  the  lowest 
duration is declared the best. On the other hand if α=0 and 
β=1  then only process  cost  is considered in choosing the 
best  configuration.  The  first  idea  that  comes  to  mind  is 
setting α=0.5 and β=0.5 so that both are of the same weight 
but this might  not balance these indicators  correctly.  The 
balancing  value  with  these  weights  is  very  sensitive  to 
duration and cost  indicators  with different  variances.  For 
example if the duration varied from 100 to 900 hours and 
the process cost only ranged from 1 000 000 to 1 000 010 
CZK then the loss of 400 hours would be balanced by the 
loss  of  5  CZK only.  That  is  not  a  very good ratio  even 
though  the  Czech  economists  would  like  it  to  be.  The 
solution to this problem is to set  the  α and β weights  in 
accordance  with  the  range  of  the  duration  and  cost 
indicators. This has to be done for each configuration group 
separately because ranges can be different in each group.

To  set  the  weights  correctly  a  range  ratio  has  to  be 
computed for both indicators that describes how much the 
maximum  average  value  is  greater  than  the  minimum 
average value by the following formula:

ratio=
max(avg (c1) , ... ,avg (cn))−min(avg (c1) , ... ,avg (cn))

min(avg (c1) , ... ,avg (cn))

This ratio is then directly used to determine the α  and β 
weights using the following formulas:

α=
ratioduration

ratioduration+ratiocost
β =

ratiocost

ratioduration+ratiocost

Using  these  weights  the  best  balanced  global 
configuration came out to be the same as the best duration 
global configuration – 3 designers, 3 testers, 19 developers.

CONCLUSION AND FUTURE WORK

This paper described a method that uses simulations for 
estimating  the  number  of  resources  in  different  process 
roles that equally balance the duration and cost of the final 
process instance. Duration or cost of the process can also be 
prioritized  when  computing  the  balancing  value  by 
changing the ratio of balancing weights. This could be used 
for finding resource configurations that support the need for 
processes with the shortest possible duration (e.g. for taking 
advantage of high market demand) or lowest possible cost 
(e.g. for small start-up projects).

Real processes can also be limited by specific budget or 
specific time. Such limitations could be easily implemented 
into  the  indicated  analysis  method  by  filtering  out  the 
configurations that exceed these limits.

All  simulations  in  this  case  study  assumed  that  all 
workers  of  one  role have same skills  and therefore have 
similar levels of utilization, waiting times and performance. 
Real workers have different skills that change the way they 
are  allocated.  Our  future  work  will  be  focused  on 
introducing these differences to process simulations.
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