
SHARING LIMITED RESOURCES IN SOFTWARE PROCESS SIMULATIONS

Štěpán Kuchař
IT4Innovations

VŠB – Technical University of Ostrava
17. listopadu 15/2172

70833 Ostrava-Poruba, Czech Republic
E-mail: stepan.kuchar@vsb.cz

David Ježek, Jan Kožusznik, Svatopluk Štolfa
Department of Computer Science

VŠB – Technical University of Ostrava
17. listopadu 15/2172

70833 Ostrava-Poruba, Czech Republic
E-mail: david.jezek@vsb.cz, jan.kozusznik@vsb.cz,

svatopluk.stolfa@vsb.cz

KEYWORDS
BPM method, software process, human-based process,
process simulation, Petri nets, shared resources

ABSTRACT
This paper describes the use of the BPM Method
simulations for estimating the appropriate number of
resources in the software process to balance its cost and
duration. Extensions to the BPM Method that are necessary
to model the sharing and managing of limited resources are
defined and the case study for a software process of a local
software development company is presented.

INTRODUCTION

Business processes represent the core of each
organization's behavior (Madison 2005). They define a set
of activities that have to be performed to satisfy the
customers' needs and requirements, roles and relationships
of the employees that are needed for actually performing
these activities and objects that are consumed or produced
by these activities (Šmída 2007). The software process is
also a business process that is highly dependent on human
creativity, competencies, experience and interaction (Dutoit
et al. 2006). Human-based processes tend to be more
uncertain and risky than automated processes performed by
machines and properly trained employees are one of the
main sources of the company's competitive advantage
(Hatch and Dyer 2004).

Due to this uncertainty and the scale of the software
process it is problematic to exactly predict the duration,
cost and quality of the process and to balance these three
indicators (Rus et al. 1999). This problem can be solved by
running simulations of the process that can work with
stochastic parameters and probability distributions to
approximately model the uncertainty. After running many
simulations their results can be statistically evaluated and
can provide an approximation of the duration, cost and
quality of the process.

As the quality of the process mainly depends on the
capability and maturity of the process (Persse 2006) and
competency of its workers (Hatch and Dyer 2004), the
duration and cost greatly depend on the number of
resources allocated in the process. But how many resources
should be allocated to strike a balance between these two
indicators? This paper tries to answer this question by
running and evaluating simulation experiments for the

software process of a local middle-sized software
development company.

BPM METHOD

A modeling and simulation method that is able to
sufficiently model human-based processes was needed to
execute these experiments. For these purposes we used the
BPM Method (Vondrák et al. 1999a, Vondrák et al. 1999b)
that already provides simulation environment with
stochastic parameters (Kuchař and Kožusznik 2010). This
method defines three basic models of the process –
architecture of the process, objects and resources utilized in
the process and the behavior of the process. The most
important one of these models for performing simulations is
the behavioral model. This model is called the Coordination
model and it specifies the behavior of the process as a
sequence of activities. It also specifies what resources the
activities demand and which artifacts they consume and
produce. Alternative flow in the coordination model is
enabled by multiple activity scenarios and concurrency of
the activities can also be modeled. This model can also be
converted to a Petri net to provide exact semantics for
performing simulations (Kuchař and Kožusznik 2010).

The Coordination model is visualized by the
Coordination diagram and a simple example of this diagram
is shown in Figure 1.

Figure 1: Coordination Diagram

This diagram describes a part of the Software
Construction subprocess. The Designer and Developer
places describe the roles of employees in the process and
the Task place defines the task objects that serve as input
for the Construction activity. System block can be
constructed when the Task is created and the Developer
resource is available. The yellow arrow shows that the
Developer is responsible for executing the Construction
activity. By completing this activity the state of the Task
changes to implemented, new System block is created and
the Developer is ready to implement another task.

The subsequent activity is Code verification that is
performed by the Designer and consumes the implemented
Task and created System block. This activity can end up in
two ways. The first scenario signifies that the constructed
code is correct and its outputs are marked by number 1. The
second scenario shows that there were errors in the
implementation and the process will continue by reporting
and repairing the error. Outputs of the second scenario are
marked by number 2.

PARALLELISM IN THE BPM METHOD

The previous example shows that activity scenarios are
used to branch the workflow to a number of alternate
branches but no specific modeling elements for parallelism
are contained in the BPM Method. Parallel flows in the
BPM Method can be modeled in several ways:
1. One activity can be performed concurrently many

times, but each such activity instance consumes
appropriate input object instances. If there were for
example three Developers available and five Tasks
created, then the Construction activity in Figure 1
could be performed three times concurrently. Each
activity instance would consume one Developer and
one Task leaving two Tasks for the Developers that
finish their Tasks first.

2. Several different activities in the same process instance
can be performed in parallel by structuring the model
correctly. The correct structure is based on the AND-
split structure of the Petri nets where multiple branches
start from one activity and AND-join structure where
multiple flows merge into one activity.

3. Every process instance runs concurrently with other
running process instances be they of the same process
or of another processes. Each process instance is
independent from other instances and only share
common resources (Kuchař and Kožusznik 2010).

SHARING LIMITED RESOURCES

All of these concurrency methods have to deal with
sharing limited number of resources. The first one is
directly solved by standard Petri nets behavior because each
resource type for one activity is contained in one input
place of this activity. When this activity starts all its input
resources are consumed and are not available until it
finishes. The only extension in the BPM Method needed
here was to enable the multiple-server semantics for each
activity in the process (Boyer and Diaz 2001).

The second concurrency method can be solved directly
by sharing the same input place among all activities in the
parallel branches that utilize resources in this place. This
will fill the more complex models with a lot of additional
arcs but it does not matter for the automatic processing in
the simulations.

The third concurrency method is the most problematic
because it needs to share resources between multiple
instances of the process. This can be implemented by
introducing the pools of limited resources to the objects in
the Coordination model. Objects with the same shared pool
are then linked together and when one of the resources in
the pool is used to perform an activity, it is taken from all
linked objects. When the activity finishes, the used resource
is returned to the pool and thus returns to all linked objects.
To add this behavior to the BPM Method's simulation
engine we had to find a way to convert the idea of these
pools into the Petri nets formalism to be compatible with
the rest of the simulation model. This problem was solved
by adopting the notion of fusion places (Huber et al. 1991).

Fusion places are special places in Petri nets that always
share all their tokens. When a token is consumed from any
fusion place, all linked fusion places lose that token. When
a token is added to any fusion place, all linked fusion places
gain that token.

Each shared pool in the BPM Method corresponds to a
set of linked fusion places that are shared between all
concurrent simulation instances of the process. These
fusion places are then set as both the input and output
places for all activities that require shared resources from
the appropriate shared pool. Figure 2 shows the the
Coordination diagram with shared pools and Figure 3
depicts the corresponding Petri net with fusion places.

Figure 2: Shared Resource Pools
Both Analyst objects in the Coordination diagram are

taken from the shared pool of analyst resources. This pool
is then represented as a set of two linked fusion places in
the Petri net which serve as both input and output place for
the Reuse Architecture and Complete Architecture
activities. Standard places for both Analyst objects are still
used to ensure correct flow of the process if they were
activated by previous activities.

Figure 3: Petri Net with Fusion Places
Fusion places can also be used to solve the second

concurrency method instead of the pure Petri net solution
mentioned earlier.

CHAINED EXECUTION

Notation of the Coordination diagram can also describe
chained execution (Aalst 1998). Chained execution defines
that the same resource is used to perform several
subsequent activities in one process instance. In this way
experience acquired by the resource during the first activity
can be easily reused in subsequent activities (e.g. when all
activities work with the same set of data). The BPM
Method models the chained execution by using one object
as an output place for one activity and at the same time as
an input place for subsequent activity. When this happens
the same shared resource will be used for both activities.
When the process is modeled as shown in Figure 4 and
John Smith as an Analyst is chosen to specify the
requirements, the same John Smith is then responsible for
analyzing these requirements.

Figure 4: Chained Execution
Chained execution can be easily converted to a Petri net

by adopting some colored properties (see Colored Petri

nets, e.g. (Jensen 1998)), coloring the chained shared
resource and then matching the color when choosing the
resources for all activities in the chain.

RESOURCE UTILIZATION AND UNAVAILABILITY

The last extension added to the BPM Method is
determining the utilization of each shared resource in the
process. This utilization is measured by simply counting up
the time when the resource is performing any activity.

Utilization is an interesting result of the simulation but it
is not very useful in optimizing the performance of the
process. When optimizing the number of resources in the
process we aren't interested in answering how long one
resource was doing something in the process, but rather
how long did the process have to wait for the resource when
it was needed to perform another activity. One resource can
not perform two activities at the same time but activities
and processes run concurrently and they very often need the
same resource to be able to continue their run (e.g. one
developer is needed to implement a new feature in one
system and at the same time needs to repair a fault in
another system). When this happens the resource has to
somehow perform these tasks sequentially:
– finish the first task and then start the second one, or
– pause the first task and return to it after finishing the

second one, or
– switch back and forth between these tasks.

In either way one task will have to wait for the
completion of the other (or partial completion in the case of
the third option). It is therefore important to be able to
simulate and measure these waiting times. The BPM
Method can easily model this, but is able to model only the
first sequencing option. Whenever an activity is enabled but
the resource isn't available, the BPM Method counts and
notes the time needed for the resource to become available
to perform the activity. Total waiting time for one resource
is then computed by adding up these noted times for this
appropriate resource.

CASE STUDY

We have cooperated with a middle-sized software
development company from Czech Republic to model and
improve their software development processes. Having
made some improvements in the process (see (Kožusznik et
al. 2011)) a question of how many employees should be
allocated to an instance of this process arose. By extending
the BPM Method's modeling and simulation software tool
called BPStudio with the mechanisms described in previous
chapters it was possible to run simulation experiments with
varying number of employees and analyze the results to
find the best configuration.

The first step was to identify the roles in the process that
would influence the total duration of process execution.
This can be done by running a simulation with small
number of resources in different roles and then running a
simulation with more resources. By watching waiting times
of these resources bottlenecks in the process can be
identified. When the waiting time is high and is changing

with the number of resources then the process could benefit
from adding resources to this role. Utilization and waiting
times for one of these simulations performed in this case
study is shown in Figure 5.

Figure 5: Utilization and Waiting Times of Resources
This simulation showed that only three out of five roles –

Developer, Designer and Tester – have significant waiting
times so further simulations focused on finding optimal
number of employees in these roles. It is also important to
note, that all workers of one role have same skills and are
therefore interchangeable. This can be also seen on the
approximately equal utilization and waiting times of the
developers in Figure 5.

The second step was to run simulations with all resource
configurations that were feasible in the process. Developers
are the most utilized role in the process and by adding more
workers their waiting time decreases slowly. This lead to
setting the range of possible developers to 2-20. Figure 5
also shows that the lone designer is overburdened with
work because designers also play a role of team leaders in
this process. Based on this information the range of feasible
designers was set to 1-5. The tester has also a lot of
unavailable time on his hands but not so much as the
designer, so the number of testers was set to 1-4.

After establishing the feasible ranges of workers in each
role 200 simulations for every combination of these
resource numbers were performed to get the adequate
statistical image of the simulations considering their
stochastic properties and risks in the process. These
combinations were divided to 20 groups with the same
number of designers and testers for better understanding
and more transparent analysis (i.e. one group was for 1
designer, 1 tester and 2-20 developers; another group was
for 1 designer, 2 testers and 2-20 developers, etc.). Finally a
statistical analysis was done for each of these groups
concerning the duration and total cost of the process. Figure
6 shows the chart with duration results of the group with 2
designers and 2 testers.

The best duration average in this group has the
configuration with 20 developers because the waiting time
of these developers still hasn't decreased to 0. But statistical
comparison of this configuration with the other
configurations shows that it is not significantly better than
the configurations with 16, 17, 18 and 19 developers (at
95% confidence level). It is therefore better to use the lower
number of developers, because such unallocated developers
can be sent to work on another project. The chart also

shows that starting around the 10 developers mark the slope
of the decrease is very small and the process does not
benefit much from adding more developers.

Figure 6: Durations for 2 Designers and 1 Tester Group
This trend is also confirmed by the total process cost

chart of the same group in Figure 7. The chart shows that
the cost of allocating additional developers to the process is
higher then the decrease in the duration for 10 and more
developers. The best configuration optimizing the total
process cost in this group is 9 developers with 8 and 10
being statistically comparable. This means that 8 developers
should be used to free the ninth developer for other projects.

Figure 7: Total Costs for 2 Designers and 1 Tester Group
After analyzing all groups in this manner the best local

configurations can be compared with each other in the same
way to find the best global configuration that minimizes
either the duration or the process cost. The best global
configuration minimizing the process duration is 3
designers, 3 testers and 19 developers with 289.08 hours
and 1 568 254 CZK. The best global configuration

minimizing the process cost is 1 designer, 1 tester and 8
developers with 637.64 hours and 1 376 698 CZK.

These configurations optimized only one indicator
without worrying about the other. But how to find a
configuration that balances both? The first step is to
normalize average values of both indicators for each
configuration in each group by using the following formula:

where n is the number of configurations in actually
examined group and cj for j∈{1, ..., i, ..., n} describes
actually examined indicator's values for all simulations of
the j-th configuration in actually examined group.

The balancing value of each configuration is then:
balance (ci)=α∗navgduration(c i)+β∗navgcost (c i)

where α∈<0,1> is the duration indicator weight, β∈<0,1>
is the cost indicator weight and α + β = 1.

The best balanced local configuration of each group is the
one that minimizes this balancing value. These best
balanced local configurations can then be collected to one
common group and among them the best balanced global
configuration can be identified by the same procedure.

The final problem is to correctly set the α and β weights
so that they really balance the duration and cost. It is clear
that if α=1 and β=0 then only duration is taken into
consideration and the configuration with the lowest
duration is declared the best. On the other hand if α=0 and
β=1 then only process cost is considered in choosing the
best configuration. The first idea that comes to mind is
setting α=0.5 and β=0.5 so that both are of the same weight
but this might not balance these indicators correctly. The
balancing value with these weights is very sensitive to
duration and cost indicators with different variances. For
example if the duration varied from 100 to 900 hours and
the process cost only ranged from 1 000 000 to 1 000 010
CZK then the loss of 400 hours would be balanced by the
loss of 5 CZK only. That is not a very good ratio even
though the Czech economists would like it to be. The
solution to this problem is to set the α and β weights in
accordance with the range of the duration and cost
indicators. This has to be done for each configuration group
separately because ranges can be different in each group.

To set the weights correctly a range ratio has to be
computed for both indicators that describes how much the
maximum average value is greater than the minimum
average value by the following formula:

ratio=
max(avg (c1) , ... ,avg (cn))−min(avg (c1) , ... ,avg (cn))

min(avg (c1) , ... ,avg (cn))

This ratio is then directly used to determine the α and β
weights using the following formulas:

α=
ratioduration

ratioduration+ratiocost
β =

ratiocost

ratioduration+ratiocost

Using these weights the best balanced global
configuration came out to be the same as the best duration
global configuration – 3 designers, 3 testers, 19 developers.

CONCLUSION AND FUTURE WORK

This paper described a method that uses simulations for
estimating the number of resources in different process
roles that equally balance the duration and cost of the final
process instance. Duration or cost of the process can also be
prioritized when computing the balancing value by
changing the ratio of balancing weights. This could be used
for finding resource configurations that support the need for
processes with the shortest possible duration (e.g. for taking
advantage of high market demand) or lowest possible cost
(e.g. for small start-up projects).

Real processes can also be limited by specific budget or
specific time. Such limitations could be easily implemented
into the indicated analysis method by filtering out the
configurations that exceed these limits.

All simulations in this case study assumed that all
workers of one role have same skills and therefore have
similar levels of utilization, waiting times and performance.
Real workers have different skills that change the way they
are allocated. Our future work will be focused on
introducing these differences to process simulations.

ACKNOWLEDGMENTS
This research has been supported by the internal grant

agency of VSB-TU of Ostrava - XYZ and elaborated in the
framework of the IT4Innovations Centre of Excellence
project, reg. no. CZ.1.05/1.1.00/02.0070 supported by
Operational Programme 'Research and Development for
Innovations' funded by Structural Funds of the European
Union and state budget of the Czech Republic.

REFERENCES
Aalst W.M.P. van der 1998. “The Application of Petri nets to

Workflow Management”. The Journal of Circuits, Systems
and Computers 8 (1):21-66.

Boyer, M., Diaz M. 2001. „Multiple enabledness of transitions in
Petri nets with time“. 9th International Workshop on Petri
Nets and Performance Models, 219–228. IEEE.

Dutoit A.H., McCall R., Mistrik I. 2006. Rationale Management
in Software Engineering. Springer.

Hatch, N. W., Dyer J. H. 2004. “Human capital and learning as a
source of sustainable competitive advantage”. Strategic
Management Journal 25 (12): 1155-1178.

Huber P., Jensen K., Shapiro R. 1991. “Hierarchies in coloured
petri nets”. Advances in Petri Nets, vol 483:313-341. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg.

Jensen K. 1998. “Coloured Petri nets: basic concepts, analysis
methods and practical use”. Monographs in Theoretical
Computer Science, 2nd corrected printing edn. Springer-
Verlag.

Kuchař Š., Kožusznik J. 2010. “BPM Method Extension for
Automatic Process Simulation”. 8th Industrial Simulation
Conference 2010, Budapest, Hungary.

Kožusznik J., Štolfa S., Ježek D., Kuchař Š. 2011. “Petri Net
Based Simulation for SPI”. 17th European Concurrent
Engineering Conference/7th Future Business Technology
Conference 2011, London, United Kingdom.

Madison D. 2005. Process Mapping, Process Improvement and
Process Management. Paton Press.

Persse, James R. 2006. Process Improvement Essentials: CMMI,
Six SIGMA, and ISO 9001. O’Reilly Media.

navg (c i)=
avg (c i)−min(avg (c1) , ... ,avg (cn))

max(avg (c1) , ... ,avg (cn))−min(avg (c1) , ... ,avg (cn))

Rus, I., J. Collofello, and P. Lakey. 1999. “Software process
simulation for reliability management”. Journal of Systems
and Software 46 (2-3):173-182.

Šmída F. 2007. Zavádění a rozvoj procesního řízení ve firmě.
Grada Publishing, a.s.

Vondrák I., Szturc R., Kružel M. 1999. “Company Driven by
Process Models”. European Concurrent Engineering
Conference Proceedings ECEC ’99 188-193, Erlangen-
Nuremberg, Germany.

Vondrák I., Szturc R., Kružel M. 1999. “BPM – OO Method for
Business Process Modeling”. ISM ’99 Proceedings 155-163,
CSSS, Rožnov pod Radhoštěm.

	Introduction
	BPM Method
	parallelism in the BPM Method
	sharing limited resources
	Chained execution
	resource Utilization and unavailability
	case study
	Conclusion and future work

