

An Introduction to Software Engineering
Author:

Ing. Svatopluk Štolfa, Ph.D.

Department of Computer Science

VSB - Technical University of Ostrava

www.cs.vsb.cz/stolfa

Presenter:

Ing. David Ježek, Ph.D.

https://swi.cs.vsb.cz/en/jezek/student-information/swi.html

2

https://swi.cs.vsb.cz/en/jezek/student-information/swi.html

;

3

Objectives
● To introduce software engineering and to explain its

importance

● To set out the answers to key questions about software
engineering

● To introduce ethical and professional issues and to explain
why they are of concern to software engineers

● To gain a basic knowledge to become a successful software
engineer

References
● Pfleeger, Shari Lawrence, and Joanne M. Atlee. 2009.

Software Engineering: Theory and Practice: Prentice
Hall, ISBN 0136061699.

● Pressman, Roger S. 2010. Software Engineering : A
Practitioner's Approach. 7th ed. New York: McGraw-Hill
Higher Education, ISBN 9780073375977.

● Sommerville, Ian. 2010. Software Engineering. 9th ed,
International Computer Science Series. Harlow:
Addison-Wesley, ISBN 978-0137035151.

4

What is Software Engineering?
● What do you think about the term Software

Engineering?
● What does it mean to be a software engineer?
● What is meant by a “software life-cycle”?
● How software projects are planned and managed?
● ….

Since we are going to talk about software engineering it is
good to know what it means. Don’t you think?

Are you able to answer these few important questions? What
do you think?

Do not worry if you are not sure about the right answer. This
is the reason why we are all here. To try to answer these
questions, to gain some basic knowledge about a field of
study called software engineering and finally, to become a
successful software engineer. Ok let’s start.

5

What is Software Engineering?
● Where can you find software?
● Software products are large and complex
● Development requires analysis and synthesis

– Analysis: breaking down a large problem into smaller, better
understandable pieces

– Abstraction is the key
● Synthesis: creating (compose) software from smaller

building blocks
– composition is challenging

Do you think that it is easy to build software? Can you think of
some software products?

MS Office, Car computer unit, airplane computer, mobile
phone, …

Try to answer this questions:
Aren’t this programs and solutions quite big to do it at once?

Where would you start do build such software?
Are you able to code it yourself. How long will it take? Is it not

better to cooperate with other people?

Software products are large and complex

Development requires analysis and synthesis
Analysis: break down a large problem into smaller,
understandable pieces
abstraction is the key
Synthesis: build (compose) a software from smaller building
blocks
composition is challenging

6

What is Software Engineering?
● The analysis process

Most problems are large and sometimes tricky to handle. So
we must begin investigating the problem by analyzing it.
Break it down into pieces that we can understand and try to
deal with them. The larger problems can then be described
as a collection of small subproblems.

7

What is Software Engineering?
● The synthesis process

Once you have analyzed the problem, you must find out the
solution to the subproblems. Then the issue it to construct
the solution of the large problem that consists of these
small subproblems.

9

What is Software Engineering?
● Building a home myself.

Let’s imagine that you want to build a home.

Suppose that you get lost in the forest and you have a moment to build some type of a shelter before it gets dark, cold and possibly
before it starts to rain. This will give you some small amount of time and you do not need much experience in building houses nor
somebody else’s help. In case that your first attempt to pitch a roof fails, there is little damage (unless you let a heavy branch hit your
head or break your bones…) and little effort wasted (money or time). You can easily rebuild the shelter in a few minutes. If you are not
experienced at all, you will probably need more time and more attempts to finally build something like that. Anyway, you are able to do it
yourself.

Next example – the house. Ok, suppose that some of us are able to build the house themselves. Sometimes you ask your friend to do
some work for you. Definitely, this way you spend some money to buy building material and you need to plan ahead - what to build, what
type of work you need do first, second, next, …
Of course, you can still be in charge of everything and do it yourself.

Next example – the block of flats. Now, you definitely need a plan, more money and more resources – people and materials to
accomplish this.

Next example – skyscraper. Can you do it yourself? I don’t think so. No individual can. You might be able to imagine or design its looks,
its architecture, draw some basic plans but that’s it. You will definitely need some experienced people to do the rest for you. And I forgot
one important thing: you will need a lot of money ;-).

All these examples are metaphors for building software.
The first one – shelter – you want to do your own simple counter, function, that can write some words on the screen etc. Very easy
application.

Second one – the house. Let’s imagine for instance an application for your home library, a simple web page etc.

Third one – the block of flats. This could be for instance ERP system for small enterprises, an accounting system, a large web page etc.

Fourth one – the skyscraper. Plane computer software, ERP system for a big company, …

10

What is Software Engineering
● As a software engineer you will use you knowledge of

computers and computing to help solve problems.

Ok, going back to the Software Engineering - what will YOU do?
As a software engineer you will use you knowledge of computers and computing to
help solve problems.

What terms do we need to know to explain this?
Method: refers to a formal procedure; a formal “recipe” for accomplishing a goal that is
typically independent of the tools used
Tool: an instrument or automated system for accomplishing something in a better way
Procedure: a combination of tools and techniques to produce a product
Paradigm: philosophy or approach for building a product (e.g., OO vs. structured
approaches)
Computer science: focusing on computer hardware, compilers, operating systems,
and programming languages
Software engineering: a discipline that uses computer and software technologies as
a problem-solving tools

As you can see on the figure, and you are certainly aware of - a computer science is
about theories, hardware, functions etc.
On the other hand there is a customer who wants to solve a problem. Customers
might not be experienced (they are usually not), in computers and so it is your job to
bring the knowledge of computers and the problem together. Finding solution is your
domain.

The joining point that tries to combine the problem resolution with computer knowledge
is called Software Engineering and the people who do the job are generally called
Software Engineers.

11

Definition of Software Engineering
● The IEEE Computer Society (

The Institute of Electrical and Electronics Engineers)
defines software engineering as:

1)The application of a systematic, disciplined, quantifiable
approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

2)The study of approaches as in (1).

12

http://www.ieee.org/

Definition of Software Engineering
Software engineering is an engineering discipline

concerned with practical problems of developing large
software systems.

Software engineering involves:
● Technical and non-technical issues
● Knowledge of specification, design and implementation

techniques
● Human factors
● Software management

13

Software Engineering Code of Ethics and
Professional Practice 1/2
1. PUBLIC - Software engineers shall act consistently with
the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in
a manner that is in the best interests of their client and
employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their
products and related modifications meet the highest
professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity
and independence in their professional judgment.

14

Software Engineering Code of Ethics and
Professional Practice 2/2
5. MANAGEMENT - Software engineering managers and
leaders shall subscribe to and promote an ethical approach to
the management of software development and maintenance.
6. PROFESSION - Software engineers shall advance the
integrity and reputation of the profession consistent with the
public interest.
7. COLLEAGUES - Software engineers shall be fair to and
supportive of their colleagues.
8. SELF - Software engineers shall participate in lifelong
learning regarding the practice of their profession and shall
promote an ethical approach to the practice of the
profession.

15

FAQs about Software Engineering
● What is software?
● What is software engineering?
● What is the difference between software engineering

and computer science?
● What is the difference between software engineering

and system engineering?
● What is a software process?
● What is a software process model?

Let’s try to answer some FAQs about software engineering.
Usually, somebody not experienced in the software
engineering asks these basic questions:

What is software?
What is software engineering?
What is the difference between software engineering and

computer science?
What is the difference between software engineering and

system engineering?
What is a software process?
What is a software process model?
And of course, we will learn how to answer them in more

detail later in this course.

16

FAQs about Software Engineering
● What are the costs of software engineering?
● What are software engineering methods?
● What is CASE (Computer-Aided Software Engineering)
● What are the attributes of good software?
● What are the key challenges facing software

engineering?

And other questions about more specific things/questions might come
to your mind as well.

Let’s try to answer them briefly in this introduction lesson to give you
some thoughts and ideas you may find useful in your future
careers.

(As) You know, software and computers are not only about playing
games. Somebody has to look after those do not know anything
about computers and make their jobs and entertainment easier by
providing support.

I suppose that you who are sitting here and want to know something
about Software Engineering are also those who will challenge the
problems of your customers and will lead them to the successful
solutions.

Or maybe you just had an idea of developing a similar computer
game you used to play in the past because you liked it so much.

Maybe you like computers and just want to help spread out computer-
aided solutions and encourage people to use them.

Who knows? It might have something to do with your motivation and
your future job.

Let’s continue and answer the questions.
17

What is Software?
● Computer programs and associated documentation such as

requirements, design models and user manuals.
● Software products may be developed for a particular

customer or may be developed for a general market.
● Software products may be

– Generic - developed to be sold to a range of different customers
e.g. PC software such as Excel or Word.

– Custom-made (made to order) - developed for a single customer
according to their specification.

● New software can be created by developing new programs,
configuring generic software systems or reusing existing
software.

Computer programs and associated documentation such as
requirements, design models and user manuals.

Software products may be developed for a particular
customer or may be developed for a general market.

Software products may be
Generic - developed to be sold to a range of different customers e.g.

PC software such as Excel or Word.
Custom-made (made to order) - developed for a single customer

according to their specification.
New software can be created by developing new programs,

configuring generic software systems or reusing existing
software.

18

What is Software Engineering?
● Software engineering is an engineering discipline that

deals with all aspects of software production.
● Software engineers should adopt a systematic and

organised approach to their work and use appropriate
tools and techniques depending on the problem to be
solved, the development constraints and the resources
available.

We have already thoroughly discussed the general answer to
this question. That a software engineering is solving
problems (with the help of) computers, but are there any
specific tasks to do?

Software engineering is an engineering discipline that is
concerned with all aspects of software production.

Software engineers should adopt a systematic and organised
approach to their work and use appropriate tools and
techniques depending on the problem to be solved, the
development constraints and the resources available.

Analyze the problem, break it down into subproblems, create
an architecture of the system to be built, compose the
system from scratch. Deliver it to customer.

19

What is Software Engineering?
The IEEE Computer Society defines software engineering
as:

(1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.
(2) The study of approaches as in (1).

20

What is the Difference between Software
Engineering and Computer Science?
● Computer science is concerned with theory and

fundamentals; software engineering is concerned with
the practicalities of developing and delivering useful
software.

● Computer science theories are still insufficient to act as
a complete underpinning for software engineering
(unlike e.g. physics and electrical engineering).

You should know the answer to this. Do you memorize it for
long term? If not, use the opportunity as a second chance.
You know what Software Engineering is – an engineering
discipline that helps (to) solve problems of customers from
different domains/areas.

Computer science is concerned with theory and
fundamentals; software engineering is concerned with the
practicalities of developing and delivering useful software.

Computer science theories are still insufficient to act as a
complete underpinning for software engineering (unlike e.g.
physics and electrical engineering).

21

What is the Difference between Software
Engineering and System Engineering?
● System engineering is concerned with all aspects of

computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this process and it is concerned
with developing the software infrastructure, control,
applications and databases in the system.

● System engineers are involved in system specification,
architectural design, integration and deployment.

Have you ever heard of that term? System engineering? Yes or no? Ok
there is the explanation of the difference:

System engineering is concerned with all aspects of computer-based
systems development including hardware, software and process
engineering. Software engineering is part of this process concerned
with developing the software infrastructure, control, applications and
databases in the system.

System engineers are involved in system specification, architectural
design, integration and deployment.

So, if I would like to let you solve my problem – develop a system for
something like a ship. I would not ask you. I would ask a ship-building
factory to do that. Anyway, they might then ask you to develop a
software for the computers on that ship. Somebody has to deliver a
control unit that definitely has some software in it etc.

Ok the boundary between the system and software engineering might
not be completely strict. It always depends on the proposed building
solution. Sometimes System Engineering might be only the small part
of the complete delivery – like in the case of, say accounting software
- where you have to deliver PCs and network staff as well, etc.

22

What is a Software Process?
● A set of activities whose goal is the development or

evolution of software.
● Generic activities in all software processes are:

– Specification - what the system should do and its
development constraints

– Development - production of the software system
– Validation - checking that the software is what the customer

wants
– Evolution - changing the software in response to changing

demands.

Do you remember that house building example? When we are building a
house, do we have to start at some point and end at some point? Why?
Because we have to build the house from the basement to the roof
(from the ground up). It is obvious that there are tasks that have to be
done only after some other tasks are finished. Like, for example,
constructing a roof without walls is no use. Of course, sometimes you
can do that, but these are rather exceptions.

The same thing works (goes) for the construction of software. It is proven
that before you start to build software it is good to ask your customer
questions about the software functionality. Then think about the
architecture, build components, put them together and test them,
deliver the system to the customer etc…

What is a software process?
A set of activities whose goal is the development or evolution of software.
Generic activities in all software processes are:
Specification - what the system should do and its development

constraints
Development - production of the software system
Validation - checking that the software is what the customer wants
Evolution - changing the software in response to changing demands.

23

What is a Software Process Model?
● A simplified representation of a software process,

presented from a specific perspective.
● Examples of process perspectives are

– Workflow perspective - sequence of activities;
– Data-flow perspective - information flow;
– Role/action perspective - who does what.

● Generic process models
– Waterfall;
– Iterative development;
– Component-based software engineering.

Since the coordination of the work is complicated, sometimes it is
useful to use blueprints to control the project. These blueprints
model the process.

What is the software process model?
A simplified representation of a software process, presented from a

specific perspective.
Examples of process perspectives are
Workflow perspective - sequence of activities;
Data-flow perspective - information flow;
Role/action perspective - who does what.
Generic process models
Waterfall;
Iterative development;
Component-based software engineering.

24

What are the Costs of Software Engineering?
● Roughly 60% of costs are development costs, 40% are

testing costs. For custom software, evolution costs often
exceed development costs.

● Costs vary depending on the type of system being
developed and the requirements of system attributes
such as performance and system reliability.

● Distribution of costs depends on the development
model that is used.

Money first, of course it is always about money. What is the
cost?

Roughly 60% of costs are development costs, 40% are
testing costs. For custom software, evolution costs often
exceed development costs.

Costs vary depending on the type of system being developed
and the requirements of system attributes such as
performance and system reliability.

Distribution of costs depends on the development model that
is used.

25

What are Software Engineering Methods?
● Structured approaches to software development which

include system models, notations, rules, design advice and
process guidance.

● Model descriptions
– Descriptions of graphical models which should be produced;

● Rules
– Constraints applied to system models;

● Recommendations
– Advice on good design practice;

● Process guidance
– What activities to follow.

What are software engineering methods?
We have to do the task and activities somehow. How to do that? Use some method. What is a method?

Method is:
Structured approaches to software development which

include system models, notations, rules, design advice and
process guidance.

Model descriptions
Descriptions of graphical models which should be produced;
Rules
Constraints applied to system models;
Recommendations
Advice on good design practice;
Process guidance
What activities to follow.

26

What is CASE (Computer-Aided Software
Engineering)?
● Software systems that are intended to provide

automated support for software process activities.
● CASE systems are often used for method support.
● Upper-CASE

– Tools to support the early process activities of requirements
and design;

● Lower-CASE
– Tools to support later activities such as programming,

debugging and testing.

What is CASE (Computer-Aided Software Engineering)?

You know that we have a computer. Is that right? And you know that software engineering is solving problems using
computers. Is that right? Ok so why we should do everything in our engineering field manually. We should be the first
who use computers to do the thinking for us. So

 Software systems that are intended to provide automated support for
software process activities.

CASE systems are often used for method support.
Upper-CASE
Tools to support the early process activities of requirements and design;

Like requirement engineering tools – requisite pro, MS Word, …
Design tools that support graphical view of the problem – UML based tools, …

Lower-CASE
Tools to support later activities such as programming, debugging and testing.

What about programming enviroment – MS Studio, Eclipse, NetBeans? Testing tools, …

27

What are the Attributes of Good Software?
● The software should deliver the required functionality and

performance to the user and should be maintainable, dependable
and acceptable.

● Maintainability
– Software must evolve to meet changing needs;

● Dependability
– Software must be trustworthy;

● Efficiency
– Software should not make wasteful use of system resources;

● Acceptability
– Software must be accepted by the users for which it was designed. This

means it must be understandable, usable and compatible with other
systems.

Do you want to build good or bad software?
Of course that you want to build good software..., but
What does it mean to build a good software, how can I recognize good software?
Let’s say that good software:

should deliver the required functionality and performance to the user
and should be maintainable, dependable and acceptable.

Maintainability
Software must evolve to meet changing needs;
Dependability
Software must be trustworthy;
Efficiency
Software should not make wasteful use of system resources;
Acceptability
Software must accepted by the users for which it was designed. This means

it must be understandable, usable and compatible with other systems.

28

What are the Key Challenges Facing Software
Engineering?
● Heterogeneity, delivery and trust.
● Heterogeneity

– Developing techniques for building software that can cope
with heterogeneous platforms and execution environments;

● Delivery
– Developing techniques that lead to faster delivery of

software;
● Trust

– Developing techniques that demonstrate that software can
be trusted by its users.

Now, let us think about the software engineering field.
What are the goals that we want to achieve? To build good

software easily, quickly.
So the main challenges we face are for example:

Heterogeneity, delivery and trust.
Heterogeneity
Developing techniques for building software that can cope

with heterogeneous platforms and execution environments;

Delivery
Developing techniques that lead to faster delivery of

software;

Trust
Developing techniques that demonstrate that software can be

trusted by its users.

29

How Can be the Solution Affected by Humans?
● Bug – can be a mistake in interpreting a requirement, a

syntax error in a piece of code or the yet-unknown be
the cause of a system crash

● Human error – when human makes a mistake
● Fault – when a human makes a mistake performing

some software development activity
● Failure – the system has some different behavior that

was intended by the users

Thus, the fault is the inside view of the system – seen by the
developers

Failure is an outside view of the system – seen by the users

30

SWE Knowledge Areas
● Software requirements
● Software design
● Software construction
● Software testing
● Software maintenance
● Software configuration management
● Software engineering management
● Software engineering process
● Software engineering tools and methods
● Software quality

What are the SWE Knowledge Areas?
To become a successful software engineer you should master or at

least know most of this these areas.:
Software requirements – the discipline consist of definitions of the

future software
Software design – the discipline that designs the future software
Software construction – the discipline that deals with the

programming
Software testing – the discipline that covers the software testing
Software maintenance – the discipline that is the maintenance of the

software that is already deployed
Software configuration management – what are the configurations

that are running
Software engineering management – the discipline that covers the

management of the development
Software engineering process – the discipline that covers processes,

their creation, definition, description etc.
Software engineering tools and methods - the discipline that covers

tools and development methods
Software quality – the discipline that deals with the quality of the

development
31

SWE Knowledge Areas - DevOps

What are the SWE Knowledge Areas?
To become a successful software engineer you should master or at

least know most of this these areas.:
Software requirements – the discipline consist of definitions of the

future software
Software design – the discipline that designs the future software
Software construction – the discipline that deals with the

programming
Software testing – the discipline that covers the software testing
Software maintenance – the discipline that is the maintenance of the

software that is already deployed
Software configuration management – what are the configurations

that are running
Software engineering management – the discipline that covers the

management of the development
Software engineering process – the discipline that covers processes,

their creation, definition, description etc.
Software engineering tools and methods - the discipline that covers

tools and development methods
Software quality – the discipline that deals with the quality of the

development
32

Related Disciplines
● Computer engineering
● Project management
● Computer science
● Quality management
● Management
● Software ergonomics
● Mathematics
● Systems engineering

And of course there are many related disciplines that you should
know about.

Like Computer engineering - the discipline that describes the
construction of the computers

Project management – the discipline that covers the
management of the project

Computer science – the discipline that covers the algorithms,
methods and tools for the solution of the problems

Quality management – discipline that is about managing the
quality of the product and the process

Management – the discipline that describes some basic
management stuff

Software ergonomics – the discipline that covers the ergonomic
aspects of the software development

Mathematics – the discipline that covers mathematical and
logical thinking

Systems engineering – the discipline that covers the knowledge
about the whole system building not only the software part of it

33

Who does Software Engineering?
● Customer: the company, organization, or person who

pays for the software system
● Developer: the company, organization, or person who is

building the software system
● User: the person or people who will actually use the

system

Participants in a software development project are: customer,
user and developer. Customer sponsors the system and
has some needs. Developer builds the system for the
customer based on the needs from the customer and from
the users. Developer then delivers the system to (the
customer’s) users.

34

What is a System?
● A purposeful collection of inter-related components

working together to achieve some common objective.
● A system may include software, mechanical, electrical

and electronic hardware and be operated by people.
● System components are dependent on other

system components
● The properties and behaviour of system components are

inextricably inter-mingled

35

What is Inside and Outside of the System?
● Activities and objects

– An activity is an event initiated by a trigger
– Objects or entities are the elements involved in the activities

● Relationships and the system boundaries
– A relationship defines the interaction among entities and

activities
– System boundaries determine the origin of input and

destinations of the output

What about the system boundary? System does not exists in
a vacuum, the hardware and software has to interact with
the users or different systems. That interaction defines the
boundary of the system.

36

Building a System
● Software system is built in the similar way as the house

building.
– Requirement analysis
– System design
– Program design
– Implementation
– Unit testing
– System testing
– Delivery
– Maintenance

Software system is built in the similar way as a house.
Customer defines the needs and maybe the customer is not
a direct user, so the user defines needs as well. The need is
considered as a requirement. Once requirements are
defined, it is necessary to design the system to meet the
specified requirements. The design is reviewed then
accepted by the customer. Based on the design, the code is
written. Once the program is written, it is tested etc. At the
end, the final product is delivered to the customer. After the
delivery it is possible to do the maintenance (After the
delivery - maintenance is taken care of).

37

Members of the Development Team
Developers:

– Project manager
– Analyst
– Designer
– Programmer
– Tester
– Trainer

● Customer:
– Users
– Other stakeholders

The typical members of the development team are:
Project manager – responsible for the project management,

coordinates the whole team
Analyst – responsible for the requirements gathering and

analysis, cooperative to design
Designer – is responsible for the system design, cooperative to

program design
Programmer – responsible for the program design and

implementation, cooperative to the unit testing
Tester – responsible for the unit testing and integration testing

and system testing
Trainer – responsible for the system delivery and maintenance

Customer
User – uses the system, cooperation with developers
These are only the basic roles that are covering the main

disciplines of the software development. There might be many
other roles that might come. For example – architect –
responsible for the architecture design, etc.

38

Disciplines of the Software Development
● Engineering Lifecycle Processes (ISO_IEC_15504):

– ENG.01 Requirements Elicitation
– ENG.02 System Requirements Analysis
– ENG.03 System Architectural Design
– ENG.04 Software Requirements Analysis
– ENG.05 Software Design
– ENG.06 Software Construction
– ENG.07 Software Integration
– ENG.08 Software Testing
– ENG.09 System Integration
– ENG.10 System Testing
– ENG.11 Software Installation
– ENG.12 Software and System Maintenance

Disciplines of the Software Development
There are many ways to make software. One way of describing the

software development is to divide it into parts – disciplines that do the
specific tasks to develop software.

ISO_IEC_15504:
 ENG.01 Requirements Elicitation
 ENG.02 System Requirements Analysis
 ENG.03 System Architectural Design
 ENG.04 Software Requirements Analysis
 ENG.05 Software Design
 ENG.06 Software Construction
 ENG.07 Software Integration
 ENG.08 Software Testing
 ENG.09 System Integration
 ENG.10 System Testing
 ENG.11 Software Installation
 ENG.12 Software and System Maintenance
These disciplines describe the whole software development lifecycle. Of

course, there are more disciplines like e.g. project management, but
these twelve disciplines are directly related to the development itself.
Other disciplines are important too, but are supportive to those basic
ones.

39

Requirements Elicitation
● The purpose of the Requirements Elicitation process is

to gather, process, and track evolving customer needs
and requirements throughout the life of the product
and/or service so as to establish a requirements
baseline that serves as the basis for defining the needed
work products. Requirements elicitation may be
performed by the acquirer or the developer of the
system.

The purpose of the Requirements Elicitation process is to
gather, process, and track evolving customer needs and
requirements throughout the life of the product and/or
service so as to establish a requirements baseline that
serves as the basis for defining the needed work products.
Requirements elicitation may be performed by the acquirer
or the developer of the system.

40

System Requirements Analysis
● The purpose of the System Requirements Analysis

process is to transform the defined stakeholder
requirements into a set of desired system technical
requirements that will guide the design of the system.

As a result of successful implementation of the process:

A defined set of system functional and non-functional
requirements describing the problem to be solved are
established.

The appropriate techniques are performed to optimize the
preferred project solution.

System requirements are analyzed for correctness and
testability.

The impact of the system requirements on the operating
environment are understood.

The requirements are prioritized, approved and updated as
needed.

Consistency and traceability is established between the system
requirements and the customer’s requirements baseline.

Changes to the baseline are evaluated for cost, schedule and
technical impact.

The system requirements are communicated to all affected
parties and baselined.

41

System Architectural Design
● The purpose of the System Architectural Design process

is to identify which system requirements should be
allocated to which elements of the system.

As a result of a successful implementation of the process:

A system architecture design is a one that identifies the elements
of the system and meets the defined requirements.

The system’s functional and non-functional requirements are
addressed.

The requirements are allocated to the elements of the system.
Internal and external interfaces of each system element are

defined.
Verification between the system requirements and the system

architecture is performed.
The requirements allocated to the system elements and their

interfaces are traceable to the customer’s requirements
baseline.

Consistency and traceability between the system requirements
and system architecture design is maintained.

The system requirements, the system architecture design, and
their relationships are baselined and communicated to all
affected parties.

42

Software Requirements Analysis
● The purpose of the Software Requirements Analysis

process is to establish the requirements of the software
elements of the system.

As a result of a successful implementation of Software requirements analysis process:
The requirements allocated to the software elements of the system and their interfaces

are defined
Software requirements are analyzed for correctness and testability
The impact of software requirements on the operating environment are understood
Consistency and traceability are established between the software requirements and

system requirements
Prioritization for implementing the software requirements is defined
The software requirements are approved and updated as needed
Changes to the software requirements are evaluated for cost, schedule and technical

impact
The software requirements are baselined and communicated to all affected parties.

43

Software Design
● The purpose of the Software Design Process is to

provide a design for the software that implement and
can be verified against the requirements.

As a result of a successful implementation of the process:

A software architectural design is developed and baselined
that describes the software elements that will implement
the software requirements.

Internal and external interfaces of each software elements
are defined.

A detailed design is developed that describes software units
that can be built and tested.

Consistency and traceability are established between
software requirements and software design.

44

Software Construction
● The purpose of the Software Construction Process is to

produce executable software units that properly reflect
the software design

As a result of a successful implementation of the process:

Verification criteria are defined for all software units against
their requirements.

Software units defined by the design are produced.
Consistency and traceability are established between

software requirements and design and software units.
Verification of the software units against the requirements

and the design is accomplished.

45

Software Integration
● The purpose of the Software Integration Process is to

combine the software units, producing integrated
software items, consistent with the software design,
that demonstrate that the functional and non-functional
software requirements are satisfied on an equivalent or
complete operational platform.

As a result of a successful implementation of the process:

An integration strategy is developed for software units
consistent with the software design and the prioritized
software requirements.

Verification criteria for software items are developed that
ensure compliance with the software requirements
allocated to the items.

Software items are verified using the defined criteria.
Software items defined by the integration strategy are

produced.
Results of integration testing are recorded.
Consistency and traceability are established between

software design and software items.
A regression strategy is developed and applied for re-

verifying software items when a change in software units
(including associated requirements, design and code)
occur.

46

Software Testing
● The purpose of the Software Testing Process is to

confirm that the integrated software product meets its
defined requirements.

As a result of a successful implementation of the process:

Criteria for the integrated software are developed that
demonstrate compliance with the software requirements.

Integrated software is verified using the defined criteria.
Test results are recorded.
A regression strategy is developed and applied for re-testing

the integrated software when a change in software items is
made.

47

System Integration
● The purpose of the System Integration Process is to

integrate the system elements (including software items,
hardware items, manual operations, and other systems,
as necessary), to produce a complete system that will
satisfy the system design and the customers’
expectations expressed in the system requirements.

As a result of a successful implementation of the process:

A strategy is developed to integrate the system according to
the priorities of the system requirements.

Criteria is developed to verify compliance with the system
requirements allocated to the system elements, including
the interfaces between system elements.

The system integration is verified using the defined criteria.
A regression strategy is developed and applied for re-testing

the system [elements] when changes are made.
Consistency and traceability are established between the

system design and the integrated system elements.
An integrated system, demonstrating compliance with the

system design and validation that a complete set of
useable deliverable system elements exists, is constructed.

48

System Testing
● The purpose of the Systems Testing Process is to ensure

that the implementation of each system requirement is
tested for compliance and that the system is ready for
delivery.

As a result of a successful implementation of the process:

Criteria for the integrated system are developed that
demonstrate compliance with system requirements.

The integrated system is verified using the defined criteria.
Test results are recorded.
A regression strategy is developed and applied for re-testing

the integrated system should a change be made to existing
system elements.

49

Software Installation
● The purpose of the Software Installation Process is to

install the software product that meets the agreed
requirements in the target environment.

 As a result of a successful implementation of the process:

A software installation strategy is developed.
Criteria for software installation is developed that

demonstrates compliance with the software installation
requirements.

The software product is installed in the target environment.
Assure that the software product is ready for use in its

intended environment.

50

Software and System Maintenance
● The purpose of the Software and System Maintenance

process is to modify a system/software product after
delivery to correct faults, improve performance or other
attributes, or to adapt to a changed environment

As a result of a successful implementation of the process:

A maintenance strategy is developed to manage modification,
migration and retirement of products according to the
release strategy.

The impact of changes to the existing system on
organization, operations or interfaces are identified.

Affected system/software documentation is updated as
needed.

Modified products are developed with associated tests that
demonstrate that requirements are not compromised.

Product upgrades are migrated to the customer’s
environment.

On request, products are retired from use in a controlled
manner that minimizes disturbance to the customers.

The system/software modification is communicated to all
affected parties.

51

Very Small Enterprises
● For the small enterprises or small teams the software

implementation consist of:
– Software Implementation Initiation
– Software Requirements Analysis
– Software Design
– Software Construction
– Software Integration and Tests
– Product Delivery

We can use a model VSE for the small enterprises or very
small development teams. Of course, we are presenting
only the development processes.

The software implementation initiation subprocess ensures
that the project plan is committed to by the work team.

The software requirements analysis subprocess analyzes the
agreed to customer’s requirements and establishes the
validated project requirements.

The software architecture and detailed design subprocess
transforms the software requirements to the system
software architecture and software detailed design.

The software construction subprocess develops the software
code and data from the software design.

The software integration and test subprocess ensures that
the integrated software components satisfy the software
requirements.

The product delivery subprocess provides the integrated
software product to the customer.

52

53

Software Production Layout

Software Process

instantiated by
Project

Project

Project

Project Management
• Planning
• Control

Project Execution
• Analysis
• Design
• Implementation
• Test

consists of consists of

Project
Management
Methodology Software

Development
Methodology

uses
uses

System of
methods for
project
management

System of
methods for
software product
development

is a is a

Software Production Layout.
What is necessary to produce a software. We have already

talked about the disciplines. Now, we have to talk about an
ordering of the disciplines. The basic ordering is described
by the process. Since we are developing software -
software process. We can think of a process as a set of
ordered tasks. It means series of steps involving activities,
constraints, and resources that produce an intended output
of some kind. In our case a software system.

54

A Definition of Process

Relationships
of all tasks (workflow)

Tools Skills,
Training,

Motivation, &
Management

PROCESS

A

B

C
D

W. Humphrey and P. Feiler: "A process is a set of partially
ordered steps intended to reach a goal..."(to produce and
maintain requested software deliverables). A software process
includes sets of related artifacts, human and computerized
resources, organizational structures and constraints.

A Definition of Process
A process usually involves a set of tools, techniques, relationships.
Any process has the following characteristics:
The process prescribes all the major process activities.
The process uses resources, subject to a set of constraints, and

produce intermediate and final product.
The process may be composed of subprocesses that are linked in

some way. The process may be defined as a hierarchy of
processes, organized so that each subprocess has its own
model.

Each process activity has entry and exit criteria, so we know when
the activity starts and ends.

The activities are organized in a sequence, so that it is clear when
one activity is performed relative to the other activities.

Every process has a set of guiding principles that explain a goal of
each activity.

Constrains and controls may apply to an activity, resource or
product.

Software Process Models I
● The reasons to model a software process:

– If the description of the development process is written
down, it forms a common understanding of the
activities, resources and constrains involved in the
software development process

– The creation of the process model helps the team to find
inconsistencies, redundancies and omissions in the
process. As the problems are solved the process
becomes more effective and focused on the
development of the final product

Why to model a software development process?
The reasons to model a software process:
If the description of the development process is written down,

it forms a common understanding of the activities,
resources and constrains involved in the software
development process

The creation of the process model helps the team to find
inconsistencies, redundancies and omissions in the
process. As the problems are solved the process becomes
more effective and focused on the development of the final
product

55

Software Process Models II
● The reasons to model a software process:

– The model should reflect the goals of the development –
building a high quality software system, finding faults in
early stages of the development, meet the required
budget, follow the prescribed schedule. When the model
is built, the team may go through it and check whether
all necessary components are there, or support some.

– Each project has its process tailored. Every project is
special. Software Process Development Model helps the
team to understand where that tailoring is to occur.

56

57

The Waterfall Process Model

Testing and
Maintenance

Implementation
 (Coding)

System and
SW Design

Requirement
s
Analysis and
Definition

One of the first proposed models was the Waterfall Model. As
the figure implies, the previous development stage should
be completed before the next phase begins. Requirements
are elicited from the customer and analyzed. System
architecture is developed and the modules are designed.
Then the system is implemented. After that the system
goes to testing, it is installed and maintained. The model is
easy to understand and describes all necessary
prescriptions for the software development process.

The Waterfall Model: Problems
● It takes too long to see results: nothing is executable or

demonstrable until code is produced.
● It depends on stable, correct requirements.
● It delays the detection of errors until the end.
● It does not promote software reuse.
● It does not promote prototyping.
● ...

The Waterfall Model: Problems
It takes too long to see results: nothing is executable or
demonstrable until code is produced.
It depends on stable, correct requirements.
It delays the detection of errors until the end.
It does not promote software reuse.
It does not promote prototyping.
The biggest problem is that the model does not reflect the
way in which the code has been developed. Unless the
problem is very well understood, the software is usually
developed in iterations.
That is (also) the main issue that the model cannot solve. Of
course, there is a simple solution to that but it is provided by
other models.

58

The Software Development Process in Reality

Implementation
(Coding)

System and
SW Design

Testing and
Maintenance

Requirements
Analysis and

Definition

The Software Development Process in Reality
If the developers use a simple waterfall model or do not use a

model at all, the reality might look messy. In reality the
software development process is a mess, the developer
switches from one discipline to another. The process is
uncontrolled and the developers try to do what they think is
(the) best for the progress. The result is a complete mess
(chaos). They try to gather some requirements, once they
get them they attempt to design, they realize that the
design need some repair of previously written code, that
code must be redesigned etc.

59

60

Exploratory Programming

Develop
outline

specification

Build software
system

Use software
system

System
adequate?

Deliver
software system

NO

YES

Exploratory Programming
Exploratory programming might be one of the solutions. Of

course, this approach is a very abstract and describes only
the very basics. The idea is that the specification is
developed and after that a system is built. When the
system is built somebody uses or tests it and answers the
question whether it does what it should (what it is supposed
to). If not, the system is rebuilt until it does what is expected
by the user or tester. This approach is something like a
predecessor of the prototyping approach. Prototyping will
be explained later.

Waterfall Model with a Prototyping

Testing and
Maintenanc
e

Implementation
 (Coding)

System and
SW Design

Requirement
s
Analysis and
Definition

Prototyping

Waterfall Model with a Prototyping
One of the easiest solutions to the “reality” problem is to

introduce a prototyping to the waterfall development
process. The software is made in small steps. The
prototype is made in every stage – discipline, the prototype
is evaluated and then if the prototype does what was
expected from that part of the system, the next one is
added. If not, the prototype is being rebuilt until appropriate
solution is found. Then the other functionality is added.

61

List of
Revisions

List of
Revisions

List of
Revisions

Prototype
Requirements

Prototype
Design

Prototype
System

Test

System
Requirements

Delivered
System

Prototyping Model

Prototyping model.
We have presented the way the waterfall model can be

connected to the prototyping model in the previous slide.
On the other hand the prototyping model can itself be a
base for a good process model. The model is based on the
fact that the requirements are implemented as soon as
possible and the result is seen very quickly. Requirements
are elicited, then the design of the prototype is made and
the system is implemented. Every discipline is revised until
the result is acceptable to all customers, users and
developers.

62

63

21.03.202
3

TSK 63
 Specifications -> Design -> Implementation -> Testing

System
Integration Testing

Test
Preparation

Test
Execution

Requirement
Analysis

Acceptance
Testing

System Architectural
Design

System
Testing

Program Detailed
Design

Component
Integration Testing

Implementation Component
Testing

Code

Coding
errors

Design errors

Errors in system specifications

Errors in user requirements

V-model: Levels of Testing

For each stage in the model there are deliverables to the next
stage, both development and testing. Such a delivery is an
example of a baseline.

For example, when the user requirements are ready, they are
delivered both to the next development stage and to the
corresponding test level, i.e. acceptance testing. The user
requirements will be used as input to the system
specification (where the system requirements will be the
deliverable to the next stage) and the acceptance test
design.

Note that this is a simplified model. In reality, the arrows
should point in both directions since each stage naturally
will find faults and give feedback to the previous stages.

Spiral Model

Spiral Model.
Spiral model is based on the iterative development. The

spiral starts with the requirements and the plan of the
project and iteration and requirements plan. The concept is
evaluated. The principle works for all types of disciplines.
The first result and prototype is a concept, the second
prototype are requirements, the third prototype is a
software design and the next prototype is a detailed design.
The concept is also based on the risks evaluation. For
example, if the designer is not sure whether the user will
like the type of GUI, they might prototype it and run a test of
what is preferred.

64

Agile Methods

• Opposite to the strictly formulated methodologies
• Agile manifesto – emphasis on the roles and flexibility

• They value individuals and interactions over processes and tools – it
means supply the developer with the resources and then trust them to do
their job

• They prefer to invest the effort for producing real software than producing
the documentation.

• They focus (more) on the customer collaboration than the negotiation of
the contract. The customer is involved in the development process more
than in the requirements phase

• They concentrate on the responding to the change not creating the whole
plan. They believe that it is impossible to gather and implement all
requirements at the beginning. New or changed requirements will appear
during the development.

65

Extreme Programming (XP)
• Set of techniques to emphasize the creativity of developers and minimize the administration
• Extreme Programming is based on 12 principles:

• The Planning Process -- Quickly determine the scope of the next release by combining business priorities and
technical estimates. As reality overtakes the plan, update the plan.

• Small Releases -- The software is developed in small stages that are updated frequently, typically every two
weeks.

• Metaphor -- Guide all development with a simple shared story of how the whole system works.
• Simple Design -- The software should include only the code that is necessary to achieve the desired results

communicated by the customer at each stage in the process. Extra complexity is removed as soon as it is
discovered.

• Testing -- Testing is done consistently throughout the process. Programmers design the tests first and then write
the software to fulfill the requirements of the test. The customer also provides acceptance tests at each stage to
ensure the desired results are achieved.

• Refactoring -- XP programmers improve the design of the software through every stage of development instead of
waiting until the end of the development and going back to correct flaws.

• Pair Programming -- All code is written by a pair of programmers working at the same machine.
• Collective Ownership -- Anyone can change any code anywhere in the system at any time.
• Continuous Integration -- The XP team integrates and builds the software system multiple times per day to keep all

the programmers at the same stage of the development process at once.
• 40-Hour Week -- The XP team does not work excessive overtime to ensure that the team remains well-rested, alert

and effective.
• On-Site Customer -- The XP project is directed by the customer who is available all the time to answer questions,

set priorities and determine requirements of the project.
• Coding Standard -- The programmers all write code in the same way. This allows them to work in pairs and to share

ownership of the code.

66

Crystal

• Is based on the fact that every project needs a different set of
polices, conventions and methodologies. Crystal is based on
people’s trust

• People largely influence the quality of the software. The quality
of the projects and processes improve as the quality of the
people involved increases.

• Productivity increases through better communication and
frequent delivery. There is less need for intermediate products.

67

Adaptive Software Development

• Has six basic principles
• Mission that acts as a guideline – setting up a goal but does not

prescribe how to get there
• Customer value – futures are viewed through the customer

value
• The project is organized around building a components around

the features
• Iteration is important – change is not viewed as a correction but

as an adjustment to the reality of the software development.
• Fixed delivery times – force the developers to plan the scope of

an iteration
• Risk is embraced – the developers tackle the hardest problems

first

68

SCRUM

SCRUM
SCRUM is iterative software development process that is

considered as an agile approach.
Scrum is based on the principles of extreme programming

and extends them. SCRUM can be used for the
development of the process, maintenance of the process or
software management.

The main principles of scrum are:
There is no manager in the usual sense.
Team activities are controlled by the SCRUM Master.
Team is involved in the planning.
Tasks are not assigned to the team members. Team

members take them themselves.
15 minutes scrum meeting every day.

69

SCRUM Roles

• A pig and a chicken are walking down a road. The chicken looks
at the pig and says, "Hey, why don't we open a restaurant?" The
pig looks back at the chicken and says, "Good idea, what do you
want to call it?" The chicken thinks about it and says, "Why don't
we call it 'Ham and Eggs'?" "I don't think so," says the pig, "I'd
be committed but you'd only be involved."

This joke is describe the basic idea of the scrum - there are
two types of role groups – those who are committed and
those that are only involved.

Pigs – scrum master, project owner, team. Chickens – users,
stakeholders, managers

70

SCRUM Meetings

Daily SCRUM
During the actual sprint, 15-20 minutes

Sprint planning meeting
Before each sprint, limit 8h

Sprint review meeting
At the end of the sprint, system previews, limit 4h

Sprint retrospective
Feedback from the sprint, answers
 What was done correctly
 What could be done better

There are several types of scrum meetings. Those meetings
are held at the specific times and for a limited amount of
time. For example the best daytime to do the daily scrum is
a morning, when everybody starts his work or is at the end
of previous work or in the middle of the problem. Everyone
shares the information with (the) others. Sometimes the
team members need some help from other team members.

Daily SCRUM
During the actual sprint, 15-20 minutes

Sprint planning meeting
Before each sprint, limit 8h

Sprint review meeting
At the end of the sprint, system previews, limit 4h

Sprint retrospective
Feedback from the sprint, answers
What was done correctly
What could be done better

71

SCRUM Artifacts

• Product backlog
• High level document that describes the whole product
• What should the system do, requirements etc.

• Sprint backlog
• Detailed document that describes the information about the current sprint.

• Burn down
• Is a public document that shows the work to be done in the sprint.

Scrum Artifacts
There are three basic scrum artifacts. The basic one is the

product backlog that contains the requirements and the
description what the software should do. Team selects the
subset of the requirements set from this document and
describes it in more detail in the sprint backlog. The tasks
are described in the burn down document.

72

Symptoms of Software Development
Problems
• Inaccurate understanding of end-user needs
• Inability to deal with changing requirements
• Modules don’t integrate
• It is difficult to maintain or extend the software
• Late discovery of flaws
• Poor quality and performance of the software
• No coordinated team effort
• Build-and-release issues

Let’s see the other development processes the so called rigid
processes, why they started.

When the software system was developed, many project had
some of these symptoms. When the symptom appeared
the solution could be found but the roots of such a
symptom must be treated (addressed) not the result.

Symptoms of Software Development Problems

Inaccurate understanding of end-user needs
Inability to deal with changing requirements
Modules don’t integrate
It is difficult to maintain or extend the software
Late discovery of flaws
Poor quality and performance of the software
No coordinated team effort
Build-and-release issues

73

Root Causes
• Insufficient requirements specification and their ad hoc management
• Ambiguous and imprecise communication
• Brittle architecture
• Overwhelming complexity
• Undetected inconsistencies in requirements, design, and implementation
• Poor and insufficient testing
• Subjective assessment of project status
• Failure to attack risk
• Uncontrolled change propagation
• Insufficient automation

To treat these root causes eliminates the symptoms and enables to develop and maintain software in a
repeatable and predictable way.

74

Software Best Practices

• Develop software iteratively
• Manage requirements
• Use component-based architectures
• Visually model software
• Verify software quality
• Control changes to software

Commercially proven approaches to software
development that, when used in combination, strike at the
root causes of software development problems.*

Techniques exist that are proved to be commercially
successful in eliminating the problems arising from root
causes. When these best practices are followed the root
causes are solved and no symptoms should occur.

75

Tracing Symptoms to Root Causes and Best
Practices

 Inaccurate understanding
of end-user needs

 Inability to deal with
changing requirements

 Modules don’t integrate
 It is difficult to maintain or

extend the software
 Late discovery of flaws
 Poor quality and

performance of the
software

 No coordinated team effort
 Build-and-release issues

 Insufficient requirements
specification and their ad hoc
management

 Ambiguous and imprecise
communication

 Brittle architecture
 Overwhelming complexity
 Undetected inconsistencies in

requirements, design, and
implementation

 Poor and insufficient testing
 Subjective assessment of

project status
 Failure to attack risk
 Uncontrolled change

propagation
 Insufficient automation

 Develop software
iteratively

 Manage
requirements

 Use component-
based architectures

 Visually model
software

 Verify software
quality

 Control changes to
software

76

Develop Software Iteratively

Requirements
analysis

Requirements
analysis

Software
Design

Software
Design

Implementation
(Coding)

Implementation
(Coding)

Testing and
Deployment

Testing and
Deployment

Classic software development processes follow the waterfall
lifecycle. Development proceeds linearly from requirements
analysis, through design, implementation, and testing.

 It takes too long to see results.
 It depends on stable, correct

requirements.
 It delays the detection of errors

until the end.
 It does not promote software reuse

and prototyping.

77

Iterative and Incremental Process
This approach is one of continuous discovery, invention, and
implementation, with each iteration forcing the development
team to drive the desired product to closure in a predictable
and repeatable way.

An iteration is a complete development loop resulting in a
release (internal or external) of an executable product, a
subset of the final product under development, which grows
incrementally from iteration to iteration to become the final
system.

78

Solutions to Root Causes
• Serious misunderstandings are made visible early
• This approach enables user feedback
• The development team is forced to focus on most critical issues
• Continuous testing enables an objective assessment of the project status
• Inconsistencies among requirements, design, and implementation are

detected early
• The workload of the team is spread more evenly during project lifecycle
• The team can leverage lessons learned and improve the process
• Stakeholders can be given concrete evidence of the project status

79

Manage Requirements

• It is a real problem to capture all requirements before the start of
development. Requirements change during project lifecycle.
Understanding and identifying of requirements is a continuous
process.

• The active management of requirements is about following three
activities: eliciting, organizing, and documenting the system
required functionality and constraints.

A requirement is a condition or capability a system must
have.

80

Solutions to Root Causes

• A disciplined approach is built into requirements management
• Communication is based on defined requirements
• Requirements have to be prioritized, filtered, and traced
• An objective assessment of functionality is possible
• Inconsistencies are detected more easily
• With a tool support it is possible to provide a repository for

system requirements

81

Use Component-Based Architectures

• Component-Based Development is an important approach
allowing to build resilient software architecture because it
enables the reuse of components from many available sources.
Components make reuse possible on a larger scale, enabling
systems to be composed from existing parts, off-the-shelf third-
party parts, and a few new parts that address the specific
domain and integrate the other parts together.

• Iterative approach involves the continuous evolution of the
system architecture. Each iteration produces an executable
architecture that can be measured, tested, and evaluated
against the system requirements.

82

Solutions to Root Causes

• Components facilitate resilient architectures
• Modularity enables a clear separation of system elements that

are subject to change
• Reuse is facilitated by leveraging standardized frameworks

(COM, CORBA, EJB …) and commercially available
components

• Components provide a natural basis for configuration
management

• Visual modeling tools provide automation for component-based
development

83

Visually Model Software
A model is a simplification of reality that completely
describes a system from a particular perspective.

Dynamic
Diagrams

Static
Diagrams

Activity
Diagrams

Models

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
DiagramsUse-Case

Diagrams

Visual Modeling with UML

Models

84

Solutions to Root Causes

• Use cases and scenarios unambiguously specify behavior
• Software design is unambiguously captured by models
• Details can be hidden when needed
• Unambiguous design discovers inconsistencies more readily
• Application quality begins with good design
• Visual modeling tools provide support for UML modeling

85

Continuously Verify Software Quality

• Software problems are exponentially more expensive to find and
repair after deployment than beforehand.

• Verifying system functionality involves creating test for each key
scenario that represents some aspect of required behavior.

• Since the system is developed iteratively every iteration includes
testing = continuous assessment of product quality.

Cost

Time

86

Testing Dimensions of Quality
Functionality

Usability

ReliabilityPerformance

Supportability

Test application from the
perspective of convenience
to end-user.

Test the accurate workings of
each usage scenario

Test that the application behaves
consistently and predictably.

Test online response under
average and peak loading

Test the ability to maintain and
support application under
production use

87

Solutions to Root Causes

• Project status assessment is made objective because test
results are continuously evaluated

• This objective assessment exposes inconsistencies in
requirements, design and implementation

• Testing and verification is focused on most important areas
• Defects are identified early and thus the costs of fixing them are

reduced
• Automated testing tools provide testing for functionality,

reliability, and performance

88

Control Changes to Software

• The ability to manage change - making certain that each
change is acceptable, and being able to track changes - is
essential in an environment in which change is inevitable.

• Maintaining traceability among elements of each release is
essential for assessing and actively managing the impact of
change.

• In the absence of disciplined control of changes, the
development process degenerates rapidly into chaos.

89

Solutions to Root Causes

• The workflow of requirements changes is defined and
repeatable

• Change requests facilitate clear communication
• Isolated workspaces reduce interferences among team

members working in parallel
• Workspaces contain all artifacts, which facilitates consistency
• Change propagation is controlled
• Changes can be maintained in a robust system

90

The Rational Unified Process

• RUP is a process product. It is developed and maintained by Rational
Software and integrated with its suite of software development tools available
from IBM.

• RUP is a process framework that can be adapted and extended to suit the
needs of an adopting organization.

• RUP captures many of best practices mentioned before (develop software
iteratively, manage requirements, use component-based architectures,
visually model software, continuously verify software quality, control changes
to software).

The Rational Unified Process® (RUP) is a Software Engineering
Process. It provides a disciplined approach to assigning tasks and
responsibilities within a development organization. Its goal is to ensure
the production of high-quality software that meets the needs of its end-
users, within a predictable schedule and budget.

91

Two Dimensions of the Process

Two Dimensions of the Process
The rational unified process consist of phases – dynamic aspect of the process and workflows – static
aspect of the process.
Static aspect of the process: how it is described in terms of activities, artifacts, workers and workflows
– organization along content
Dynamic aspect of the process as it is enacted: it is expressed in terms of cycles, phases, iterations,
and milestones – organization along time

Static structure of the process describes who is doing what,
how, and when. The RUP is represented using following
primary elements:
Roles: the who
Activities: the how
Artifact: the what
Workflow: the when
A discipline is the collection of above mentioned kinds of
elements.

92

Cycles and Phases

The development cycle is divided in four consecutive phases
• Inception: a good idea is developed into a vision of the end

product and the business case for the product is presented.
• Elaboration: most of the product requirements are specified

and the system architecture is designed.
• Construction: the product is built – completed software is

added to the skeleton (architecture)
• Transition: the product is moved to user community (beta

testing, training …)

Each cycle results in a new release of the system, and each is a product
ready for delivery. This product has to accommodate the specified needs.

Each cycle results in a new release of the system, and each is a product
ready for delivery. This product has to accommodate the specified needs.

93

Iterations
Each phase can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external)
of an executable product, a subset of the final product under
development, which grows incrementally from iteration to iteration to
become the final system.

Each phase can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external)
of an executable product, a subset of the final product under
development, which grows incrementally from iteration to iteration to
become the final system.

94

Static Structure of the Process

• Workers (Roles) define the behavior and responsibilities of an
individual (designer, analyst, programmer ...), or a group of
individuals working together as a team.

• Artifacts are things that are produced, modified, or used by a
process (model, document, source code …).

• Activities are performed by workers to create or update some
artifacts (review design, compile code, perform test …).

• Workflows are sequences of activities that produce results of
observable value (business modeling, implementation …).

A process describes who is doing what, how, and when using following modeling
elements:

95

Roles

• The behavior is expressed in terms of activities the role
performs, and each role is associated with a set of cohesive
activities.

• The responsibilities of each role are usually expressed in
relation to certain artifact that the role creates, modifies, or
controls.

• Roles are not individuals, nor job titles. One can play several
roles in the process.

Role defines the behavior and responsibilities of an
individual (designer, analyst, programmer ...), or a group
of individuals working together as a team.

96

Activities

• The granularity of an activity may vary from hours to days. It
usually involves one person in the associated role and affects
one or only small number of artifacts.

• Activities may be repeated several times on the same artifact,
especially from one iteration to another.

An activity is a unit of work that an individual in that role
may be asked to perform and that produces a meaningful
result in the context of the project.

97

Artifacts

• Deliverables are only the subset of other artifacts.
• Artifacts are very likely to be subject to version control and configuration

management.
• Sets of Artifacts:

• Management set – planning and operational artifacts
• Requirements set – the vision document and requirements in the form of

stakeholders’ needs
• Design set – the design model and architecture description
• Implementation set – the source code and executables, the associated

data files
• Deployment set – installation instructions, user documentation, and

training material

Artifacts are things that are produced, modified, or used by a
process (model, document, source code, executables …).

98

The Unified Modeling Language
● The Unified Modeling Language (UML) is a standard

language for writing software blueprints.
● The UML may be used to visualize, specify,

construct and document the artifacts of a software-
intensive system.
– Visualizing means graphical language
– Specifying means building precise, unambiguous, and

complete models
– Constructing means that models can be directly

connected to a variety of programming languages

99

Building Blocks of the UML
UML

Things Relationships Diagrams Grouping

Use case
Object
Class
Interface
Component
Node

Dependency
Association
Generalization
Realization

Use case
Class
Sequence
Collaboration
Statechart
Activity
Component
Deployment

Package
Subsystem
Model

http://www.uml.org

100

http://www.uml.org/

Core Engineering Workflows

• Business Modeling describes the structure and dynamics of
the organization

• Requirement describe the use case-based method for eliciting
requirements

• Analysis and Design describe the multiple architectural views
• Implementation takes into account sw development, unit test,

and integration
• Test describes test cases and procedures
• Deployment covers the deliverable system configuration

101

Workflows and Models

Business Process Model Domain Model

Use Case Model

Analysis Model

Desing Model Deployment Model

Implementation Model

Test Model

Business Modeling

Requirements

Analysis

Design

Implementation

Test

UML diagrams
provide views into

each model

Each workflow is associated with
one or more models

Business Process Model Domain Model

Use Case Model

Analysis Model

Desing Model Deployment Model

Implementation Model

Test Model

102

Core Supporting Workflows

• Configuration Management describes how to control the
numerous artifacts produced by the many people who work on a
common project (simultaneous update, multiple versions …).

• Project Management is the art of balancing competing
objectives, managing risk, and overcoming constraints to deliver,
successfully, a product which meets the needs of both customers
(the payers of bills) and the users.

• Environment Workflow provides the software development
organization with the software development environment—both
processes and tools—that are needed to support the development
team.

103

Requirements

Requirements
In the next part, we are going to speak about requirements.

The part will consist of requirements gathering, problems
with the requirements gathering, models and tool to do the
requirement analysis.

104

We have implemented
all your needs

Yes, but ii is not what I
wanted

Many developers already experienced that the development of the project did not have to
be only a complete success, but there might be many problems during the
development of the software project.

These problems might even lead to a failure of the project or its rejection his reject by the
customer.

The causes for this failure can make up a long list of possible problems.

It is well known that the successful handover of the software system is a big issue in the
software engineering area.

Let’s have a look at four main symptoms that might lead to the problems.

Symptom no. 1.

Analyst or developer of the software project omits the important task that leads to the
understanding of the customer needs. Analysts or developers think that they
understand all the needs at once and want to implement them immediately.

105

Why you didn’t tell us
that you want this

requirement?

You did not ask me. I
thought that you knew
everything. It is your

fault.

Symptom no. 2.
Software system requirements that are derived from the customer need were not

described carefully, the stakeholders were not involved to the process of requirement
definition. The developers or analysts were too selfish or thought that they knew what
the customer needed. The customer does not know that the developer or analyst does
not understand his/her needs. How could he understand? He probably does not know
anything about the software development process. It is completely the fault of the
developers (developers’ fault).

106

I think that this
requirement

means this….

Symptom no. 3.
The developers think that they know everything. The requirements are not formally

described and there is no change management. If they have to implement the
requirement that is not completely clear they do it their way, they do not consult the
problem with the analyst or customer. The problem is that the developers might not
understand all customers intentions with this requirement and the connection to other
requirements if it is not described.

107

I have a new great
requirement. That

requirement must be
implemented now.

Sure, no problem…

Symptom no. 4.
The project is not managed correctly. Nobody knows or cares

about the time management, nobody cares about the
difficulty of the requirements. Customer changes
requirements, brings new requirements and the developers
do not know the difficulty. The problem is that the project
might soon ravage the project budget or the time
consuming requirements might take too much time to built
the complete project on time.

108

Solution
domain

Problem
Domain

Design
User

Documentation

Product to be
built

Traceability

What are the Requirements for?

Needs

Requests

Software
Requirements

Problem

Test Procedures

What are the requirements for?

Requirements management consists of the analysis of customers’ needs. These needs are
transformed to the software requirements. These software requirements are then divided
into functional and non-functional requirements.
According to the requirements, the test procedures are made, design is made to satisfy
the requirements, user documentation etc.
The pyramid shows the process that started in the problem domain, where the problem
was defined, then the needs of the new software, requests that are derived from these
needs, software requirements that are derived from the request and then the rest of the
artifacts. The pyramid shows that the needs and requests are the core things that have to
be solved, everything else relies on them.

109

Definition of the Software Requirement

• Requirement
• Condition or the capability of the system that the system has to satisfy

• Requirement management
• The systematic approach to the:

• Gathering, selection, organization and definition of the requirements.
• Creation of the process and method for the customers and developers that enables to

change the requirements in a controlled way

Now, we have to ask a question, what is the requirement.
Requirement is a capability or a condition that the system has

to satisfy.

110

Definition of the Software Requirement II

• Requirement
• is a needed function, property or behavior of the system

• Types of requirements
• Directly connected to the customer
• System needs
• Legislative needs
• Etc.

It is not important whether the requirements are gathered
directly from the customers or they are defined in the various
documents that have been signed with the customer,
specification of the software requirement or other formally
approved document.

According to the UML, the requirement is a needed function,
property or behavior of the system.

Anyway, a requirement specifies WHAT the system should do,
but does not describe HOW to do that.

There are many types of requirements.
For example, requirements ruled by a function are directly

connected to the customer, on the other hand, legal
requirements are requirements that specify the legislative
need that has to be followed by the system.

You have to know that it is not possible to define all
requirements at once at the beginning of the project.

Requirement management is successful only when the
requirements are briefly described at the beginning and then
completely detailed.

111

What does the Software Requirement Specify?

Inputs Outputs

Functionality

Non functional requirements
(e.g.)

Design conditions

System

What does the software requirement specify?
As was already mentioned before, a requirement describes the condition or the capability

that the system has to satisfy. Software requirements are in fact something like a
description of the black box. Requirements define only the externally visible things
WHAT the system should do.

Sometimes there are necessary descriptions HOW the system should specifically do that.
These descriptions are defined by the design conditions.

112

Definition of Terms

• User Request
• Description of the customer needs without the connection to the specific solution

• Property
• Externally visible service that that satisfies the stakeholder needs

• Software Requirement
• Functional Requirement

• Requirement that specifies how the solution to be implemented interacts with the surrounding world
from the “black box” view

• Non-Functional Requirement
• Requirement that defines the quantitative attributes of the solution, again from the “black box” view

• Condition
• Condition of the design or the process of the software development

113

Definition of Terms – Example – University System

• User request
• Reduction of the administrative load
• Teachers need immediate access to the students results

• Property
• Information about students will be accessible from the semester view or from the

group view.
• Software requirement

• Functional requirement
• When the student selects “subject registration” the system will show all available subjects

• Non-functional requirement
• The system will be accessible 99% of the time 24/7 (the system might not be available only 3,65

days per year)

• Condition
• The system will run on the current mainframe university architecture.

114

Requirements Exist on Many Levels
WHAT
HOW

WHAT
HOW

WHAT
HOW

Stakeholder needs

Product or system requirements

Software requirements

 Design specification
Test procedures
Documentation

Requirements exist on many levels

It depends on the perspective whether it is a requirement or a design condition.

For example, the stakeholder request is a requirement for the system analyst. Analyst
creates a product or a system, requirements that are inputs to the software
requirements.

Software requirements that are described by the use cases must specify what the system
should do to satisfy the requested functionality.

The person responsible for the creation of the use cases creates a set of these use cases
that are requirements for the system designers. The same principle continues.

When we want to develop a system that satisfies stakeholder needs, it is important to
correctly understand all the needs. Therefore, the quality of requirements is very
important during the whole development process.

115

Requirement Management is not an Easy Task

• Requirements:
Are not always clear.

• They come from many sources.
• It might not be easy to describe them.
• Are connected together.
• Have a unique properties or values.
• Are changing.
• It is hard to follow so many requirements...

Requirement Management is not an Easy Task

Requirements management might looks like an easy task, but it is not. The realization of the requirement
management is hard task.

There are many reasons like:

Customers not always know what they want

When the number of requirements grows it is not easy to follow them all and take them in into account.

It can be hard to recognize the dependency between the requirements

IT people have a problem to use a style of writing that is understandable to non-technical people.

All possible problems can be overcome by the right selection of the process.

116

It is Important to Have a Strategy

SR plan

It is important to have a strategy.

It is important to have a requirement management plan. Requirement management plan specifies control
mechanisms that are used for the gathering, description, measurement and management of the software
requirements.

It is important to know how the requirements will be documented and organized. It is necessary to know how
the requirements will be managed for the whole project lifecycle.

Requirement management plan describes then all important decisions that are concerning description of the
requirements, methods a strategies for the gathering of the requirements, traceability of the
requirements, etc.

Similarly to the glossary, that describes the terminology of the project, the requirements management plan
is a life document. This document is created at the beginning of the project and then extended according
to the timeline of the important decisions.

117

Effective Requirement Management

• Management and clear definition of the requirements by the
• Well described requirements
• Attributes usable for every type of the requirement
• Dependability of the requirements, relationships with other requirements

The goal is to deliver quality requirements, on time, according to the budget and satisfy
the real customer needs.

Effective Requirement Management
Management and clear definition of the requirements by the
Well described requirements
Attributes usable for every type of the requirement
Dependability of the requirements, relationships with other

requirements

The goal is to deliver quality requirements, on time,
according to the budget and satisfy the real customer
needs.
Management

118

What is in the Requirements Management Plan

SR Plan

• RMP consists of
• Types of the requirements that will be gathered
• Where the requirements will be stored and how the requirements will be

described
• Attributes that are necessary to follow
• Types of the requirements that are necessary to follow
• Types of the documents that will be created
• Rules for the requirements management plan

Requirement management plan should be prepared as a
template document in the company. Then, the document
RMP is accustomed for every single project that needs that.

119

What is Quality Product?

• Quality is to:
• Satisfy the requirements specification
• All system tests were successful
• Development according to the process

What is quality product?

In the past, the goal of the software development was only to deliver a system that satisfied all formal software specifications. The
definition of the quality was: everything was delivered as specified. But this concept did not ensure that the system was
successful.

In this case, the project starts with the detailed plan and strictly follows prescribed processes. This quality approach is based on the
idea that if the development process is strictly followed the product will be good software.

System tests were used to ensure that the system is correct, but nobody cared whether the system helped to solve user problems or
not.

120

What is Quality Product?

• Quality is to:
• Listen to and understand the customer needs
• Continuous evaluation of all artifacts to ensure that all stakeholder needs are

satisfied.

What is quality product?

It is clear that the development according to the development process is important, but it is also important to ensure the quality of the
final product. The goal is the result not the process itself.

The other quality view is concentrated on the understanding what the customers and users expect from the system to solve their
problems. Modern approaches have the methods and processes set in the way that ensures the requirements are understood
correctly.

121

Time, Budget, Resources

Resources

 Budget Time

Time, Budget, Resources
Since the time, budget and resources allocated to the project are limited, it is possible to

deliver only limited amount of work.

It is important to think about how much work you are able to do in that limited time with
limited budget and limited resources.

For example, if the amount of work is to be extended, one of the three factors has to be
extended as well. If for example, the budget is decreased, the amount of work has to
be decreased as well. This principle expects the quality to be the same.

122

Relations between Requirements, Customer and the System

GoalRequirements
Verification

Customer System to be Built

Requirements

Goal

Relations between requirements, customer and the system

One of the goals of the requirement specification is to make a deal about the
requirements. This deal is then implemented by the requirement specification.

It is not always possible to contact the customer whenever we want and it is well know
that customers change their mind very often, so it is essential to write down all
requirements taken from the customers.

Requirements then substitute the customer, requirements should be so complete that the
customer should not be necessary during the implementation phase.

Requirements are representing the customer. It shows his wishes, what the system should
do. Requirements should be written in a such form that is understandable to the
customers and the development team as well.

Requirements are something like a secondary goal for the system development. On the
other hand, they describe criteria for the acceptation and validation of the system
being developed. This is why the requirements and their definitions are so important.

123

Requirements and their Role

124

Cost of the Error Repair

100

2.5

5

10

25

.5 - 1
Requirement specification

Design

Implementation

Testing

Delivery

Maintenance

The cost of the error repair

The most expensive repair of the error is one that was made in the requirement
specification and it is discovered during the maintenance by the customer. If the error
is discovered during the requirement specification phase, the cost of such a repair is
much cheaper. On this picture we can see relative cost of the errors that are made
during the requirements specification phase and are repaired during next phases. The
later the error is made, the so much more costly it becomes to repair.

125

Important Tasks to Avoid Problems I
● Problem Analysis

– Understanding of the problem
– Approval of the problem definition
– Definition of the business goal

Important Tasks to Avoid Problems
It is important to follow several important rules to be able to

deliver or at least to be able to increase the probability of
delivering the successful system.

First of all it is important to follow some basic rules.
The first and most necessary is the correct understanding of

the problem. When the problem is defined then the
customer and the development team must approve their
views of the problem and define the business goal.

126

Important Tasks to Avoid Problems II
● Requirements gathering

– Identification of the users - actors
– Gathering of the functional requirements – use cases

Important Tasks to Avoid Problems II
One of the ways of describing a requirements is a use case

model. Use cases enable us to organize requirements from
the customer’s viewpoint – actors.

All requirements that are necessary to complete one goal are
concentrated into one use case. Use case model is then
the collection of such use cases – goals.

Since the requirements described by the use cases are described from the customer
viewpoint, the best way to gather them is to create and discuss them with the customer.

127

Important Tasks to Avoid Problems III
● Requirements management

– Complete requirement specification
– Management of expectations, changes and errors
– Checking the project boundaries

Important Tasks to Avoid Problems III
How can a developer be sure that he is developing the right system? Ask users and
customers, whether your use case model is what they expect from the system. Use case
model is the key to the development of the whole system.

128

Important Tasks to Avoid Problems IV
● Involvement of all team members
● What should the developers develop?
● What should the testers be testing?
● What will the documentation look like?

What the developers develop? They develop a system that enables user to perform task
that are specified in the use case model.

What the tester should be testing? They do the rest to
ensure that the system is able to do all the tasks
specified in the use case model correctly.
How the documentation will looks like? The
documentation of the system will describe all tasks
that are specified in the use case model.

Do not forget that it is important to specify
requirements correctly, control the expectation of the
customers, changes and errors. Control the scope of
the project and it boundaries and involve all team
members to the system development.

129

Involvement of All Team Members to the
Requirements Gathering
● Developers, tester, programmers

– Help with the development of the requirements gathering
techniques

– Control the usage of the requirements gathering methods
– Verification of the requirements gathering process
– Documenting the requirements
– Cooperation on the requirements review
– Review of the requirement traceability
– Verification of the quality, testability and complexity

What are the advantages of the involvement of all team
members? The main advantage is that the whole team gets
the clearer idea, what the requirements are and why they
are important for the customer.

130

What for is the Use Case Modeling
● Transforms the customer needs in the form of software

requirements
● Defines the scope of the system
● Defines the boundary of the system
● Describes the behavior of the system
● Identifies what will be interacting with the system
● Verifies and validates the system requirements
● Helps with the system development planning

Use case model is a model that describes the functionality of the system. The functionality
is described by the use cases that are the user’s goals. Users are modeled as actors.

Let’s imagine the use case model as a menu in the restaurant. If you open the menu, you
know what food is available and for what price. You know what type of cuisine is that
restaurant is. The menu gives you a hint about what kind of behavior you can expect of
the restaurant.

Since the use case model is a very effective tool to plan a development of the system, the
use case model is used by all members of the development team in all phases and
cycles of the development process.

131

Use Case Model

Use case 1

Use case 2

Use case 3

Use Case Model
- Description
- List of all actors
- List of all use cases

Use Case Description 2
- General Description
- Scenario

Use Case Description 2
- General Description
- Scenario

Actor 1

Actor 2

Actor 3

Use Case Description1
- General Description
- Scenario

System

Use case model
Use case model consists of text descriptions and diagrams. Diagrams show the abstract

view of the system functionality, the connection to the actors and view of the system
boundary. Text describes the actors and each use case.

Each use case contains a detailed description of its own functionality.

Drawing of the diagrams is only small amount of work that needs to be done during the
definition of the use case. More than 80 percent of all effort during the requirement
specification is dedicated to the textual description of the use cases, non-functional
requirements and rules.

132

Use Case Scenario – Activity Diagram
IS of Car ProducerSystemSalesman

Car Specification

Searching for Car

Requirement for Production

Sending Order to Producer

Order Processing

Confirmation of Acceptance

Customer is Informed

[Car Not Found]

[Car Available]

Use Case Scenario – Activity Diagram
The description of the flow of the communication between the customer and the system is

called scenario.

Activity diagrams are another useful tool that can be used for the description of the
scenario. It is common that more complex scenarios are described by the activity
diagrams.

If there are activity diagrams used for the description of the scenarios then it is useful to
use partitions in the diagrams. Partitions show the responsibility of each role to these
activities.

133

Use Case Model - Basic Elements

Actor

● The basic elements are
– Actor – somebody or something that interacts with the

system

The basic elements of the use case model
The basic elements are:
Actor - somebody or something that interacts with the

system, is outside the system
Actor is a simple figure symbol in the diagram. The name of

the actor is under the symbol.

134

Use Case Model - Basic Elements

Use case
Actor

● The basic elements are
– Use case – represents the added value, that the system has

for the particular actor

Use case – represents the added value, that the system has for
the particular actor
Use case describes the sequence of the activities that are
performed by the actor and the system. Activities that are
performed to reach the desired business goal that is supported by
the system.

Use case describes:
System, its environment and the relations between them.
Surrounding systems or people that interact with the system.
Planned behavior of the system.

Use cases are something like containers that contain related
requirements. They concentrate all requirements that are
necessary to reach the desired business goal to one scenario that
describes how to reach this goal.
Use case is modeled as an ellipse in the use case diagram. Name
of the use case is in the middle of the ellipse or alternatively under
the ellipse.

135

What Exactly Is Use Case? I

Use Case

● Use Case
– defines the sequence of the actions performed by the system

that has a visible result for the particular actor.

What Exactly Is Use Case?
Use case describes possible communication with the system. It describes the complete walkthrough thorough the

system that is necessary to reach the goal that demands the actor that is assigned to that use case.

Use case then:

Defines the sequence of the actions – that are atomic activities, decisions and requirements. Each action is
performed completely or not performed at all.

Actions performed by the system – actions that are performed by the system are functional requirements.

Actions that have visible results – it is important to remember that the use case has to have a visible result.
Why should anybody use the system if there is no required result? If the use case is not helpful to
anybody then it’s probably too small. It is necessary to combine it with other use case to reach the
desired goal for the particular actor.

136

What Exactly Is Use Case? II

Use case
Actor

● Use Case

defines the sequence of the actions performed by the
system that has a visible result for the particular actor.

For the particular actor – decision, which actor demands the result of the particular use case helps to
eliminate too general use cases or too small use cases. If there are more actors that can reach different
business goals by one use case then this use case is too general and tries to reach too many goals for
different actors. If the goal is too small and it has no business value, than the use case is too small and
should it be combined with other use cases to reach the business goal.

There are situations where there are more actors cooperating on one use case. Since only one actor reaches
the desired business goal, this connection is allowed. The actor that reaches its goal is called primary
actor. Primary actor is usually actor who initialized the use case. Other cooperating actors are called
secondary actors.

137

Benefits of Use Cases I
● They represent the meaning of particular use cases

– Describe requirements of the system in a logical order
– Describe why the system is important
– Help to identify all requirement of the system

Benefits of the Use Cases
Use cases are a tool to organize requirements from the perspective of the user. All requirements that help

(to) reach one particular goal for the user are collected to the use case that reaches the business goal.
Use case model is then the collection of all particular use cases.

Benefits are:
They represent the meaning of particular use cases
Use cases show why the system is necessary and what goals can be reached by the using the system.
Use case then describes the requirements in a logical order, describes, why the system is important and
helps to identify all requirements of the system.

138

Benefits of Use Cases II
● They are easy to understand

– Use a terminology that is understandable to the customers
and users

– Describe the usage of the system
– Verify the understanding of the customer needs

● Help to make a deal with the customer

Benefits of the Use Cases II
Use cases are easy to understand
Use case model describes the requirements from the perspective of the user by normal language. Use case

model shows what the user thinks that the system should do.

Helps to make a deal with the customer
Use case model is a mediator between the customer and the system developers.

139

Use Case Lifecycle I

Discovery

Brief
Description

Brief Description: this use case enables the department of students
affairs to close the registration process. Subjects that have not enough
students are canceled.

Registration close

Use case lifecycle
In most cases, it is not possible to describe use case

completely. Similarly as any other iterative process, the
description of the use case is continuous development
activity that starts with the discovery of the use case and
ends with its complete description.

The first step is a discovery of the use case. That is made by
the identification of the use case name, goal and the name
of primary actor of the use case. Use case is discovered if it
is somehow named.

Immediately after the discovery of the use case there is
another step. That step is a brief description of the use case.
Brief description describes the goal of the use case, the
description is made by several sentences. For example: we
have identified the use case Registration close. Its brief
description is: this use case enables the department of students affairs to close the
registration process. Subjects that have not enough students are canceled.

140

Use Case Lifecycle II

Content
Registration close

Registration close – Complete description
- Scenarios
Specific requirements
- pre and post conditions

Complete
Description

Use case lifecycle
Next step is a description of the use case content. Content

means a simple list that describes the basic workflow of the
use case and the identification of the alternative flows.
Description of the content helps us to identify scenarios and
helps us to understand how extensive the use case will be
and how much effort will be necessary to implement it.

The last step is a detailed and complete description od the use case. Complete description
is made iteratively, when there is a need to implement that particular scenario.

141

Use Case Diagram

BankCustomer

ATM (Automated Teller Machine)

Accountant

Money withdrawal

Send money

Money disposal

Maintenance
Service

Checking the disposals

Use Case diagram

Use case model describes what the system should do, its environment
and relations between the actors and use cases.

The use case diagram is a graphical representation of the use case
model.

For example the use case diagram of the ATM machine.
When you see that diagram you can easily describe the basic function of

the ATM machine system and its priorities.
The priority is the withdrawal of the money. The ATM machine needs

that use case as a basic functionality. Other use cases, send money
and money disposals disposal are complementary functions to the
basic function money withdrawal, but they are necessary for the
architecture of the system.

It is useful to distinguish between primary and secondary use cases.
Primary use cases are those use cases that are directly connected to
the business goals that the system should support. Secondary use
cases are those use cases that are necessary because of the
technical solution. For example – maintenance of the ATM, backup
etc.

Use cases might be described in more diagrams than one for example
to highlight the important use cases of each actor.

142

Business Modeling
● The main goal of the business process modeling is to

provide common language for communities of
software and business engineers.

● Business Process Modeling (How & When). Business
process is a set of one or more linked procedures or
activities which collectively realize a business objective
or policy goal.

● Domain Modeling (Who & What) captures the most
important objects in the context of the system. The
domain objects represent the entities that exist in
environment in which the system works.

Why to use business modeling? Business modeling can be
used as a tool to understand the problem domain. If the
domain is not known to the developer, the business
modeling can be used. On the other hand business
modeling helps to understand the goal of the software
system itself and does not have to be used only for the
understanding of the domain.

143

144

About Methods for Business Modeling
• Method is a well-considered (sophisticated) system of doing or arranging

something.
• Business Process is a set of one or more linked procedures or activities which

collectively realize a business objective or policy goal, normally within the context
of an organizational structure defining functional roles and relationships.

• Business Process Model is the representation of a business process in a form
which supports automated manipulation, such as modeling or enactment. The
process definition consists of a network of activities and their relationships,
criteria to indicate the start and termination of the process, and information about
the individual activities, such as participants, associated data, etc.

• Workflow is the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules.

Methods for business modeling represent a systematic way of specifying specify and analyzing
business processes.

145

Purpose of Business Modeling
• Business Process Re-engineering (BPR) - methods that support

activities by which an enterprise reexamines its goals and how it
achieves them, followed by a disciplined approach of business process
redesign.

• Enterprise Resource Planning (ERP) - an information system that
integrates all manufacturing and related applications for an entire
enterprise. Business modeling is the first step in the software process
of the ERP implemenation.

• Workflow Management (WFM) – generic software systems used for
definition, management, enactment and control of business processes.

146

Ontology of Process Engineering

via

are mapped on

include one or more

is defined in a

during execution are
represented bydefine demand on

require

used to create
and manage

Business Process
(i.e. what is inteded to happen)

Business Process
(i.e. what is inteded to happen)

Process Specification
(a representation of what is

intended to happen)

Process Specification
(a representation of what is

intended to happen)

Workflow Management System
(controls automated aspects of the business process)

Workflow Management System
(controls automated aspects of the business process)

ActivitiesActivities

SubprocessesSubprocesses

Process Instances
(a representation of what is

actually happening)

Process Instances
(a representation of what is

actually happening)

RolesRoles

Activity InstancesActivity Instances

ResourcesResources

is managed by a

composed of

UML Diagrams for Business Modeling
● Activity Diagram is a variation of a state machine in

which the states represent the performance of activities
and the transitions are triggered by their completion.
– The purpose of this diagram is to focus on flows driven by

internal processing.
● Class Diagram is a graph of elements (in the scope of

business modeling represented by workers and entities)
connected by their various static relationships.
– The purpose of this diagram is to capture static aspect of the

business domain.

147

Motivating Example
● Develop an information system for a car dealer. The application

should collect and provide information about customers, their orders,
cars, payments etc. The possibility to communicate with the car
manufacturer to obtain updated offer of available cars or to order a
car required by a customer should be the part of the system. The
goal is to make the customer happy!

148

Activity Diagram: Car Sale Process
Initial
State

Final
State

Action State
(Activity)

Decision

Control
Flow

Note

Join Transition

Fork Transition

Activity Diagram: Car Sale Process
Let us explain the business modeling captured by the activity diagram on this picture. The process

starts with the activity Car selection. Then there is a decision whether the car was found or not.
When the car was not found, the process ends.

When the car was found, the parallel part begins, two activities can be performed concurrently –
Financing and Car ordering. When both these activities are completed the synchronization part lets
the control flow continue to the activity Car hand over. This is the simple description of the Car sale
process in the UML activity diagram.

149

Swimlanes: Packages of Responsibilities

Swimlanes: Packages of Responsibilities
Actions may be organized into swim lanes. Swim lanes are a kind of package for organizing
responsibility for activities provided by workers.
This diagram shows the previous process divided into the swim lanes. There are three swim lanes are
Customer, Salesman, Accountant. We can see that the Customer is responsible for the Car Selection,
Financing, Salesman is responsible for the Car Ordering, Accountant is responsible for Checking
Payment.

150

Activities and Entities

Object (Entity)
Flow

Entity

Activities and Entities
Except of a activities and roles responsible for the particular

activities, the diagram can show also the objects. Objects
flow between the activities, objects are input and output
data from and to activities. We can see, that the object
Order, was created in the activity Car Selection. This object
is then input to the activity Car Ordering. Object Payment in
the state realized is the output of the activity Financing.
Payment is then input object to the activity Checking
Payment. The output of the checking payment activity is a
object Payment again, but in the state checked. This
payment is then the input activity to the activity Car Hand
Over.

151

Class Diagram: Car Sale Elements
Worker defines the behavior and
responsibilities of an individual

Association

Multiplicity
Entity is the process artifact

Class Diagram: Car Sale Elements
The activity diagram is not the only diagram that can be used

for the documentation of the business processes. The class
diagram is used there for the description of the static part of
the process. The static part means objects and their
relations. We can see, that the process car sale need some
workers – and entities. Workers are individuals, humans,
that do some tasks or are responsible for some tasks.
Entities are artifacts that are created or used during the
process.

There are entities> Payment, Order, Car, and workers
Salesman, Customer and accountant.

152

Requirements
The goal of the requirements workflow is to describe what
the system should do by specifying its functionality.
Requirements modeling allows the developers and the
customer to agree on that description.

● Use Case Model examines the system functionality from the perspective
of actors and use cases.

● Actors: an actor is someone (user) or some thing (other system) that
must interact with the system being developed

● Use Cases: a use case is a pattern of behavior the system exhibits. Each
use case is a sequence of related transactions performed by an actor and
the system in a dialog.

Requirements
Let’s repeat what are the requirements and how to capture

the requirements by the use cases.
The goal of the requirements workflow is to describe what
the system should do by specifying its functionality.
Requirements modeling allows the developers and the
customer to agree on that description.
Use Case Model examines the system functionality from the
perspective of actors and use cases.
Actors: an actor is someone (user) or some thing (other
system) that must interact with the system being developed
Use Cases: an a use case is a pattern of behavior the
system exhibits. Each use case is a sequence of related
transactions performed by an actor and the system in a
dialog.

153

UML Diagrams for Requirements Modeling
● Use Case Diagram shows the relationships among actors

and use cases within a system.
– The purpose of this diagram is to define what exists outside

the system (actors) and what should be performed by the
system (use cases).

● Activity Diagram displays transactions being executed
by actor and system in their mutual interaction.
– The purpose of this diagram is to elaborate functionality of

the system specified in a use case diagram.

UML Diagrams for Requirements Modeling
As we have already thoroughly discussed, sometime we need to show and visually model the

requirements. We can use two types of the UML diagram for this purpose.

Use Case Diagram shows the relationships among actors
and use cases within a system.

The purpose of this diagram is to define what exists outside
the system (actors) and what should be performed by the
system (use cases).

Activity Diagram displays transactions being executed by
actor and system in their mutual interaction.

The purpose of this diagram is to elaborate functionality of
the system specified in a use case diagram.

154

Use Case Diagram: Car Sale

Actor

Use Case

System
Boundary

Use Case Diagram: Car Sale
We can now start to model the use case model for the car

sale system. We use a use cases as functional
requirements, and use a use case diagram as a tool to
express and visually show the relations between the use
cases and actors. And the boundary and scope of the
system.

We can see that we have three actors – user of the system to
be built – Salesman, Accountant and Manager.

Salesman starts and has a connection to the use cases Car
Ordering, and Car Hand Over.

Manager has a connection to the Business Monitor.
Accountant has a connection to the Payment Checking.

155

Structuring Use Cases

Structuring Use Cases
Since there are many use cases and the support use cases might be used by more than one use case
it is possible to use relations.
The relations are:
A generalization is the relationship between a more general use case (the parent) and a more
specific use case (the child) that is fully consistent with first use case.
An extends relationship shows optional behavior
A uses relationship shows behavior that is common to one or more use cases

For example we can see, that the Car ordering is extended
sometimes by the Car Production. Car Ordering uses Logon
Validation, Payment Checking use a Logon Validation.

156

Structuring Actors

Structuring Actors
There might be many actors as well and they can use the
same use cases. If this situation occurs the diagram would
looks like a mess. There would be a lot of lines connecting
particular actors with their use cases. For example,
Salesman have a use case car ordering, Accountant have a
use case Payment Checking. Both these actors has a use
case logon validation. In case that we would like to show
that in one diagram the diagram might start to be
unreadable. Hence, we can use a structuring between
actors.

A generalization is the relationship between a more general actor (the parent) and a more specific
actor (the child) that is fully consistent with first actor.

We can even add a new (sometimes abstract like here) actor - user, that is connected to the use case
Logon Validation. Actors Salesman and Accountant are specialization (or we can say – they inherit
from the actor) of the actor User.

157

Elaborate Functionality of Car Ordering

Actor’s
responsibility

Actor’s
responsibility

Actor’s
responsibility

Actor’s
responsibility

System
transactions

System
transactions

Elaborate Functionality of Car Ordering

On this picture, we can see what the final requested
functionality of the system is. The salesman performs Car
Specification, system then searches for the car. If the car is
not found, the system informs salesman that the production
must be done. Salesman confirms that and the system
should send the order to the producer, Car producer has to
process the order and confirm it. If the car is available,
when the system searches for it, the flow continues to the
confirmation directly. Then the system informs a salesman
about the order and the salesman has to inform the
customer. The process ends. That is the final derived
functionality of one requirement.

158

Elements of a Use Case
Depending on how in depth and complex you want or need to get, use cases
describe a combination of the following elements:
● Actor – anyone or anything that performs a behavior (who is using the system)
● Stakeholder – someone or something with vested interests in the behavior of

the system under discussion (SUD)
● Primary Actor – stakeholder who initiates an interaction with the system to

achieve a goal
● Preconditions – what must be true or happen before and after the use case

runs.
● Triggers – this is the event that causes the use case to be initiated.
● Main success scenarios [Basic Flow] – use case in which nothing goes wrong.
● Alternative paths [Alternative Flow] – these paths are a variation on the main

theme. These exceptions are what happen when things go wrong at the
system level.

Use Case - Fully dressed
Cockburn describes a more
detailed structure for a use case
but permits it to be simplified
when less detail is needed. His
fully dressed use case template
lists the following fields:
● Title: "an active-verb goal

phrase that names the goal
of the primary actor"[25]

● Primary Actor
● Goal in Context
● Scope

● Level
● Stakeholders and Interests
● Precondition
● Minimal Guarantees
● Success Guarantees
● Trigger
● Main Success Scenario
● Extensions
● Technology & Data

Variations List

Use Case – Example
● Use Case: Edit an article
● Primary Actor: Member (Registered User)
● Scope: a Wiki system
● Level: ! (User goal or sea level)
● Brief: (equivalent to a user story or an epic)
● The member edits any part (the entire article or

just a section) of an article they are reading.
Preview and changes comparison are allowed
during the editing.

● Stakeholders
– ...

● Postconditions
– Minimal Guarantees:
– Success Guarantees:

● The article is saved and an updated view is shown.
● An edit record for the article is created by the system, so

watchers of the article can be informed of the update later.

● Preconditions:
– The article with editing enabled is presented to the

member.

Triggers:
 The member invokes an edit request (for the full
article or just one section) on the article.
Basic flow:
1) The system pravides a new editor area/box filled

with all the article's relevant content with an
informative edit summary for the member to edit.
If the member just wants to edit a section of the
report, only the original content of the section is
shown, with the section title automatically filled
out in the edit summary.

2) The member modifies the article's content until
the member is satisfied.

3) The member fills out the edit summary, tells the
system if they want to watch this article, and
submits the edit.

4) The system saves the article, logs the edit event,
and finishes any necessary post-processing.

5) The system presents the updated view of the
article to the member.

Use Case – Example
● Extensions:
● 2–3.

a) Show preview:
1) The member selects Show

preview which submits the
modified content.

2) The system reruns step 1
with the addition of the
rendered updated content
for preview, and informs
the member that his/her
edits have not been saved
yet, then continues.

b) Show changes:
1) The member selects Show

changes which submits the
modified content.

2) The system reruns step 1 with the
addition of showing the results of
comparing the differences
between the current edits by the
member and the most recent
saved version of the article, then
continues.

c) Cancel the edit:
1) The member selects Cancel.
2) The system discards any change

the member has made, then goes
to step 5.

	Slide 1
	An Introduction to Software Engineering
	Objectives
	References
	What is Software Engineering?
	What is Software Engineering? (2)
	What is Software Engineering? (3)
	Slide 8
	What is Software Engineering? (4)
	What is Software Engineering? (5)
	What is Software Engineering
	Definition of Software Engineering
	Definition of Software Engineering (2)
	Software Engineering Code of Ethics and Professional Practice 1
	Software Engineering Code of Ethics and Professional Practice 2
	FAQs about Software Engineering
	FAQs about Software Engineering (2)
	What is Software?
	What is Software Engineering? (6)
	What is Software Engineering? (7)
	What is the Difference between Software Engineering and Compute
	What is the Difference between Software Engineering and System
	What is a Software Process?
	What is a Software Process Model?
	What are the Costs of Software Engineering?
	What are Software Engineering Methods?
	What is CASE (Computer-Aided Software Engineering)?
	What are the Attributes of Good Software?
	What are the Key Challenges Facing Software Engineering?
	How Can be the Solution Affected by Humans?
	SWE Knowledge Areas
	Slide 32
	Related Disciplines
	Who does Software Engineering?
	What is a System?
	What is Inside and Outside of the System?
	Building a System
	Members of the Development Team
	Disciplines of the Software Development
	Requirements Elicitation
	System Requirements Analysis
	System Architectural Design
	Software Requirements Analysis
	Software Design
	Software Construction
	Software Integration
	Software Testing
	System Integration
	System Testing
	Software Installation
	Software and System Maintenance
	Very Small Enterprises
	Software Production Layout
	A Definition of Process
	Software Process Models I
	Software Process Models II
	The Waterfall Process Model
	The Waterfall Model: Problems
	The Software Development Process in Reality
	Exploratory Programming
	Waterfall Model with a Prototyping
	Prototyping Model
	Slide 63
	Spiral Model
	Agile Methods
	Extreme Programming (XP)
	Crystal
	Adaptive Software Development
	SCRUM
	SCRUM Roles
	SCRUM Meetings
	SCRUM Artifacts
	Symptoms of Software Development Problems
	Root Causes
	Software Best Practices
	Tracing Symptoms to Root Causes and Best Practices
	Develop Software Iteratively
	Iterative and Incremental Process
	Solutions to Root Causes
	Manage Requirements
	Solutions to Root Causes (2)
	Use Component-Based Architectures
	Solutions to Root Causes (3)
	Visually Model Software
	Solutions to Root Causes (4)
	Continuously Verify Software Quality
	Testing Dimensions of Quality
	Solutions to Root Causes (5)
	Control Changes to Software
	Solutions to Root Causes (6)
	The Rational Unified Process
	Two Dimensions of the Process
	Cycles and Phases
	Iterations
	Static Structure of the Process
	Roles
	Activities
	Artifacts
	The Unified Modeling Language
	Building Blocks of the UML
	Core Engineering Workflows
	Workflows and Models
	Core Supporting Workflows
	Requirements
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	What are the Requirements for?
	Definition of the Software Requirement
	Definition of the Software Requirement II
	What does the Software Requirement Specify?
	Definition of Terms
	Definition of Terms – Example – University System
	Requirements Exist on Many Levels
	Requirement Management is not an Easy Task
	It is Important to Have a Strategy
	Effective Requirement Management
	What is in the Requirements Management Plan
	What is Quality Product?
	What is Quality Product? (2)
	Time, Budget, Resources
	Relations between Requirements, Customer and the System
	Requirements and their Role
	Cost of the Error Repair
	Important Tasks to Avoid Problems I
	Important Tasks to Avoid Problems II
	Important Tasks to Avoid Problems III
	Important Tasks to Avoid Problems IV
	Involvement of All Team Members to the Requirements Gathering
	What for is the Use Case Modeling
	Use Case Model
	Use Case Scenario – Activity Diagram
	Use Case Model - Basic Elements
	Use Case Model - Basic Elements (2)
	What Exactly Is Use Case? I
	What Exactly Is Use Case? II
	Benefits of Use Cases I
	Benefits of Use Cases II
	Use Case Lifecycle I
	Use Case Lifecycle II
	Use Case Diagram
	Business Modeling
	About Methods for Business Modeling
	Purpose of Business Modeling
	Ontology of Process Engineering
	UML Diagrams for Business Modeling
	Motivating Example
	Activity Diagram: Car Sale Process
	Swimlanes: Packages of Responsibilities
	Activities and Entities
	Class Diagram: Car Sale Elements
	Requirements (2)
	UML Diagrams for Requirements Modeling
	Use Case Diagram: Car Sale
	Structuring Use Cases
	Structuring Actors
	Elaborate Functionality of Car Ordering
	Slide 159
	Slide 160
	Slide 161
	Slide 162

