

www.vsb.cz

23.04.202
4

Programming in Java 2 2

Programming in Java 2

Jan Kožusznik, David Ježek
david.jezek@vsb.cz

Tel: 597 325 874
Místnost: EA406

23.04.2024 Programming in Java 2 3

1th Lecture
● Maven
● Modules

Architecture
The software industry delights in taking words and stretching them into a myriad of subtly

contradictory meanings. One of the biggest sufferers is "architecture." I tend to look at
"architecture" as one of those impressive-sounding words, used primarily to indicate that
we're talking something that's important. But I'm pragmatic enough not to let my cynicism
get in the way of attracting people to my book. :-)

"Architecture" is a term that lots of people try to define, with little agreement. There are two
common elements: One is the highest-level breakdown of a system into its parts; the other,
decisions that are hard to change. It's also increasingly realized that there isn't just one way
to state a system's architecture; rather, there are multiple architectures in a system, and the
view of what is architecturally significant is one that can change over a system's lifetime.

From time to time Ralph Johnson has a truly remarkable posting on a mailing list, and he did
one on architecture just as I was finishing the draft of this book. In this posting he brought
out the point that architecture is a subjective thing, a shared understanding of a system's
design by the expert developers on a project. Commonly this shared understanding is in
the form of the major components of the system and how they interact. It's also about
decisions, in that it's the decisions that developers wish they could get right early on
because they're perceived as hard to change. The subjectivity comes in here as well
because, if you find that something is easier to change than you once thought, then it's no
longer architectural. In the end architecture boils down to the important stuff—whatever that
is.

In this book I present my perception of the major parts of an enterprise application and of the
decisions I wish I could get right early on. The architectural pattern I like the most is that of
layers, which I describe more in Chapter 1. This book is thus about how you decompose an
enterprise application into layers and how these layers work together. Most nontrivial
enterprise applications use a layered architecture of some form, but in some situations
other approaches, such as pipes and filters, are valuable. I don't go into those situations,
focusing instead on the context of a layered architecture because it's the most widely
useful.

Some of the patterns in this book can reasonably be called architectural, in that they represent
significant decisions about these parts; others are more about design and help you to
realize that architecture. I don't make any strong attempt to separate the two, since what is
architectural or not is so subjective.

3

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch01.html#ch01

23.04.2024 Programming in Java 2 4

● Can generate deployable artifacts from source code
● Compile, pack, test and distribute your source code
● Manage dependencies on external libraries
● Scalable – for small projects but also for big & complex

projects

Maven overview

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application

enterprise software a software suite with common business
applications, tools for modeling how the entire organization
works, and development tools for building applications
unique to the organizationintegration, and
enterprise forms automation.

4

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

23.04.2024 Programming in Java 2 5

Convention over configuration
src
├─main
│ ├─java Application/Library sources
│ ├─resources Application/Library resources
│ ├─filters Resource filter files
│ └─webapp Web application sources
├─test
│ ├─java Test sources
│ ├─resources Test resources
│ └─filters Test resource filter files
├─it Integration Tests (primarily for plugins)
├─assembly Assembly descriptors
├─site Site
├─LICENSE.txt Project's license
├─NOTICE.txt Notices and attributions required by libraries that the project depends on
├─README.txt Project's readme
└─pom.xml file descriptive of the project

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically business-oriented tools such as online shopping and online payment
processing, interactive product catalogue, automated billing systems, security, enterprise content management,
IT service management, customer relationship management, enterprise resource planning, business intelligence,
project management, collaboration, human resource management, manufacturing, enterprise application

enterprise software a software suite with common business applications, tools for modeling how the entire organization
works, and development tools for building applications unique to the organizationintegration, and
enterprise forms automation.

Enterprise Applications
Lots of people write computer software, and we call all of it software development. However, there are distinct kinds of

software out there, each of which has its own challenges and complexities. This comes out when I talk with some of my
friends in the telecom field. In some ways enterprise applications are much easier than telecoms software—we don't
have very hard multithreading problems, and we don't have hardware and software integration. But in other ways it's
much tougher. Enterprise applications often have complex data—and lots of it—to work on, together with business
rules that fail all tests of logical reasoning. Although some techniques and patterns are relevant for all kinds of
software, many are relevant for only one particular branch.

In my career I've concentrated on enterprise applications, so my patterns here are all about that. (Other terms for
enterprise applications include "information systems" or, for those with a long memory, "data processing.") But what do
I mean by the term "enterprise application"? I can't give a precise definition, but I can give some indication of my
meaning.

I'll start with examples. Enterprise applications include payroll, patient records, shipping tracking, cost analysis, credit
scoring, insurance, supply chain, accounting, customer service, and foreign exchange trading. Enterprise applications
don't include automobile fuel injection, word processors, elevator controllers, chemical plant controllers, telephone
switches, operating systems, compilers, and games.

Enterprise applications usually involve persistent data. The data is persistent because it needs to be around between
multiple runs of the program—indeed, it usually needs to persist for several years. Also during this time there will be
many changes in the programs that use it. It will often outlast the hardware that originally created much of it, and
outlast operating systems and compilers. During that time there'll be many changes to the structure of the data in order
to store new pieces of information without disturbing the old pieces. Even if there's a fundamental change and the
company installs a completely new application to handle a job, the data has to be migrated to the new application.

There's usually a lot of data—a moderate system will have over 1 GB of data organized in tens of millions of records—so
much that managing it is a major part of the system. Older systems used indexed file structures such as IBM's VSAM
and ISAM. Modern systems usually use databases, mostly relational databases. The design and feeding of these
databases has turned into a subprofession of its own.

Usually many people access data concurrently. For many systems this may be less than a hundred people, but for Web-
based systems that talk over the Internet this goes up by orders of magnitude. With so many people there are definite
issues in ensuring that all of them can access the system properly. But even without that many people, there are still
problems in making sure that two people don't access the same data at the same time in a way that causes errors.
Transaction manager tools handle some of this burden, but often it's impossible to hide this from application
developers.

With so much data, there's usually a lot of user interface screens to handle it. It's not unusual to have hundreds of distinct
screens. Users of enterprise applications vary from occasional to regular, and normally they will have little technical
expertise. Thus, the data has to be presented lots of different ways for different purposes. Systems often have a lot of
batch processing, which is easy to forget when focusing on use cases that stress user interaction.

Enterprise applications rarely live on an island. Usually they need to integrate with other enterprise applications scattered
around the enterprise. The various systems are built at different times with different technologies, and even the
collaboration mechanisms will be different: COBOL data files, CORBA, messaging systems. Every so often the
enterprise will try to integrate its different systems using a common communication technology. Of course, it hardly
ever finishes the job, so there are several different unified integration schemes in place at once. This gets even worse
as businesses seek to integrate with their business partners as well.

Even if a company unifies the technology for integration, they run into problems with differences in business process and
conceptual dissonance with the data. One division of the company may think a customer is someone with whom it has
a current agreement; another division also counts those that had a contract but don't any longer; another counts
product sales but not service sales. That may sound easy to sort out, but when you have hundreds of records in which
every field can have a subtly different meaning, the sheer size of the problem becomes a challenge—even if the only
person who knows what the field really means is still with the company. (And, of course, all of this changes without
warning.) As a result, data has to be constantly read, munged, and written in all sorts of different syntactic and
semantic formats.

Then there's the matter of what comes under the term "business logic." I find this a curious term because there are few
things that are less logical than business logic. When you build an operating system you strive to keep the whole thing
logical. But business rules are just given to you, and without major political effort there's nothing you can do to change
them. You have to deal with a haphazard array of strange conditions that often interact with each other in surprising
ways. Of course, they got that way for a reason: Some salesman negotiated to have a certain yearly payment two days
later than usual because that fit with his customer's accounting cycle and thus won a couple of million dollars in
business. A few thousand of these one-off special cases is what leads to the complex business "illogic" that makes
business software so difficult. In this situation you have to organize the business logic as effectively as you can,
because the only certain thing is that the logic will change over time.

For some people the term "enterprise application" implies a large system. However, it's important to remember that not all
enterprise applications are large, even though they can provide a lot of value to the enterprise. Many people assume
that, since small systems aren't large, they aren't worth bothering with, and to some degree there's merit here. If a
small system fails, it usually makes less noise than a big system. Still, I think such thinking tends to shortchange the
cumulative effect of many small projects. If you can do things that improve small projects, then that cumulative effect
can be very significant on an enterprise, particularly since small projects often have disproportionate value. Indeed,
one of the best things you can do is turn a large project into a small one by simplifying its architecture and process.

5

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

23.04.2024 Programming in Java 2 6

Maven build lifecycles

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application integration, and
enterprise forms automation.

6

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

23.04.2024 Programming in Java 2 7

Default Lifecycle
● validate - validate the project is correct and all necessary information

is available.
● initialize - initialize build state, e.g. set properties or create

directories.
● generate-sources - generate any source code for inclusion in

compilation.
● process-sources - process the source code, for example to filter any

values.
● generate-resources - generate resources for inclusion in the package.
● process-resources - copy and process the resources into the

destination directory, ready for packaging.
● compile - compile the source code of the project.
● process-classes - post-process the generated files from compilation,

for example to do bytecode enhancement on Java classes.

23.04.2024 Programming in Java 2 8

Default Lifecycle
● generate-test-sources - generate any test source code for inclusion in

compilation.
● process-test-sources - process the test source code, for example to filter any

values.
● generate-test-resources - create resources for testing.
● process-test-resources - copy and process the resources into the test

destination directory.
● test-compile - compile the test source code into the test destination directory
● process-test-classes - post-process the generated files from test compilation,

for example to do bytecode enhancement on Java classes.
● test - run tests using a suitable unit testing framework. These tests should not

require the code be packaged or deployed.

23.04.2024 Programming in Java 2 9

Default Lifecycle
● prepare-package - perform any operations necessary to prepare a package before the

actual packaging. This often results in an unpacked, processed version of the package.

● package - take the compiled code and package it in its distributable format, such as a JAR.

● pre-integration-test - perform actions required before integration tests are executed. This
may involve things such as setting up the required environment.

● integration-test - process and deploy the package if necessary into an environment where
integration tests can be run.

● post-integration-test - perform actions required after integration tests have been
executed. This may including cleaning up the environment.

● verify - run any checks to verify the package is valid and meets quality criteria.

● install - install the package into the local repository, for use as a dependency in other
projects locally.

● deploy - done in an integration or release environment, copies the final package to the
remote repository for sharing with other developers and projects.

23.04.2024 Programming in Java 2 10

Clean Lifecycle
● pre-clean - execute processes needed prior to the actual

project cleaning
● clean - remove all files generated by the previous build
● post-clean - execute processes needed to finalize the

project cleaning

23.04.2024 Programming in Java 2 11

Site Lifecycle
● pre-site - execute processes needed prior to the actual

project site generation
● site - generate the project's site documentation
● post-site - execute processes needed to finalize the site

generation, and to prepare for site deployment
● site-deploy - deploy the generated site documentation

to the specified web server

23.04.2024 Programming in Java 2 12

mvn <phase>
● runs lifecycle containing given phase
● stops in the phase but runs every previous phase
●

●

Running lifecycle

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application integration, and
enterprise forms automation.

12

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

23.04.2024 Programming in Java 2 13

● Provide goals
● Goals can be run:

mvn archetype:generate
● Goals are bound in

specific phases

Plugins

Kinds of Enterprise Application
When we discuss how to design enterprise applications, and what patterns to use, it's important to

realize that enterprise applications are all different and that different problems lead to different
ways of doing things. I have a set of alarm bells that go off when people say, "Always do this." For
me much of the challenge (and interest) in design is in knowing about alternatives and judging the
trade-offs of using one alternative over another. There is a large space of alternatives to choose
from, but here I'll pick three points on this very big plane.

Consider a B2C (business to customer) online retailer: People browse and—with luck and a shopping
cart—buy. For such a system we need to be able to handle a very high volume of users, so our
solution needs to be not only reasonably efficient in terms of resources used but also scalable so
that you can increase the load by adding more hardware. The domain logic for such an application
can be pretty straightforward: order capturing, some relatively simple pricing and shipping
calculations, and shipment notification. We want anyone to be able access the system easily, so
that implies a pretty generic Web presentation that can be used with the widest possible range of
browsers. Data source includes a database for holding orders and perhaps some communication
with an inventory system to help with availability and delivery information.

Contrast this with a system that automates the processing of leasing agreements. In some ways this
is a much simpler system than the B2C retailer's because there are many fewer users—no more
than a hundred or so at one time. Where it's more complicated is in the business logic. Calculating
monthly bills on a lease, handling events such as early returns and late payments, and validating
data as a lease is booked are all complicated tasks, since much of the leasing industry's
competition comes in the form of little variations over deals done in the past. A complex business
domain such as this is challenging because the rules are so arbitrary.

Such a system also has more complexity in the user interface (UI). At the least this means a much
more involved HTML interface with more, and more complex, screens. Often these systems have
UI demands that lead users to want a more sophisticated presentation than a HTML front end
allows, so a more conventional rich-client interface is needed. A more complex user interaction
also leads to more complicated transaction behavior: Booking a lease may take an hour or two,
during which time the user is in a logical transaction. We also see a complex database schema
with perhaps two hundred tables and connections to packages for asset valuation and pricing.

A third example point is a simple expense-tracking system for a small company. Such a system has
few users and simple logic and can easily be made accessible across the company with an HTML
presentation. The only data source is a few tables in a database. As simple as it is, a system like
this is not devoid of a challenge. You have to build it very quickly and you have to bear in mind that
it may grow as people want to calculate reimbursement checks, feed them into the payroll system,
understand tax implications, provide reports for the CFO, tie into airline reservation Web services,
and so on. Trying to use the architecture for either of the other two example systems will slow
down the development of this one. If a system has business benefits (as all enterprise applications
should), delaying those benefits costs money. However, you don't want to make decisions now that
will hamper future growth. But if you add flexibility now and get it wrong, the complexity added for
flexibility's sake may actually make it harder to evolve in the future and may delay deployment and
thus delay the benefit. Although such systems may be small, most enterprises have a lot of them
so the cumulative effect of an inappropriate architecture can be significant.

Each of these three enterprise application examples has difficulties, and they are different difficulties.
As a result you can't come up with a single architecture that will be right for all three. Choosing an
architecture means that you have to understand the particular problems of your system and
choose an appropriate design based on that understanding. That's why in this book I don't give a
single solution for your enterprise needs. Instead, many of the patterns are about choices and
alternatives. Even when you choose a particular pattern, you'll have to modify it to meet your
demands. You can't build enterprise software without thinking, and all any book can do is give you
more information to base your decisions on.

If this applies to patterns, it also applies to tools. Although it obviously makes sense to pick as small a
set of tools as you can to develop applications, you also have to recognize that different tools are
best for different purposes. Beware of using a tool that is really suited for a different kind of
application—it may hinder more than help.

13

23.04.2024 Programming in Java 2 14

● File resulting from
packaging

● Definition file pom.xml
● Unique ID – artifacts

coordinates:
– artifactId
– groupId
– Version

Artifacts
Minimal pom.xml

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany.app</groupId>

 <artifactId>my-app</artifactId>

 <version>1.0.0</version>

</project>

Thinking About Performance
Many architectural decisions are about performance. For most performance issues I prefer to get a system up and running, instrument it, and then use a disciplined optimization

process based on measurement. However, some architectural decisions affect performance in a way that's difficult to fix with later optimization. And even when it is easy
to fix, people involved in the project worry about these decisions early.

It's always difficult to talk about performance in a book such as this. The reason that it's so difficult is that any advice about performance should not be treated as fact until it's
measured on your configuration. Too often I've seen designs used or rejected because of performance considerations, which turn out to be bogus once somebody actually
does some measurements on the real setup used for the application.

I give a few guidelines in this book, including minimizing remote calls, which has been good performance advice for quite a while. Even so, you should verify every tip by
measuring on your application. Similarly there are several occasions where code examples in this book sacrifice performance for understandability. Again it's up to you to
apply the optimizations for your environment. Whenever you do a performance optimization, however, you must measure both before and after, otherwise, you may just be
making your code harder to read.

There's an important corollary to this: A significant change in configuration may invalidate any facts about performance. Thus, if you upgrade to a new version of your virtual
machine, hardware, database, or almost anything else, you must redo your performance optimizations and make sure they're still helping. In many cases a new
configuration can change things. Indeed, you may find that an optimization you did in the past to improve performance actually hurts performance in the new environment.

Another problem with talking about performance is the fact that many terms are used in an inconsistent way. The most noted victim of this is "scalability," which is regularly used
to mean half a dozen different things. Here are the terms I use.

Response time is the amount of time it takes for the system to process a request from the outside. This may be a UI action, such as pressing a button, or a server API call.
Responsiveness is about how quickly the system acknowledges a request as opposed to processing it. This is important in many systems because users may become

frustrated if a system has low responsiveness, even if its response time is good. If your system waits during the whole request, then your responsiveness and response
time are the same. However, if you indicate that you've received the request before you complete, then your responsiveness is better. Providing a progress bar during a
file copy improves the responsiveness of your user interface, even though it doesn't improve response time.

Latency is the minimum time required to get any form of response, even if the work to be done is nonexistent. It's usually the big issue in remote systems. If I ask a program to
do nothing, but to tell me when it's done doing nothing, then I should get an almost instantaneous response if the program runs on my laptop. However, if the program
runs on a remote computer, I may get a few seconds just because of the time taken for the request and response to make their way across the wire. As an application
developer, I can usually do nothing to improve latency. Latency is also the reason why you should minimize remote calls.

Throughput is how much stuff you can do in a given amount of time. If you're timing the copying of a file, throughput might be measured in bytes per second. For enterprise
applications a typical measure is transactions per second (tps), but the problem is that this depends on the complexity of your transaction. For your particular system you
should pick a common set of transactions.

In this terminology performance is either throughput or response time—whichever matters more to you. It can sometimes be difficult to talk about performance when a
technique improves throughput but decreases response time, so it's best to use the more precise term. From a user's perspective responsiveness may be more important
than response time, so improving responsiveness at a cost of response time or throughput will increase performance.

Load is a statement of how much stress a system is under, which might be measured in how many users are currently connected to it. The load is usually a context for some
other measurement, such as a response time. Thus, you may say that the response time for some request is 0.5 seconds with 10 users and 2 seconds with 20 users.

Load sensitivity is an expression of how the response time varies with the load. Let's say that system A has a response time of 0.5 seconds for 10 through 20 users and system
B has a response time of 0.2 seconds for 10 users that rises to 2 seconds for 20 users. In this case system A has a lower load sensitivity than system B. We might also
use the term degradation to say that system B degrades more than system A.

Efficiency is performance divided by resources. A system that gets 30 tps on two CPUs is more efficient than a system that gets 40 tps on four identical CPUs.
The capacity of a system is an indication of maximum effective throughput or load. This might be an absolute maximum or a point at which the performance dips below an

acceptable threshold.
Scalability is a measure of how adding resources (usually hardware) affects performance. A scalable system is one that allows you to add hardware and get a commensurate

performance improvement, such as doubling how many servers you have to double your throughput. Vertical scalability, or scaling up, means adding more power to a
single server, such as more memory. Horizontal scalability, or scaling out, means adding more servers.

The problem here is that design decisions don't affect all of these performance factors equally. Say we have two software systems running on a server: Swordfish's capacity is
20 tps while Camel's capacity is 40 tps. Which has better performance? Which is more scalable? We can't answer the scalability question from this data, and we can only
say that Camel is more efficient on a single server. If we add another server, we notice that swordfish now handles 35 tps and camel handles 50 tps. Camel's capacity is
still better, but Swordfish looks like it may scale out better. If we continue adding servers we'll discover that Swordfish gets 15 tps per extra server and Camel gets 10.
Given this data we can say that Swordfish has better horizontal scalability, even though Camel is more efficient for less than five servers.

When building enterprise systems, it often makes sense to build for hardware scalability rather than capacity or even efficiency. Scalability gives you the option of better
performance if you need it. Scalability can also be easier to do. Often designers do complicated things that improve the capacity on a particular hardware platform when it
might actually be cheaper to buy more hardware. If Camel has a greater cost than Swordfish, and that greater cost is equivalent to a couple of servers, then Swordfish
ends up being cheaper even if you only need 40 tps. It's fashionable to complain about having to rely on better hardware to make our software run properly, and I join this
choir whenever I have to upgrade my laptop just to handle the latest version of Word. But newer hardware is often cheaper than making software run on less powerful
systems. Similarly, adding more servers is often cheaper than adding more programmers—providing that a system is scalable.

[Team LiB]

14

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

23.04.2024 Programming in Java 2 15

● Holds build arteficts
● Remote

– Accessed byt http://, file://, ftp:// or other
– Provided by a third party
– Provided by the company to distribute private

artifacts/dependencies
● Local

– Cache of dependencies and build artifacts used or produced
by your project

– By default <HOME>/.m2/repository

Maven Repository

Chapter 1. Layering
Layering is one of the most common techniques that software designers use to break apart a

complicated software system. You see it in machine architectures, where layers descend from a
programming language with operating system calls into device drivers and CPU instruction sets,
and into logic gates inside chips. Networking has FTP layered on top of TCP, which is on top of IP,
which is on top of ethernet.

When thinking of a system in terms of layers, you imagine the principal subsystems in the software
arranged in some form of layer cake, where each layer rests on a lower layer. In this scheme the
higher layer uses various services defined by the lower layer, but the lower layer is unaware of the
higher layer. Furthermore, each layer usually hides its lower layers from the layers above, so layer
4 uses the services of layer 3, which uses the services of layer 2, but layer 4 is unaware of layer 2.
(Not all layering architectures are opaque like this, but most are—or rather most are mostly
opaque.

Breaking down a system into layers has a number of important benefits.
You can understand a single layer as a coherent whole without knowing much about the other layers.

You can understand how to build an FTP service on top of TCP without knowing the details of how
ethernet works.

You can substitute layers with alternative implementations of the same basic services. An FTP service
can run without change over ethernet, PPP, or whatever a cable company uses.

You minimize dependencies between layers. If the cable company changes its physical transmission
system, providing they make IP work, we don't have to alter our FTP service.

Layers make good places for standardization. TCP and IP are standards because they define how
their layers should operate.

Once you have a layer built, you can use it for many higher-level services. Thus, TCP/IP is used by
FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level protocols would have to write their
own lower-level protocols.

Layering is an important technique, but there are downsides.
Layers encapsulate some, but not all, things well. As a result you sometimes get cascading changes.

The classic example of this in a layered enterprise application is adding a field that needs to
display on the UI, must be in the database, and thus must be added to every layer in between.

Extra layers can harm performance. At every layer things typically need to be transformed from one
representation to another. However, the encapsulation of an underlying function often gives you
efficiency gains that more than compensate. A layer that controls transactions can be optimized
and will then make everything faster.

But the hardest part of a layered architecture is deciding what layers to have and what the
responsibility of each layer should be.

15

23.04.2024 Programming in Java 2 16

● Can be used other then
default

<repositories>
 <repository>
 <id>vsb-education</id>
 <url>https://
 artifactory.cs.vsb.cz
 /repository/education-releases/
 </url>
 </repository>
 <repository>
 <id>sci-java-public</id>
 <url>https://
 maven.scijava.org/
 content/groups/public/
 </url>
 </repository>
</repositories>

Remote repository
● Publish builded artifact to

own repository:
mvn deploy

<distributionManagement>

 <snapshotRepository>

 <id>vsb-archetypes-snapshots</id>

 <url>https://
 artifactory.cs.vsb.cz/
 repository/archetype-snapshots/</url>

 </snapshotRepository>

 <repository>

 <id>vsb-archetypes-releases</id>

 <url>https://
 artifactory.cs.vsb.cz/
 repository/archetype-releases/</url>

 </repository>

</distributionManagement>

When people discuss layering, there's often some confusion
over the terms layer and tier. Often the two are used as
synonyms, but most people see tier as implying a physical
separation. Client–server systems are often described as
two-tier systems, and the separation is physical: The client is
a desktop and the server is a server. I use layer to stress
that you don't have to run the layers on different machines. A
distinct layer of domain logic often runs on either a desktop
or the database server. In this situation you have two nodes
but three distinct layers. With a local database I can run all
three layers on a single laptop, but there will still be three
distinct layers.

16

23.04.2024 Programming in Java 2 17

Dependencies
● In pom.xml
● referenced with

coordinates of the artifact
● cached in the local

repository

<dependencies>

 <dependency>

 <groupId>org.openjfx</groupId>

 <artifactId>javafx-controls</artifactId>

 <version>${JavaFX.version}</version>

 </dependency>

 <dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter</artifactId>

 <scope>test</scope>

 </dependency>

</dependencies>

17

23.04.2024 Programming in Java 2 18

● Compile,
● Provided,
● Runtime,
● Test,
● System,

Dependency scope
<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter</artifactId>

 <scope>test</scope>

</dependency>

The Java EE platform is built on top of the Java SE platform.
The Java EE platform provides:

- Huge API with support for internet communication, HTTP
connectivity, Web development, data persistency, …

- Runtime environment often called JavaEE container that
provide server side runtime environment often included as
part of web server.

We discuss this platform later in that course.

18

23.04.2024 Programming in Java 2 19

● Default for dependencies not specifying scope
● Available to all classpaths of build lifecycle (compile,

test-compile, test, package)
● Packaged into final artifact

Compile dependency

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

19

23.04.2024 Programming in Java 2 20

● Available to compile ant test classpaths
● Not packaged as part of your artifact
● It’s expected the container, where the artifact will be

used, to provide the dependency

Provided dependency

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

20

23.04.2024 Programming in Java 2 21

● This dependency is not required for compiling your
project

● Is required at runtime, when your application run
● lso required when testing because tests will execute

main code

Runtime dependency

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

21

23.04.2024 Programming in Java 2 22

● This dependency is only required to compile and run
test

● Will not be packaged into final assembly (jar, war, ear,
etc)

Test dependency

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

22

23.04.2024 Programming in Java 2 23

● Similar to Provided Dependency
● Not looked up in repository
● Expected to exists in your development machine

System dependency

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

23

23.04.2024 Programming in Java 2 24

Exceluded dependency
● Dependency are

transitional in
default

● Can by excluded

<dependency>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-text</artifactId>

 <version>1.1</version>

 <exclusions>

 <exclusion>

 <groupId>org.apache.commons</groupId>

 <artifactId>commons-lang3</artifactId>

 </exclusion>

 </exclusions>

</dependency>

23.04.2024 Programming in Java 2 25

Optional dependencies
● Are automatically

excluded
<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter</artifactId>

 <version>5.10.1</version>

 <scope>test</scope>

 <optional>true</optional>

</dependency>

23.04.2024 Programming in Java 2 26

● Determines output
– jar,war, ear

Packaging
<project
xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xsi:schemaLocation="http://
maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-
v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>cz.vsb.fei.java2</groupId>

<artifactId>lab01</artifactId>

<version>0.0.1-SNAPSHOT</version>

<name>lab01</name>

<packaging>jar</packaging>

The Structure of the Patterns
Every author has to choose his pattern form. Some base their forms on a classic patterns book such as [Alexander et al.], [Gang of Four

], or [POSA]. Others make up their own. I've long wrestled with what makes the best form. On the one hand I don't want something
as small as the GOF form; on the other hand I need to have sections that support a reference book. So this is what I've used for this
book.

The first item is the name of the pattern. Pattern names are crucial, because part of the purpose of patterns is to create a vocabulary
that allows designers to communicate more effectively. Thus, if I tell you my Web server is built around a Front Controller (344) and
a Transform View (361) and you know these patterns, you have a very clear idea of my web server's architecture.

Next are two items that go together: the intent and the sketch. The intent sums up the pattern in a sentence or two; the sketch is a visual
representation of the pattern, often but not always a UML diagram. The idea is to create a brief reminder of what the pattern is
about so you can quickly recall it. If you already "have the pattern," meaning that you know the solution even if you don't know the
name, then the intent and the sketch should be all you need to know what the pattern is.

The next section describes a motivating problem for the pattern. This may not be the only problem that the pattern solves, but it's one
that I think best motivates the pattern.

How It Works describes the solution. In here I put a discussion of implementation issues and variations that I've come across. The
discussion is as independent as possible of any particular platform—where there are platform-specific sections I've indented them
so you can see them and easily skip over them. Where useful I've put in UML diagrams to help explain them.

When to Use It describes when the pattern should be used. Here I talk about the trade-offs that make you select this solution compared
to others. Many of the patterns in this book are alternatives; such Page Controller (333) and Front Controller (344). Few patterns
are always the right choice, so whenever I find a pattern I always ask myself, "When would I not use this?" That question often
leads me to alternative patterns.

The Further Reading section points you to other discussions of this pattern. This isn't a comprehensive bibliography. I've limited my
references to pieces that I think are important in helping you understand the pattern, so I've eliminated any discussion that I don't
think adds much to what I've written and of course I've eliminated discussions of patterns I haven't read. I also haven't mentioned
items that I think are going to be hard to find, or unstable Web links that I fear may disappear by the time you read this book.

I like to add one or more examples. Each one is a simple example of the pattern in use, illustrated with some code in Java or C#. I
chose those languages because they seem to be languages that the largest number of professional programmers can read. It's
absolutely essential to understand that the example is not the pattern. When you use the pattern, it won't look exactly like this
example so don't treat it as some kind of glorified macro. I've deliberately kept the example as simple as possible so you can see
the pattern in as clear a form as I can imagine. All sorts of issues are ignored that will become important when you use it, but these
will be particular to your own environment. This is why you always have to tweak the pattern.

One of the consequences of this is that I've worked hard to keep each example as simple as I can, while still illustrating its core
message. Thus, I've often chosen an example that's simple and explicit, rather than one that demonstrates how a pattern works
with the many wrinkles required in a production system. It's a tricky balance between simple and simplistic, but it's also true that too
many realistic yet peripheral issues can make it harder to understand the key points of a pattern.

This is also why I've gone for simple independent examples instead of a connected running examples. Independent examples are
easier to understand in isolation, but give less guidance on how you put them together. A connected example shows how things fit
together, but it's hard to understand any one pattern without understanding all the others involved in the example. While in theory
it's possible to produce examples that are connected yet understandable independently, doing so is very hard—or at least too hard
for me—so I chose the independent route.

The code in the examples is written with a focus on making the ideas understandable. As a result several things fall aside—in particular,
error handling, which I don't pay much attention to since I haven't developed any patterns in this area yet. They are there purely to
illustrate the pattern. They are not intended to show how to model any particular business problem.

For these reasons the code isn't downloadable from my Web site. Each code example in this book is surrounded with too much
scaffolding to simplify the basic ideas so they're worth anything in a production setting.

Not all the sections appear in all the patterns. If I couldn't think of a good example or motivation text, I left it out.

26

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib01
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib34
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3

23.04.2024 Programming in Java 2 27

● Reliable configuration
● Strong encapsulation
● Scalable Java platform
● Greater platform integrity
● Improved performance

Modules - goals

http://martinfowler.com/ieeeSoftware/patterns.pdf

27

23.04.2024 Programming in Java 2 28

Modules introduction
● List modules

java –list-modules
● Module declaration

● Module declaration
● In root of source folder file:

module-info.java

module cz.vsb.fei.java2.jez04lab01 {

 requires transitive javafx.controls;

 requires javafx.fxml;

 requires cz.vsb.fei.java2.lab01text2asciiart;

 requires java.logging;

 opens cz.vsb.fei.java2.jez04lab01 to javafx.fxml;

 exports cz.vsb.fei.java2.jez04lab01;

}

Context

The presentation-tier request handling mechanism receives many different types of requests, which
require varied types of processing. Some requests are simply forwarded to the appropriate handler
component, while other requests must be modified, audited, or uncompressed before being further
processed.

Problem

Preprocessing and post-processing of a client Web request and response are required.

When a request enters a Web application, it often must pass several entrance tests prior to the main
processing stage. For example,

 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Some of these checks are tests, resulting in a yes or no answer that determines whether processing will
continue. Other checks manipulate the incoming data stream into a form suitable for processing.

The classic solution consists of a series of conditional checks, with any failed check aborting the request.
Nested if/else statements are a standard strategy, but this solution leads to code fragility and a copy-
and-paste style of programming, because the flow of the filtering and the action of the filters is
compiled into the application.

The key to solving this problem in a flexible and unobtrusive manner is to have a simple mechanism for
adding and removing processing components, in which each component completes a specific filtering
action.

Forces

 Common processing, such as checking the data-encoding scheme or logging information about each
request, completes per request.

 Centralization of common logic is desired.
 Services should be easy to add or remove unobtrusively without affecting existing components, so

that they can be used in a variety of combinations, such as
 Logging and authentication
 Debugging and transformation of output for a specific client
 Uncompressing and converting encoding scheme of input

Solution

Create pluggable filters to process common services in a standard manner without requiring changes to
core request processing code. The filters intercept incoming requests and outgoing responses,
allowing preprocessing and post-processing. We are able to add and remove these filters
unobtrusively, without requiring changes to our existing code.

We are able, in effect, to decorate our main processing with a variety of common services, such as
security, logging, debugging, and so forth. These filters are components that are independent of the
main application code, and they may be added or removed declaratively. For example, a deployment
configuration file may be modified to set up a chain of filters. The same configuration file might
include a mapping of specific URLs to this filter chain. When a client requests a resource that
matches this configured URL mapping, the filters in the chain are each processed in order before the
requested target resource is invoked.

23.04.2024 Programming in Java 2 29

Running java with modules
java --module-path <directory> --module <module>/<class with main>

java -p <directory> -m <module>/<class with main>

java -p <directory> <module>

23.04.2024 Programming in Java 2 30

Module-info: requires
requires [transitive] [static] <module-name>

23.04.2024 Programming in Java 2 31

Module-info: Export packages by modules
exports <package-name>

exports <package-name> to <module-name>

23.04.2024 Programming in Java 2 32

Module-info: Support for services
uses <interface-name>

provides <interface-name> with <class-name>
…
ServiceLoader.load()

23.04.2024 Programming in Java 2 33

Module-info: Allow runtime access
opens <package-name>

opens <package-name> to <module-name>

open module <module-name> {

}

23.04.2024 Programming in Java 2 34

Packaging as a standalone JRE
jlink –module-path <dirs> --add-module <module-name> --
output <out-dir>

Java --module <module-name>/<main-class>

23.04.2024 Programming in Java 2 35

Backward compatibility
Unnamed module
● When a class or JAR is loaded onto the classpath, but not

the module path, it’s automatically added to the unnamed
module. It’s a catch-all module to maintain backward
compatibility with previously-written Java code.

Automatic modules
● We can include unofficial modules by adding existing JAR

files to the module path. The name of the module will be
derived from the name of the JAR. Automatic modules will
have full read access to every other module loaded by the
path.

23.04.2024 Programming in Java 2 36

Allow support for multiple java version
META-INF – folder in project/jar file
└─MANIFEST.MF - text file contains:
 │ Multi-Release: true
 └─versions
 ├─17
 │ └─cz
 │ └─vsb
 └─9
 └─cz
 └─vsb

23.04.2024 Programming in Java 2 37

2nd lecture
● Logging
● Assertions
● Profiling
● Effective Java:

– Static factory methods
– Builders
– Correct implementation of equals

23.04.2024 Programming in Java 2 38

Logging
● Write runtime info with System.out.println is

inappropriate in a production environment
● Logging framework is used instead of it (Java Util

Logging, log4j, logback,log4j2,slf4j)
●

23.04.2024 Programming in Java 2 39

Log4j2 - State of The Art logging framework

23.04.2024 Programming in Java 2 40

Maven dependecies
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.22.1</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.22.1</version>
</dependency>

23.04.2024 Programming in Java 2 41

Log4j architecture

23.04.2024 Programming in Java 2 42

Logger

Trace
Debug

Info
Warn
Error
Fatal

23.04.2024 Programming in Java 2 43

Configuration
● log4j.xml(properties,yaml, json) – put to the classpath or

set property –Dlog4j.configurationFile=<location>

23.04.2024 Programming in Java 2 44

Marker
● Can use filter “MarkerFilter” for appender

23.04.2024 Programming in Java 2 45

MDC (Mapped Diagnostic Context)

23.04.2024 Programming in Java 2 46

Assertions
● They provide mechanism for internal consistency

checks.
– E.g. constraints among values of attributes is ensured.

● They could be removed in production version.
– E.g. they are ignored during runtime.

● Java provides support with assert keyword.
●

23.04.2024 Programming in Java 2 47

Java Assertion Statement
● Two forms are used:

– assert boolean-expression
– assert boolean-expression: description;
– assert conn != null : "Connection is null";

● The “boolean-expression” expresses something that
should be true during its execution.

● An AssertionError is thrown if the assertion is false – it
contains “description”

23.04.2024 Programming in Java 2 48

Assert example

23.04.2024 Programming in Java 2 49

Guidelines for Assertions
● Use it for internal consistency check.
● (Not?) Remove from production code.
● Don’t include normal functionality:

// Incorrect use:
assert book.remove(name) != null;
● They has to have no side effect.
● Do not use it for exception throwing – it is not an

alternative
●

23.04.2024 Programming in Java 2 50

Profiling – Java VisualVM
● https://visualvm.github.io/download.html

23.04.2024 Programming in Java 2 51

Effective Java
● BLOCH, Joshua. Effective

Java. 3rd edition. Boston:
Addison-Wesley
Professional, 2017.
ISBN 978-0-13-468599-1.

23.04.2024 Programming in Java 2 52

Consider static factory methods instead of
constructors
public static Boolean valueOf(boolean b) {
 return b ? Boolean.TRUE : Boolean.FALSE;
}

23.04.2024 Programming in Java 2 53

Consider static factory methods instead of
constructors - advantages

● unlike constructors, they have names
● unlike constructors, they are not required to create a

new object each time they’re invoked
● unlike constructors, they can return an object of any

subtype of their return type.
● class of the returned object can vary from call to call as a

function of the input parameters
● the class of the returned object need not exist when the

class containing the method is written.

23.04.2024 Programming in Java 2 54

Consider static factory methods instead of
constructors - limitation

● classes without public or protected constructors cannot
be subclassed;

● they are hard for programmers to find

23.04.2024 Programming in Java 2 55

Static factory methods name convention
● from
● of
● valueOf
● instance or

getInstance
● create or newInstance
● getType
● newType
● type

LocalDate d =
LocalDate.from(LocalDateTime.now());

Set<Rank> faceCards =
EnumSet.of(Rank.JACK, Rank.QUEEN,
Rank.KING);

BigInteger prime =
BigInteger.valueOf(Integer.MAX_VALUE);

StackWalker luke =
StackWalker.getInstance(Option.SHOW_HIDDEN
_FRAMES);

Object newArray =
Array.newInstance(String.class, 10);

FileStore fs =
Files.getFileStore(Paths.get("/home"));

BufferedReader br =
Files.newBufferedReader(Paths.get("/tmp/te
st.txt"));

23.04.2024 Programming in Java 2 56

Consider a builder when faced with many
constructor parameters -telescoping constructors

● provide a constructor with only the required parameters

public NutritionFacts(int servingSize, int servings) {
 this(servingSize, servings, 0);
 }

 public NutritionFacts(int servingSize, int servings,
 int calories) {
 this(servingSize, servings, calories, 0);
 }
NutritionFacts cocaCola = new NutritionFacts(240, 8, 100, 0, 35, 27);

NutritionFacts cocaCola = new NutritionFacts(240, 8, 100, 0, 35, 27);

23.04.2024 Programming in Java 2 57

Consider a builder when faced with many
constructor parameters – JavaBeans pattern

● JavaBean may be in an inconsistent state partway
through its construction.

● the JavaBeans pattern precludes the possibility of
making a class immutable

NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);

23.04.2024 Programming in Java 2 58

Consider a builder when faced with many
constructor parameters

● the client calls a constructor (or static factory) with all
of the required parameters and gets a builder object.

NutritionFacts cocaCola = new
NutritionFacts.Builder(240, 8)
 .calories(100).sodium(35)
 .carbohydrate(27).build();

23.04.2024JAT - Java Technologie59●Granularity of components–Small building blocks–"whole applications"●Portability●Unified, high-quality API●Simplicity●JavaBeans vs. LibrariesJavaBeans - základy“A Java Bean is a reusable software component that can be manipulated visually in a builder tool.”•Design time vs. run-time•Safety•Internationalization•Component persistence–Serialization or Externalization•Local components•Multi-Threading

1.1 Component granularity
There are a range of different kinds of JavaBeans components:
1. Some JavaBean components will be used as building blocks in composing applications. So a user may be using some kind of builder tool to connect together and

customize a set of JavaBean components s to act as an application. Thus for example, an AWT button would be a Bean.
2. Some JavaBean components will be more like regular applications, which may then be composed together into compound documents. So a spreadsheet Bean might be

embedded inside a Web page.
Portability
One of the main goals of the JavaBeans architecture is to provide a platform neutral component architecture. When a Bean is nested inside another Bean then we will provide

a full functionality implementation on all platforms. However, at the top level when the root Bean is embedded in some platform specific container (such as Word or
Visual Basic or ClarisWorks or Netscape Navigator) then the JavaBeans APIs should be integrated into the platform’s local component architecture.

Beans v. Class Libraries
Not all useful software modules should necessarily turn into beans. Beans are appropriate for software components that can be visually manipulated and customized to

achieve some effect. Class libraries are an appropriate way of providing functionality that is useful to programmers, but which doesn't benefit from visual manipulation.
So for example it makes sense to provide the JDBC database access API as a class library rather than as a bean, because JDBC is essentially a programmatic API
and not something that can be directly presented for visual manipulation. However it does make sense to write database access beans on top of JDBC. So for example
you might write a “select” bean that at customization time helped a user to compose a select statement, and then when the application is run uses JDBC to run the
select statement and display the results

Design time v. run-time
Each Java Bean component has to be capable of running in a range of different environments. There are really a continuum of different possibilities, but two points are

particularly worth noting. First a bean must be capable of running inside a builder tool. This is often referred to as the design environment. Within this design
environment it is very important that the bean should provide design information to the application builder and allow the end-user to customize the appearance and
behaviour of the bean. Second, each bean must be usable at run-time within the generated application. In this environment there is much less need for design
information or customization. The design time information and the design time customization code for a component may potentially be quite large. For example, if a
component writer provides a “wizard” style customizer that guides a user through a series of choices, tthe run-time code for the bean. We therefore wanted to make
sure that we have a clear split between the design-time aspects of a bean and the run-time aspects, so that it should be possible to deploy a bean at run-time without
needing to download all its design time code. So, for example, we allow the design time interfaces (described in chapters 8 and 9) to be supported in a separate class
from the run-time interfaces (described in the other chapters).hen the customization code may easily dwarf

Security Issues
Java Beans are subject to the standard Java security model. We have neither extended nor relaxed the standard Java security model for Java Beans. Specifically, when a

Java Bean runs as part of an untrusted applet then it will be subject to the standard applet security restrictions and won’t be allowed to read or write arbitrary files, or to
connect to arbitrary network hosts. However when a Java Bean runs as part of a stand-alone Java application, or as part of a trusted (signed) applet, then it will be
treated as a normal Java application and allowed normal access to files and network hosts. In general we advise Java Bean developers to design their beans so that
they can be run as part of untrusted applets. The main areas where this shows up in the beans APIs are:

• Introspection. Bean developers should assume that they have unlimited access to the high level Introspection APIs (Section 8) and the low-level reflection APIs in the
design-time environment, but more limited access in the run-time environment. For

example, the standard JDK security manager will allow trusted applications access to even private field and methods, but will allow untrusted applets access to only public
fields and methods. (This shouldn’t be too constraining - the high-level Introspection

APIs only expose “public” information anyway.) • Persistence. Beans should expect to be serialized or deserialized (See Section 5) in both
the design-time and the run-time environments. However in the run-time environment, the bean should expect the serialization stream to be created and controlled by their

parent application and should not assume that they can control where serialized data is read from or written to. Thus a browser might use serialization to read in the
initial state for an untrusted applet, but the applet should not assume that it can access random files.

• GUI Merging. In general untrusted applets will not be permitted to perform any kind of GUI merging with their parent application. So for example, menubar merging might
occur between nested beans inside an untrusted applet, but the top level menubar for the untrusted applet will be kept separate from the browser’s menubar.

None of these restrictions apply to beans running as parts of full-fledged Java applications, where the beans will have full unrestricted access to the entire Java platform API.
What should be saved
When a bean is made persistent it should store away appropriate parts of its internal state so
that it can be resurrected later with a similar appearance and similar behaviour. Normally a
bean will store away persistent state for all its exposed properties. It may also store away additional
internal state that is not directly accessible via properties. This might include (for example)
additional design choices that were made while running a bean Customizer (see Section 5)
or internal state that was created by the bean developer.
A bean may contain other beans, in which case it should store away these beans as part of its
internal state.
However a bean should not normally store away pointers to external beans (either peers or a
parent container) but should rather expect these connections to be rebuilt by higher-level software.
So normally it should use the “transient” keyword to mark pointers to other beans or to
event listeners. In general it is a container’s responsibility to keep track of any inter-bean wiring
it creates and to store and resurrect it as needed.
For the same reasons, normally event adaptors should mark their internal fields as “transient”.

59

23.04.2024 Programming in Java 2 60

Obey the general contract when overriding equals
● No need to override:

– Each instance of the class is inherently unique.
– There is no need for the class to provide a “logical equality”

test.
– A superclass has already overridden equals, and the

superclass behavior is appropriate for this class.
– The class is private or package-private, and you are certain

that its equals method will never be invoked.

23.04.2024 Programming in Java 2 61

Obey the general contract when overriding equals
● Signature … public boolean equals(Object other)
● Reflexive
● Symmetric
● Transitive
● Consistent
● For any non-null reference value x, x.equals(null) must

return false

23.04.2024 Programming in Java 2 62

Obey the general contract when overriding equals
– violated symmetry
public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }

// ... // Remainder omitted
}

public class ColorPoint extends Point {
 private final Color color;

 public ColorPoint(int x, int y, Color
color) {
 super(x, y);
 this.color = color;
 }
// ... // Remainder omitted

//Broken - violates symmetry!
 @Override
 public boolean equals(Object o) {
 if (!(o instanceof ColorPoint))
 return false;
 return super.equals(o) && ((ColorPoint)
o).color == color;
 }
}
Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2,
Color.RED);

23.04.2024 Programming in Java 2 63

Obey the general contract when overriding equals
– violated transitivity
// Broken - violates transitivity!
public boolean equals(Object o) {
 if (!(o instanceof Point))
 return false;

// If o is a normal Point, do a color-blind comparison
 if (!(o instanceof ColorPoint))
 return o.equals(this);
// o is a ColorPoint; do a full comparison
 return super.equals(o) && ((ColorPoint) o).color == color;
}

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

23.04.2024 Programming in Java 2 64

The Liskov Substitution Principle in practical
software development

● The principle defines that objects of a superclass shall be replaceable with
objects of its subclasses without breaking the application. That requires the
objects of your subclasses to behave in the same way as the objects of your
superclass. You can achieve that by following a few rules, which are pretty
similar to the design by contract concept defined by Bertrand Meyer.

● An overridden method of a subclass needs to accept the same input
parameter values as the method of the superclass. That means you can
implement less restrictive validation rules, but you are not allowed to
enforce stricter ones in your subclass. Otherwise, any code that calls this
method on an object of the superclass might cause an exception, if it gets
called with an object of the subclass.

● Similar rules apply to the return value of the method. The return value of a
method of the subclass needs to comply with the same rules as the return
value of the method of the superclass. You can only decide to apply even
stricter rules by returning a specific subclass of the defined return value, or
by returning a subset of the valid return values of the superclass.

23.04.2024 Programming in Java 2 65

Obey the general contract when overriding equals
– violated Liskov subst. principle
// Broken - violates Liskov
substitution principle (page 43)
@Override
public boolean equals(Object o) {
 if (o == null || o.getClass() !=
 getClass())
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
}

public class PointWithDesc extends Point
{
 public PointWithDesc(int x, int y) {
 super(x, y);
 }

 public String getDescription() {
 return String.format("[%d, %d]",
 getX(), getY());
 }
}

23.04.2024 Programming in Java 2 66

Obey the general contract when overriding equals
public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override
 public boolean equals(Object o) {
 if (o instanceof Point p)
 return p.canEqual(this) && …;
 return false;
 }

// ... // Remainder omitted
 public boolean canEqual(Point that) {
 return that instanceof Point;
 }
}

public class ColorPoint extends Point {
 private final Point point;
 private final Color color;

 public ColorPoint(int x, int y, Color color) {
 super(x, y);
 this.color = Objects.requireNonNull(color);
 }

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof ColorPoint))
 return false;
 ColorPoint cp = (ColorPoint) o;
 return super.equals(cp) &&
 cp.color.equals(color);
 }
// ... // Remainder omitted
 @Override
 public boolean canEqual(Point that) {
 return that instanceof ColorPoint;
 }
}

23.04.2024 Programming in Java 2 67

Always override hashCode when you override
equals

1)int result = <c for first significant field computed by 2>
2)For every remaining significant field f in your object, do the

following:
a) Compute an int hash code c for the field:

I. a primitive type => Type.hashCode(f)
II. object reference => invoke hashCode on the field or compute a “canonical

representationor or use 0 (or some other constant, but 0 is traditional).
III.an array => a hash code for each significant element; use a constant,

preferably not 0 – no significatn element; use Arrays.hashCode – all
significant elements.

b) result = 31 * result + c

3)Return result.

23.04.2024 Programming in Java 2 68

Always override hashCode when you override
equals

● Do not be tempted to exclude significant fields from the
hash code computation to improve performance.

23.04.2024 Programming in Java 2 69

3rd lecture
● Lombok
● Effective java II

23.04.2024 Programming in Java 2 70

Project Lombok
● Project Lombok is a java library that automatically plugs into

your editor and build tools, spicing up your java.
● Never write another getter or equals method again, with

one annotation your class has a fully featured builder,
Automate your logging variables, and much more.

● https://projectlombok.org
<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.30</version>
 <scope>provided</scope>
</dependency>

23.04.2024 Programming in Java 2 71

Lombok features
val – Finally! Hassle-free final local variables.
var – Mutably! Hassle-free local variables.
@NonNull – or: How I learned to stop worrying and love the
NullPointerException.
@Cleanup – Automatic resource management: Call your close() methods
safely with no hassle.
@Getter/@Setter – Never write public int getFoo() {return foo;} again.
@ToString – No need to start a debugger to see your fields: Just let lombok
generate a toString for you!
@EqualsAndHashCode – Equality made easy: Generates hashCode and equals
implementations from the fields of your object..
@NoArgsConstructor, @RequiredArgsConstructor and @AllArgsConstructor –
Constructors made to order: Generates constructors that take no arguments,
one argument per final / non-nullfield, or one argument for every field.

23.04.2024 Programming in Java 2 72

Lombok features
@Data – All together now: A shortcut for @ToString,
@EqualsAndHashCode, @Getter on all fields, and @Setter on all non-
final fields, and @RequiredArgsConstructor!
@Value – Immutable classes made very easy.
@Builder – ... and Bob's your uncle: No-hassle fancy-pants APIs for
object creation!
@SneakyThrows – To boldly throw checked exceptions where no one
has thrown them before!
@Synchronized – synchronized done right: Don't expose your locks.
@With – Immutable 'setters' - methods that create a clone but with one
changed field.
@Getter(lazy=true) – Laziness is a virtue!
@Log – Captain's Log, stardate 24435.7: "What was that line again?"

23.04.2024 Programming in Java 2 73

Maven compile with Lombok
<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.12.1</version>
 <configuration>
 <annotationProcessorPaths>
 <path>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.30</version>
 </path>
 </annotationProcessorPaths>
 </configuration>
</plugin>

23.04.2024 Programming in Java 2 74

Delombok
● Normally, lombok adds support for all the lombok features

directly to your IDE and compiler by plugging into them.
● However, lombok doesn't cover all tools. For example, lombok

cannot plug into javadoc, nor can it plug into the Google Widget
Toolkit, both of which run on java sources. Delombok still allows
you to use lombok with these tools by preprocessing your java
code into java code with all of lombok's transformations already
applied.

● Delombok can of course also help understand what's happening
with your source by letting you look at exactly what lombok is
doing 'under the hood'.

java -jar lombok.jar delombok src -d src-delomboked

23.04.2024 Programming in Java 2 75

Minimize the accessibility of classes and members
● make each class or member as inaccessible as possible
● Instance fields of public classes should rarely be public
● classes with public mutable fields are not generally

thread-safe
● it is wrong for a class to have a public static final array

field, or an accessor that returns such a field

23.04.2024 Programming in Java 2 76

Minimize mutability
● Don’t provide methods that modify the object’s state

(known as mutators).
● Ensure that the class can’t be extended
● Make all fields final.
● Make all fields private.
● Ensure exclusive access to any mutable components.

23.04.2024 Programming in Java 2 77

Record Classes
● Record classes, which are a special kind of class, help to

model plain data aggregates with less ceremony than
normal classes.
– For background information about record classes, see JEP

395.

https://docs.oracle.com/en/java/javase/17/language/
records.html

23.04.2024 Programming in Java 2 78

Record example
record Rectangle(double
length, double width) { }

Rectangle r = new
Rectangle(4,5);

“plain“ Java
public final class Rectangle {
 private final double length;
 private final double width;

 public Rectangle(double length, double width) {
 this.length = length;
 this.width = width;
 }
 double length() { return this.length; }
 double width() { return this.width; }
 // Implementation of equals() and hashCode(),
which specify that two record objects are equal if
they are of the same type and contain equal field
values.
 public boolean equals...
 public int hashCode...
 // An implementation of toString() that returns
a string representation of all the record class's
fields, including their names.
 public String toString() {...}
}

23.04.2024 Programming in Java 2 79

Record class
A record class declaration consists of a name; optional type parameters (generic record
declarations are supported); a header, which lists the "components" of the record; and a body.

A record class declares the following members automatically:
● For each component in the header, the following two members:

– A private final field with the same name and declared type as the record component. This field is
sometimes referred to as a component field.

– A public accessor method with the same name and type of the component.
● A canonical constructor whose signature is the same as the header. This constructor

assigns each argument from the new expression that instantiates the record class to the
corresponding component field.

● Implementations of the equals and hashCode methods, which specify that two record
classes are equal if they are of the same type and contain equal component values.

● An implementation of the toString method that includes the string representation of all
the record class's components, with their names.

As record classes are just special kinds of classes, you create a record object (an instance of a
record class) with the new keyword.

23.04.2024 Programming in Java 2 80

The Canonical Constructor of a Record Class
● The following example explicitly declares the canonical

constructor for the Rectangle record class. It verifies
that length and width are greater than zero. If not, it
throws an IllegalArgumentException:

public Rectangle(double length, double width) {
 if (length <= 0 || width <= 0) {
 throw new java.lang.IllegalArgumentException(
 String.format("Invalid dimensions: %f, %f", length,
 width));
 }
 this.length = length;
 this.width = width;
}

23.04.2024 Programming in Java 2 81

Favor composition over inheritance
//Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet<E> extends HashSet<E> {
 // The number of attempted element insertions
 private int addCount = 0;
 public InstrumentedHashSet() {}
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }
 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() {
 return addCount;
 }
}

23.04.2024 Programming in Java 2 82

Favor composition over inheritance
//Wrapper class - uses composition in place of inheritance
public class InstrumentedSet<E> extends ForwardingSet<E> {
 private int addCount = 0;
 public InstrumentedSet(Set<E> s) {
 super(s);
 }
 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() {
 return addCount;
 }
}

23.04.2024 Programming in Java 2 83

Favor composition over inheritance
//Reusable forwarding class
public class ForwardingSet<E> implements Set<E> {
 private final Set<E> s;
 public ForwardingSet(Set<E> s) { this.s = s; }

 public void clear() { s.clear(); }
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty() { return s.isEmpty(); }
 public int size() { return s.size(); }
 public Iterator<E> iterator() { return s.iterator(); }
 public boolean add(E e) { return s.add(e); }
 public boolean remove(Object o) { return s.remove(o); }
 public boolean containsAll(Collection<?> c) { return s.containsAll(c); }
 public boolean addAll(Collection<? extends E> c) { return s.addAll(c); }
 public boolean removeAll(Collection<?> c) { return s.removeAll(c); }
 public boolean retainAll(Collection<?> c) { return s.retainAll(c); }
 public Object[] toArray() { return s.toArray(); }
 public <T> T[] toArray(T[] a) { return s.toArray(a); }
 @Override public boolean equals(Object o) { return s.equals(o); }
 @Override public int hashCode() { return s.hashCode(); }
 @Override public String toString() { return s.toString(); }
}

23.04.2024 Programming in Java 2 84

Use enums instead of int constants
 public enum Apple {
 FUJI, PIPPIN, GRANNY_SMITH
 }

 public enum Orange {
 NAVEL, TEMPLE, BLOOD
 }

 public static final int APPLE_FUJI = 0;
 public static final int APPLE_PIPPIN = 1;
 public static final int APPLE_GRANNY_SMITH = 2;

 public static final int ORANGE_NAVEL = 0;
 public static final int ORANGE_TEMPLE = 1;
 public static final int ORANGE_BLOOD = 2;

23.04.2024 Programming in Java 2 85

Enum type with data and behavior
● To associate data with enum constants, declare instance fields and

write a constructor that takes the data and stores it in the fields.
● Java programming language enum types are much more powerful

than their counterparts in other languages. The enum declaration
defines a class (called an enum type). The enum class body can
include methods and other fields. The compiler automatically adds
some special methods when it creates an enum. For example, they
have a static values method that returns an array containing all of the
values of the enum in the order they are declared. This method is
commonly used in combination with the for-each construct to iterate
over the values of an enum type. For example, this code from the
Planet class example below iterates over all the planets in the solar
system.

23.04.2024 Programming in Java 2 86

Enum type with data and behavior
public enum Planet {
 MERCURY(3.302e+23, 2.439e6),
 VENUS(4.869e+24, 6.052e6),
 EARTH(5.975e+24, 6.378e6),
 MARS(6.419e+23, 3.393e6),
 JUPITER(1.899e+27, 7.149e7),
 SATURN(5.685e+26, 6.027e7),
 URANUS(8.683e+25, 2.556e7),
 NEPTUNE(1.024e+26, 2.477e7);
 // In kilograms
 private final double mass;
 // In meters
 private final double radius;
 // In m / s^2
 private final double
surfaceGravity;
 // Universal gravitational
constant in m^3 / kg s^2
 private static final double G
= 6.67300E-11;

 // Constructor
 Planet(double mass, double radius){
 this.mass = mass;
 this.radius = radius;
 surfaceGravity = G *
 mass / (radius * radius);
 }
 public double mass() {
 return mass;
 }
 public double radius() {
 return radius;
 }
 public double surfaceGravity() {
 return surfaceGravity;
 }
 public double surfaceWeight(
 double mass) {
 // F = ma
 return mass * surfaceGravity;
 }}

23.04.2024 Programming in Java 2 87

Enum with different behavior
● Enum type that switches

on its own value -
questionable

public enum Operation {
 PLUS, MINUS, TIMES, DIVIDE;

 // Do the arithmetic operation represented
by this constant
 public double apply(double x, double y) {
 switch (this) {
 case PLUS:
 return x + y;
 case MINUS:
 return x - y;
 case TIMES:
 return x * y;
 case DIVIDE:
 return x / y;
 }
 throw new AssertionError(
 "Unknown op: " + this);
 }
}

23.04.2024 Programming in Java 2 88

Enum with different behavior II
● Enum type with

constant-specific
class bodies and
data

public enum Operation {
 PLUS("+") {
 public double apply(double x, double y)
 { return x + y; } },
 MINUS("-") {
 public double apply(double x, double y)
 { return x - y; } },
 TIMES("*") {
 public double apply(double x, double y)
 { return x * y; } },
 DIVIDE("/") {
 public double apply(double x, double y)
 { return x / y; } };
 private final String symbol;
 private Operation(String symbol)
 { this.symbol = symbol; }
 @Override public String toString()
 { return symbol; }
 public abstract double apply(
 double x, double y);

23.04.2024 Programming in Java 2 89

Implementing a fromString method on an enum
type
private static final Map<String, Operation>
stringToEnum =
 Stream.of(Operation.values()).collect(
 Collectors.toMap(Object::toString, e -> e));

//Returns Operation for string, if any
public static Optional<Operation> fromString(
 String symbol) {
 return Optional.ofNullable(
 stringToEnum.get(symbol));
}

23.04.2024 Programming in Java 2 90

Enum that switches on its value to share code –
questionable
enum PayrollDay {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;
 private static final int MINS_PER_SHIFT = 8 * 60;

 int pay(int minutesWorked, int payRate) {
 int basePay = minutesWorked * payRate;

 int overtimePay;
 switch (this) {
 case SATURDAY:
 case SUNDAY: // Weekend
 overtimePay = basePay / 2;
 break;
 default: // Weekday
 overtimePay = minutesWorked <= MINS_PER_SHIFT ?
 0 : (minutesWorked - MINS_PER_SHIFT) * payRate / 2;
 }
 return basePay + overtimePay;
 }
}

23.04.2024 Programming in Java 2 91

The strategy enum pattern
//The strategy enum pattern
enum PayrollDay {
 MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY,
SATURDAY(PayType.WEEKEND),
SUNDAY(PayType.WEEKEND);

 private final PayType payType;

 PayrollDay(PayType payType) {
 this.payType = payType;
 }
 PayrollDay() {
 this(PayType.WEEKDAY);
 } // Default

 int pay(int minutesWorked,
 int payRate) {
 return payType.pay(
 minutesWorked, payRate);
 }

 // The strategy enum type
 private enum PayType {
 WEEKDAY {
 int overtimePay(
 int minsWorked, int payRate) {
 return
 minsWorked <= MINS_PER_SHIFT
 ? 0 :
 (minsWorked - MINS_PER_SHIFT) *
 payRate / 2;
 } },
 WEEKEND {
 int overtimePay(
 int minsWorked, int payRate) {
 return minsWorked * payRate / 2;
 } };
 abstract int overtimePay(
 int mins, int payRate);
 private static final int
 MINS_PER_SHIFT = 8 * 60;
 int pay(int minsWorked, int payRate)
{
 int basePay = minsWorked * payRate;
 return basePay +
 overtimePay(minsWorked,
payRate);
 } } }

23.04.2024 Programming in Java 2 92

Enum with switches
● Switches on enums are

good for augmenting
enum types with
constant-specific
behavior.

public static Operation
inverse(Operation op) {
 switch (op) {
 case PLUS:
 return Operation.MINUS;
 case MINUS:
 return Operation.PLUS;
 case TIMES:
 return Operation.DIVIDE;
 case DIVIDE:
 return Operation.TIMES;

 default:
 throw new
AssertionError("Unknown op: " + op);
 }
}

23.04.2024 Programming in Java 2 93

Enum with switches
● Switches on enums

are good for
augmenting enum
types with constant-
specific behavior.

public static Operation inverse(Operation op) {
 //Can raise NullPointerException
 return switch (op) {
 case PLUS -> Operation.MINUS;
 case MINUS -> Operation.PLUS;
 case TIMES -> Operation.DIVIDE;
 case DIVIDE -> Operation.TIMES;
 };
}

public Operation inverse() {
 return switch (this) {
 case PLUS -> Operation.MINUS;
 case MINUS -> Operation.PLUS;
 case TIMES -> Operation.DIVIDE;
 case DIVIDE -> Operation.TIMES;
 };
}

23.04.2024 Programming in Java 2 94

Using enums
● Use enums any time you need a set of constants whose

members are known at compile time.
● It is not necessary that the set of constants in an enum

type stay fixed for all time.

23.04.2024 Programming in Java 2 95

Prefer lambdas to anonymous classes
// Anonymous class instance as a function object - obsolete!
Collections.sort(words, new Comparator<String>() {
 public int compare(String s1, String s2) {
 return Integer.compare(s1.length(), s2.length());
 }
});

// Lambda expression as function object (replaces anonymous
class)
Collections.sort(words, (s1, s2) ->
 Integer.compare(s1.length(), s2.length()));

23.04.2024 Programming in Java 2 96

Lambdas
● Omit the types of all lambda parameters unless their

presence makes your program clearer.
● if a computation isn’t self-explanatory, or exceeds a few

lines, don’t put it in a lambda
● Don’t use anonymous classes for function objects unless

you have to create instances of types that aren’t
functional interfaces.

23.04.2024 Programming in Java 2 97

Prefer method references to lambdas
Method Ref Type Example Lambda Equivalent

Static Integer::parseInt str -> Integer.parseInt(str)

Bound Instant.now()::isAfter Instant then = Instant.now();
t -> then.isAfter(t)

Unbound String::toLowerCase str -> str.toLowerCase()

Class Constructor TreeMap<K,V>::new () -> new TreeMap<K, V>()

Array Constructor int[]::new len -> new int[len]

23.04.2024 Programming in Java 2 98

Prefer method references to lambdas
● Where method references are shorter and clearer, use

them; where they aren’t, stick with lambdas.

//lambda
map.merge(key, 1, (count, incr) -> count + incr);

//method reference
map.merge(key, 1, Integer::sum);

23.04.2024 Programming in Java 2 99

Favor the use of standard functional interfaces

Interface Function Signature Example

UnaryOperator<T> T apply(T t) String::toLowerCase

BinaryOperator<T> T apply(T t1, T t2) BigInteger::add

Predicate<T> boolean test(T t) Collection::isEmpty

Function<T,R> R apply(T t) Arrays::asList

Supplier<T> T get() Instant::now

Consumer<T> void accept(T t) System.out::println

23.04.2024 Programming in Java 2 100

Functional interface
● If one of the standard functional

interfaces does the job, you
should generally use it in
preference to a purpose-built
functional interface.

● Don’t be tempted to use basic
functional interfaces with boxed
primitives instead of primitive
functional interfaces.

● Always annotate your functional
interfaces with the
@FunctionalInterface
annotation.

BiConsumer<T,U>, BiFunction<T,U,R>,
BinaryOperator<T>, BiPredicate<T,U>,
Consumer<T>, Function<T,R>,
ObjDoubleConsumer<T>,
ObjIntConsumer<T>, ObjLongConsumer<T>,
Predicate<T>, Supplier<T>,
ToDoubleBiFunction<T,U>,
ToDoubleFunction<T>, ToIntBiFunction<T,U>,
ToIntFunction<T>, ToLongBiFunction<T,U>,
ToLongFunction<T>, UnaryOperator<T>

BooleanSupplier, DoubleBinaryOperator,
DoubleConsumer, DoubleFunction<R>,
DoublePredicate, DoubleSupplier,
DoubleToIntFunction, DoubleToLongFunction,
DoubleUnaryOperator, IntBinaryOperator,
IntConsumer, IntFunction<R>, IntPredicate,
IntSupplier, IntToDoubleFunction,
IntToLongFunction, IntUnaryOperator,
LongBinaryOperator, LongConsumer,
LongFunction<R>, LongPredicate, LongSupplier,
LongToDoubleFunction, LongToIntFunction,
LongUnaryOperator

23.04.2024 Programming in Java 2 101

Use streams judiciously
Streams
● easier to read
● Shorter
● Slower (sometimes)

No streams
● easier to read
● easier to debug (for cycle)

● Prefer side-effect-free functions in streams
● Prefer Collection to Stream as a return type
● Use caution when making streams parallel

23.04.2024 Programming in Java 2 102

Check parameters for validity
/**
 * Returns a BigInteger whose value is (this mod m).
 * This method differs from the remainder method
 * in that it always returns a non-negative BigInteger.
 *
 * @param m the modulus, which must be positive
 * @return this mod m
 * @throws ArithmeticException if m is less than or equal to 0
 */
public BigInteger mod(BigInteger m) {
 if (m.signum() <= 0)
 throw new ArithmeticException("Modulus <= 0: " + m);
 ... // Do the computation
}

23.04.2024 Programming in Java 2 103

Check null, ranges
//Inline use of Java's null-checking facility
this.strategy = Objects.requireNonNull(strategy,
"strategy");

Another inline public static methods of class
java.util.Objects
int checkFromIndexSize(
 int fromIndex, int size, int length)
long checkIndex(long index, long length)
long checkFromToIndex(
 long fromIndex, long toIndex, long length)

23.04.2024 Programming in Java 2 104

Make defensive copies when needed
● You must program defensively, with the assumption that

clients of your class will do their best to destroy its
invariants.

23.04.2024 Programming in Java 2 105

Mutable parameters in constructor
● it is essential to make a defensive copy of each mutable

parameter to the constructor
● defensive copies are made before checking the validity

of the parameters and the validity check is performed
on the copies rather than on the originals

//Repaired constructor - makes defensive copies of parameters
public Period(Date start, Date end) {
 this.start = new Date(start.getTime());
 this.end = new Date(end.getTime());

 if (this.start.compareTo(this.end) > 0)
 throw new IllegalArgumentException(
 this.start + " after " + this.end);
}

23.04.2024 Programming in Java 2 106

Mutable return values
● return defensive copies of mutable internal fields

public Date start() {
 return new Date(start.getTime());
}

public Date end() {
 return new Date(end.getTime());
}

23.04.2024 Programming in Java 2 107

Mutable return values
● Wrap mutable return values with unmutable wrappers

public Collection<Objects> getCollections() {

 return Collections.unmodifiableCollection(collections);

}

23.04.2024 Programming in Java 2 108

Return empty collections or arrays, not nulls
● never return null in place of an empty array or collection

List<Cheese> cheeses = shop.getCheeses();
if (cheeses != null && cheeses.contains(Cheese.STILTON)) {
 System.out.println("Jolly good, just the thing.");
}

return Collections.emptyList();

23.04.2024 Programming in Java 2 109

4th lecture
● JPA – Java Persistence API
● CDI – Common Dependency Injection

23.04.2024 Programming in Java 2 110

JPA: overview
● API persistency using ORM
● Only interface – implementation should be connected.

Presentation
layer

Presentation
layer

Application
logic layer
Application
logic layer databasedatabase

JP
A

JP
A

23.04.2024 Programming in Java 2 111

JPA: Entity
● Entity – light-wight object from persistence object.

Typicaly are related with database table. Each object is
related to one record in the database table.

● Persistent state of entity: represented by instance
variables and class properties. Mapping between
database and properties is defined by annotations.

●

23.04.2024 Programming in Java 2 112

JPA – Entity class
● an annotation
● javax.persistence.Entity
● Nonparametric public or protected constructor.
● Class nor methods nor instance variables are final
● Entity class can be descendant of entity class or non-

entity class. Non-entity classes can be descendant of
entity class.

● Persistence instance variables have to be declared as
private, protected or package-private. They should be
accessed through set and get methods.

●

23.04.2024 Programming in Java 2 113

JPA: example of Entity class
@Entity
@Table(name="ShopOrder")
public class Order {
 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private int id;
 @OneToOne
 private Transaction cardTransaction;
 @ManyToOne()
 private Customer customer;
 @OneToMany(mappedBy="order")
 private Set<OrderedProduct> items;
 private String deliveryAddress;
 …
}

23.04.2024 Programming in Java 2 114

JPA: persistence properties, instance variables
● Instance variables – persistence provider access directly to them
● Properties – Persistence access properties using get, set method

– Can be used: Collection, Set, List, Map even generic versions

● override equals() hashcode()
● Types:

– Java primitive data types
– java.lang.String,
– other serializable types (boxed classes, java.math.BigInteger,

java.math.BigDecimal, java.util.Date, java.util.Calendar, java.sql.Date,
java.sql.Time, java.sql.TimeStamp, user serializable types, byte[],
Byte[], char[], Character[], enum types, other entities,

23.04.2024 Programming in Java 2 115

JPA: primary key
● Every entity should contain own key
● @javax.persistence.Id
● Composite Primary Key

– Have to exisit class which define composite key
– @javax.persistence.EmbeddedId
– @javax.persistence.IdClass
– Have to be composed from types:

● Java Primitive data types (and coresponding embedded classes)
● java.lang.String
● java.util.Date (DATE), java.sql.Date

● Float numbers should not be used.

23.04.2024 Programming in Java 2 116

JPA – relation 1-1
@Entity
public class Order {
@OneToOne
private Transaction cardTransaction;
…

@Entity
public class Transaction {
@OneToOne
private Order order;
…

23.04.2024 Programming in Java 2 117

JPA – relation 1-N
@Entity
public class Order {
@OneToMany(mappedBy="order")
private Set<OrderedProduct>
items;
…

@Entity
public class OrderedProduct {
@ManyToOne
private Order order;
…

23.04.2024 Programming in Java 2 118

JPA – relation M-N
@Entity
public class SimpleProduct
 extends AbstractProduct {
 @ManyToMany(
 mappedBy="simpleProduct")
private List<ProductSet>
 ProductSets;
}

@Entity
public class ProductSet
 extends AbstractProduct
 @ManyToMany
 private List<SimpleProduct>
 simpleProduct;
 private float setDiscount;
}

23.04.2024 Programming in Java 2 119

JPA - inheritence
● Entity can extend non-

entity or abstract class
@Entity
public abstract class Employee {
 @Id
 protected Integer employeeId;
}
// ...
@Entity
public class FullTimeEmployee
 extends Employee {
 protected Integer salary;
}
// ...
@Entity
public class PartTimeEmployee
 extends Employee {
 protected Float hourlyWage;
}

23.04.2024 Programming in Java 2 120

JPA – inheritance mapping strategy
● One table on a class hierarchy
● One table for a particular class
● Join strategy

public enum InheritanceType {
 SINGLE_TABLE, TABLE_PER_CLASS, JOINED
}

@Inheritance(strategy = InheritanceType.JOINED)

23.04.2024 Programming in Java 2 121

JPA: SINGLE_TABLE
@Inheritance(strategy=
 InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(
 name = "type",
 ColumnDefinition =
 "TINYINT(1)",
 DiscriminatorType =
 DiscriminatorType.INTEGER)

public enum DiscriminatorType
{ STRING, CHAR, INTEGER }

@DiscriminatorValue(
 value = "1")

JuridicalPerson
 # recordedInCourt: String [1]

LegalPerson
 # personId: Integer [1]
 # name: String [1]

NaturalPerson
 # dayOfBirth: LocalDate [1]

23.04.2024 Programming in Java 2 122

JPA: One table for particular entity

JuridicalPerson
 # recordedInCourt: String [1]

LegalPerson
 # personId: Integer [1]
 # name: String [1]

NaturalPerson
 # dayOfBirth: LocalDate [1]

@Inheritance(strategy=

 InheritanceType.TABLE_PER_CLASS)

23.04.2024 Programming in Java 2 123

JPA: Join strategy

JuridicalPerson
 # recordedInCourt: String [1]

LegalPerson
 # personId: Integer [1]
 # name: String [1]

NaturalPerson
 # dayOfBirth: LocalDate [1]

@Inheritance(strategy=InheritanceType.JOINED)

23.04.2024 Programming in Java 2 124

JPA: MappedSuperclass
 @MappedSuperclass
 public abstract class LegalPerson {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 protected Integer personId;
 protected String name;
 }

 @Entity
 public class NaturalPerson extends LegalPerson {
 protected LocalDate dayOfBirth;
 }

 @Entity
 public class JuridicalPerson extends LegalPerson {
 protected String recordedInCourt;
 }

23.04.2024 Programming in Java 2 125

JPA: entity management
● Persistent context: set of entities existing in a particular

datastore
● EntityManager:

– Creates, deletes, finds, exetues queries

23.04.2024 Programming in Java 2 126

JPA: Application managed EntityManager
// fetched from somewhere - CDI for example;
EntityManager em;

// fetched from somewhere - CDI for example;
EntityManagerFactory emf;

//In desktop app without CDI
emf = Persistence
 .createEntityManagerFactory("persistenceUnitName");

EntityManager em = emf.createEntityManager();
// use it in the current thread

23.04.2024 Programming in Java 2 127

JPA: find entity
 @PersistenceContext
 EntityManager em;

 public void enterInvoice(int personID, Invoice newInvoice) {
 LegalPerson person = em.find(LegalPerson.class, personID);
 person.getInvoices().add(newInvoice);
 newInvoice.setPerson(person);
 }

23.04.2024 Programming in Java 2 128

JPA: entity lifecycle
● New
● Managed
● Detached
● Removed

em.persist(newInvoice);

em.merge(person);

em.flush();

em.detach(person);

em.remove(person);

23.04.2024 Programming in Java 2 129

JPA: queries
public List<LegalPerson> findWithName(String name) {
 return em.createQuery(
 "SELECT p FROM LegalPerson p WHERE p.name LIKE :personName",
LegalPerson.class)
 .setParameter("personName", name)
 .setMaxResults(10)
 .getResultList();
}

//...
query.setFirstResult(100)

23.04.2024 Programming in Java 2 130

JPA: named queries
@NamedQuery(//class annotation - entity
 name="findAllPersonsWithName",
 query="SELECT p FROM LegalPerson p WHERE p.name
LIKE :personName"
)

return em.createNamedQuery("findAllCustomersWithName",
LegalPerson.class)
 .setParameter("personName", "Smith")
 .getResultList();

23.04.2024 Programming in Java 2 131

JPA: parameters in queris
● Named
 return em.createQuery(
 "SELECT c FROM LegalPerson p WHERE p.name LIKE :personName",
 LegalPerson.class)
 .setParameter("personName", name)
 .getResultList();

● Numbered
 return em.createQuery(
 "SELECT c FROM LegalPerson p WHERE p.name LIKE ?1",
 LegalPerson.class)
 .setParameter(1, name)
 .getResultList();

23.04.2024 Programming in Java 2 132

JPA: Persistence Units
● Package containing all entity class mapped on one

datastore
● must contain file

– META-INF/persistence.xml

23.04.2024 Programming in Java 2 133

persistence.xml
<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

<persistence-unit name="Slaids">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:/jdbc/slaids</jta-data-source>

 <properties>

 <property name="jakarta.persistence.schema-generation.database.action"

 value="create"/>

 <property name="hibernate.hbm2ddl.auto" value="create"/>

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.DerbyTenSevenDialect"/>

 </properties>

 </persistence-unit>

</persistence>

23.04.2024 Programming in Java 2 134

JPA – Query Language
● Select Statements

– SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY
● Update, Delete Statement

– UPDATE Player p SET p.status = ’inactive’ WHERE p.lastPlayed
< :inactiveThresholdDate

– DELETE FROM Player p WHERE p.status = ’inactive’ AND
p.teams IS EMPTY

23.04.2024 Programming in Java 2 135

JPA: examples of queries
● SELECT p FROM Player AS p
● SELECT DISTINCT p FROM Player AS p WHERE p.position = ?1
● SELECT DISTINCT t FROM Player AS p JOIN p.teams AS t
● SELECT DISTINCT p FROM Player AS p WHERE p.team IS NOT

EMPTY
● SELECT t FROM Team AS t JOIN t.league AS l WHERE l.sport =

’soccer’ OR l.sport =’football’
● SELECT DISTINCT p FROM Player AS p JOIN p.teams AS t WHERE

t.city = :city
● SELECT DISTINCT p FROM Player AS p JOIN p.teams AS t WHERE

t.league.sport = :sport

23.04.2024 Programming in Java 2 136

JPA: LIKE in query
● SELECT p FROM Player p WHERE p.name LIKE ’Mich%’
● _ - any one character
● % - zero or many any characters
● ESCAPE – defines escape character

● LIKE ’_%’ ESCAPE ’\’
● NOT LIKE

23.04.2024 Programming in Java 2 137

JPA: IS EMPTY, NULL in queries
● SELECT t FROM Team t WHERE t.league IS NULL
● SELECT t FROM Team t WHERE t.league IS NOT NULL
● Cannot use WHERE t.league = NULL

● SELECT p FROM Player p WHERE p.teams IS EMPTY
● SELECT p FROM Player p WHERE p.teams IS NOT EMPTY

23.04.2024 Programming in Java 2 138

JPA – BETWEEN, IN in queries
● SELECT DISTINCT p FROM Player p WHERE p.salary

BETWEEN :lowerSalary AND :higherSalary
● p.salary >= :lowerSalary AND p.salary <= :higherSalary

● o.country IN (’UK’, ’US’, ’France’)

23.04.2024 Programming in Java 2 139

JPA Criteria1
● It enables us to write queries without doing raw QL
● Gives us some object-oriented control over the queries
● Enable do easily and reliable dynamical queries

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<LegalPerson> cr =
 cb.createQuery(LegalPerson.class);
Root<LegalPerson> root = cr.from(LegalPerson.class);
cr.where(cb.like(root.get("name"), "Dav%"));
cr.select(root);
TypedQuery<LegalPerson> query = em.createQuery(cr);
List<LegalPerson> results = query.getResultList();

23.04.2024 Programming in Java 2 140

JPA criteria – using expression
cr.select(root).where(
 cb.gt(root.get("itemPrice"), 1000));

cr.select(root).where(
 cb.like(root.get("itemName"), "%chair%"));

cr.select(root).where(
 cb.between(root.get("itemPrice"), 100, 200));

23.04.2024 Programming in Java 2 141

JPA criteria - predicate chaining
Predicate greaterThanPrice =
 cb.gt(root.get("itemPrice"), 1000);

Predicate chairItems =
 cb.like(root.get("itemName"), "Chair%");

cr.select(root).where(
 cb.or(greaterThanPrice, chairItems));

23.04.2024 Programming in Java 2 142

JPA criteria – using metamodel1

1https://www.baeldung.com/hibernate-criteria-queries-metamodel

23.04.2024 Programming in Java 2 143

CDI - Contexts and Dependency Injection
● standard dependency injection framework included in Java

EE 6 and higher.
● Contexts and Dependency Injection (CDI) enables your

objects to have their dependencies provided to them
automatically, instead of creating them or receiving them as
parameters. CDI also manages the lifecycle of those
dependencies for you.

● Java beans - CDI bean. CDI beans are classes that CDI can
instantiate, manage, and inject automatically to satisfy the
dependencies of other objects.

● Almost any Java class can be managed and injected by CDI -
JavaBeans.

23.04.2024 Programming in Java 2 144

CDI – Contexts and Dependency Injection
● Contexts: This service enables you to bind the lifecycle and interactions of

stateful components to well-defined but extensible lifecycle contexts.
● Dependency injection: This service enables you to inject components into

an application in a typesafe way and to choose at deployment time which
implementation of a particular interface to inject.

● Integration with the Expression Language (EL)
● The ability to decorate injected components
● The ability to associate interceptors with components using typesafe

interceptor bindings
● An event-notification model
● A web conversation scope in addition to the three standard scopes

(request, session, and application) defined by the Java Servlet specification

23.04.2024 Programming in Java 2 145

CDI – About Beans
A bean has the following attributes:
● A (nonempty) set of bean types
● A (nonempty) set of qualifiers
● A scope
● Optionally, a bean EL name
● A set of interceptor bindings
● A bean implementation

23.04.2024 Programming in Java 2 146

CDI – beans
The following kinds of objects can be injected:
● (Almost) any Java class
● Session beans
● Java EE resources: data sources, Java Message Service topics,

queues, connection factories, and the like
● Persistence contexts (Java Persistence API EntityManager

objects)
● Producer fields
● Objects returned by producer methods
● Web service references
● Remote enterprise bean references

23.04.2024 Programming in Java 2 147

CDI – Scopes
@RequestScoped

● A user's interaction with a web application in a single HTTP request.
@SessionScoped

● A user's interaction with a web application across multiple HTTP requests.
@ApplicationScoped

● Shared state across all users' interactions with a web application.
@Dependent

● The default scope if none is specified; it means that an object exists to serve exactly one client
(bean) and has the same lifecycle as that client (bean).

@ConversationScoped
● A user's interaction with a servlet, including JavaServer Faces applications. The conversation

scope exists within developer-controlled boundaries that extend it across multiple requests for
long-running conversations. All long-running conversations are scoped to a particular HTTP
servlet session and may not cross session boundaries.

@ViewScoped
● Come with JSF 2.2

23.04.2024 Programming in Java 2 148

CDI – Giving Beans EL Names
● @Named
● @Named("AnyName")

23.04.2024 Programming in Java 2 150

5th Lecture
● REST
● HTTP-based RESTful API
● Quarkus
● REST client

23.04.2024 Programming in Java 2 151

REST – REpresentational State Transfer
● Software architectural style
● Fielding, Roy Thomas (2000). "Chapter 5: Representational

State Transfer (REST)". Architectural Styles and the Design of
Network-based Software Architectures (Ph.D.). University of
California, Irvine.

● REST gives a coordinated set of constraints to the design of
components in a distributed hypermedia system that can
lead to a higher-performing and more maintainable
architecture.

● To the extent that systems conform to the constraints of
REST they can be called RESTful.

23.04.2024 VEA - Vývoj Enterprise Aplikací 152

● Communicate over HTTP with the same HTTP verbs
(GET, POST, PUT, DELETE, etc.)

● REST interfaces with external systems using resources
identified by URI

● DELETE /people/tom
● Roy Thomas Fielding in his 2000 PhD dissertation

"Architectural Styles and the Design of Network-based
Software Architectures"

Representational State Transfer (REST)

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTP_verbs
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/URI
https://en.wikipedia.org/wiki/Roy_Fielding

23.04.2024 VEA - Vývoj Enterprise Aplikací 153

Architectural constraints
● Client–server
● Stateless
● Cacheable
● Layered system
● Code on demand (optional)
● Uniform interface

– Identification of resources
– Manipulation of resources through these representations
– Self-descriptive messages
– Hypermedia as the engine of application state (HATEOAS)

Representational State Transfer (REST)

Architectural constraints
The architectural properties of REST are realized by applying specific interaction constraints to components, connectors, and data elements.[4][6] One can characterise

applications conforming to the REST constraints described in this section as "RESTful".[2] If a service violates any of the required constraints, it cannot be considered
RESTful. Complying with these constraints, and thus conforming to the REST architectural style, enables any kind of distributed hypermedia system to have desirable
non-functional properties, such as performance, scalability, simplicity, modifiability, visibility, portability, and reliability.[4]

The formal REST constraints are:
Client–server
See also: Client–server model
A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not concerned with data storage, which remains internal to

each server, so that the portability of client code is improved. Servers are not concerned with the user interface or user state, so that servers can be simpler and more
scalable. Servers and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless
See also: Stateless protocol
The client–server communication is further constrained by no client context being stored on the server between requests. Each request from any client contains all the

information necessary to service the request, and session state is held in the client. The session state can be transferred by the server to another service such as a
database to maintain a persistent state for a period and allow authentication. The client begins sending requests when it is ready to make the transition to a new state.
While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the
next time the client chooses to initiate a new state-transition.[8]

Cacheable
See also: Web cache
As on the World Wide Web, clients and intermediaries can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to

prevent clients from reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server
interactions, further improving scalability and performance.

Layered system
See also: Layered system
A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by

enabling load balancing and by providing shared caches. They may also enforce security policies.
Code on demand (optional)
See also: Client-side scripting
Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as

Java applets and client-side scripts such as JavaScript. "Code on demand" is the only optional constraint of the REST architecture.
Uniform interface
The uniform interface constraint is fundamental to the design of any REST service.[4] The uniform interface simplifies and decouples the architecture, which enables each part to

evolve independently. The four constraints for this uniform interface are:
Identification of resources Individual resources are identified in requests, for example using URIs in web-based REST systems. The resources themselves are conceptually

separate from the representations that are returned to the client. For example, the server may send data from its database as HTML, XML or JSON, none of which are the
server's internal representation. Manipulation of resources through these representations When a client holds a representation of a resource, including any metadata
attached, it has enough information to modify or delete the resource. Self-descriptive messages Each message includes enough information to describe how to process
the message. For example, which parser to invoke may be specified by an Internet media type (previously known as a MIME type). Responses also explicitly indicate their
cacheability.[4] Hypermedia as the engine of application state (HATEOA

What Are RESTful Web Services?
RESTful web services are built to work best on the Web. Representational State Transfer (REST) is an architectural style that specifies constraints, such as the uniform

interface, that if applied to a web service induce desirable properties, such as performance, scalability, and modifiability, that enable services to work best on the Web. In
the REST architectural style, data and functionality are considered resources and are accessed using Uniform Resource Identifiers (URIs), typically links on the Web.
The resources are acted upon by using a set of simple, well-defined operations. The REST architectural style constrains an architecture to a client/server architecture and
is designed to use a stateless communication protocol, typically HTTP. In the REST architecture style, clients and servers exchange representations of resources by using
a standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight, and fast:
Resource identification through URI: A RESTful web service exposes a set of resources that identify the targets of the interaction with its clients. Resources are identified by

URIs, which provide a global addressing space for resource and service discovery. See The @Path Annotation and URI Path Templates for more information.
Uniform interface: Resources are manipulated using a fixed set of four create, read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource,

which can be then deleted by using DELETE. GET retrieves the current state of a resource in some representation. POST transfers a new state onto a resource. See
Responding to HTTP Methods and Requests for more information.

Self-descriptive messages: Resources are decoupled from their representation so that their content can be accessed in a variety of formats, such as HTML, XML, plain text,
PDF, JPEG, JSON, and others. Metadata about the resource is available and used, for example, to control caching, detect transmission errors, negotiate the appropriate
representation format, and perform authentication or access control. See Responding to HTTP Methods and Requests and
Using Entity Providers to Map HTTP Response and Request Entity Bodies for more information.

Stateful interactions through hyperlinks: Every interaction with a resource is stateless; that is, request messages are self-contained. Stateful interactions are based on the
concept of explicit state transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, and hidden form fields. State can be embedded in response
messages to point to valid future states of the interaction. See Using Entity Providers to Map HTTP Response and Request Entity Bodies and “Building URIs” in the JAX-
RS Overview document for more information.

153

https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-SOA_with_REST-6
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Richardson_2007-2
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-8
https://en.wikipedia.org/wiki/Web_cache
https://en.wikipedia.org/wiki/Layered_system
https://en.wikipedia.org/wiki/Client-side_scripting
https://en.wikipedia.org/wiki/Java_applet
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Internet_media_type
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/HATEOAS
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#ginpw
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipys
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipys
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipze
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipze

23.04.2024 Programming in Java 2 154

HTTP-based RESTful API
● Web service API
● REST architectural constraints
● Protocol HTTP – most common implementation:

– URI
– HTTP methods
– media type

23.04.2024 VEA - Vývoj Enterprise Aplikací 155

● Hypermedia Controls - The objective of hypermedia
controls is to advise the client of what can be done next
and to supply the URIs necessary to perform the next
action.

● Resource Naming - RESTful APIs are written for clients and
should have meaning for the clients of those APIs. When
choosing nouns to name the resources, you should be
familiar with the structure of the application’s data and
how your clients are likely to use them. There are no
defined rules as to how you should name your resources,
but there are conventions that, if followed, can help you
create a set of self-descriptive resource names that others
intuitively understand.

RESTfull – API rules

23.04.2024 VEA - Vývoj Enterprise Aplikací 156

● Nouns Not Verbs - You must name the resources after nouns, not
verbs or actions. The purpose of the resource name is to represent
the resource. The HTTP method describes the action to be
performed.

● To represent a single user resource, you would use the noun users to
represent all users and the user’s ID to identify the specific user, like
so:

users/123456

● An example of a non REST and badly formed URI would be
users/123456/update ,

users/123456?action=update

RESTfull – API rules

23.04.2024 VEA - Vývoj Enterprise Aplikací 157

● The nature of data is that it is hierarchical. So imagine
that you want to represent all the posts of the user with
ID 123456 . You would use the noun posts to represent
all posts and create the URI

users/123456/posts
● different ways - To represent all posts by a specified

user, you can use the URI
posts/users/123456

RESTfull – API rules

23.04.2024 VEA - Vývoj Enterprise Aplikací 158

● Self Descriptive - As you have seen, the nouns chosen
should reflect the resource they represent. Combining
these representations with identifiers makes the URI
easy to interpret and intuitive to understand. If you read
a URI in combination with its HTTP method and it is not
immediately obvious what resource it represents, it has
failed as a RESTful URI.

RESTfull – API rules

23.04.2024 VEA - Vývoj Enterprise Aplikací 159

● Plural Not Singular - Resource names should be plural
because they represent collections of data. The resource
name users represents a collection of users, and the
resource name posts represents a collection of posts.

● The idea is that plural nouns represent a collection in
the service, and the ID refers to one instance within that
collection.

● It may be justifiable to use a singular noun if there is
only one instance of that data type in the entire
application, but this is quite uncommon.

RESTfull – API rules

23.04.2024 VEA - Vývoj Enterprise Aplikací 160

● GET - You use this method to get resource representations from
the service. You should never use it to update, delete, or create a
resource. Calling it once should have the same effect as calling it
100 times.

● If the resource requested is successful, the representation of the
resource is returned in the body of the HTTP response in the
requested data format, which commonly is either JSON or XML.
The HTTP response code returned is 200 (OK) . If the resource is
not found, it should return 404 (NOT FOUND) , and if the resource
request is badly formed, it should return 400 (BAD REQUEST) .

● A well formed URI that you might use in your forum application
could be GET users/123456/ followers , which represents all the
followers of the user 123456 .

RESTfull – API rules – HTTP methods

23.04.2024 VEA - Vývoj Enterprise Aplikací 161

● POST - You use the POST method to create a new resource within the given
context. For example, to create a new user, you would post to the users
resource the data necessary for a new user to be created. The service takes
care of creating the new resource, associating it to the context, and
assigning an ID.

● On successful creation, the HTTP response is 201 (CREATED) , and a link to
the newly created resource is returned either in the Location header of the
response or in the JSON payload of the response body. The resource
representation may be returned in the response body. This is often
preferable to avoid making an additional call to the API to retrieve a
representation of the data that had been just created. This reduces the
chattiness of the API.

● In addition to the HTTP response codes to a GET request, a POST can return
204 (NO CONTENT) if the body of the request is empty. A well formed URI
that you might use in your forum application could be POST users , with a
request body containing the new user’s details or POST users/123456/
posts to create a new post for the user 123456 from the data in the request
body.

RESTfull – API rules – HTTP methods

23.04.2024 VEA - Vývoj Enterprise Aplikací 162

● PUT - The PUT method is most commonly used to update a known
resource. The URI includes enough information to identify the
resource, such as a context and an identifier. The request body
contains the updated version of the resource.

● If the update is successful, it returns the HTTP response code 200 .
A URI that updates a user’s information is PUT users/123456 . Less
commonly, you can use the PUT method to create a resource if the
client creates the identifier of the resource. However, this way of
creating a resource is a little confusing. Why use a PUT when a
POST works just as well and is commonly known?

● An important point to note about updating a resource is that the
entire representation of the resource is passed to the service in the
HTTP body request, not just the information that has changed.

RESTfull – API rules – HTTP methods

23.04.2024 VEA - Vývoj Enterprise Aplikací 163

● DELETE - Surprisingly, you use this method to delete a
resource from a service. The URI contains the context
and the identifier of the resource. To delete a user with
the ID 123456, you use the URI

DELETE users/123456
● The response body may include a representation of the

deleted resource. A successful deletion results in a 200
(OK) HTTP response code being returned; if the resource
is not found, a 400 code is returned.

RESTfull – API rules – HTTP methods

23.04.2024 VEA - Vývoj Enterprise Aplikací 164

● A REST API must not define fixed resource names or
hierarchies (an obvious coupling of client and server).
Servers must have the freedom to control their own
namespace. Instead, allow servers to instruct clients on
how to construct appropriate URIs, such as is done in
HTML forms and URI templates, by defining those
instructions within media types and link relations.

● [Failure here implies that clients are assuming a
resource structure due to out-of band information, such
as a domain-specific standard, which is the data-
oriented equivalent to RPC’s functional coupling].

RESTfull – API rules

23.04.2024 Programming in Java 2 165

Semantic of HTTP methods
HTTP
method

Description CRUD

GET Get a representation of the target
resource's state.

Fetch all or any
resource

GET /user/
GET /user/1

POST Let the target resource process the
representation enclosed in the reques.

Create a
Resources

POST /user?
name=user17age
=20

PUT Set the target resurce's state tot the
state defined by the representation
enclosed in the request.

Update a
Resource

PUT /user/1?
name=changed-
name

DELETE Delete the target resource’s state. Delete a Resource DELETE /user/1
HEAD Fetch metainfo HEAD /user
OPTION
S

Fetch all verbs allowed OPTIONS /user

23.04.2024 Programming in Java 2 166

HTTP Headers
Headers Example
Auth: <session-
token>

Auth: 1155dassdasd5-asd5666asd-asdas

Accept: <media
Type>

Accept:application/json

Content-Type: <ct> Content-Type: text/html; charset=UTF-8
Allow:<methods> Allow: GET, POST, HEAD

23.04.2024 Programming in Java 2 167

Status Codes
200 – OK Successful Return for

sync call
307 – Temporarily Moved Redirection
400 – Bad Request Invalid URI, header,

request param
401 – Un authorized User not authorized

for operation
403 – Forbidden User not allowed to

update
404 – Not Found URI Path not available
405 – Method not allowed Method not valid for

the path
500 – Internal Server Error Server Errors
503 – Service unavailable Server not accessible

HTTP Status Codes

23.04.2024 VEA - Vývoj Enterprise Aplikací 168

Code on Demand
● REST allows client functionality to be extended by downloading and

executing code in the form of applets or scripts. This simplifies clients
by reducing the number of features required to be pre-implemented.
Allowing features to be downloaded after deployment improves
system extensibility. However, it also reduces visibility, and thus is
only an optional constraint within REST.

● At the time this was written, the web was mostly just static
documents and the only "web client" was the browser itself. Now it's
commonplace for JavaScript-powered web apps to be consuming
REST APIs. This is an example of code on demand - the browser grabs
an initial HTML document and supports <script> tags inside that
document so that an application can be loaded on-demand.

RESTfull – API CoD

23.04.2024 Programming in Java 2 169

JAX-RS (Java API for RESTful Web Services
or Jakarta RESTful Web Services)
URL prefix for whole
application:

@ApplicationPath("/api")

public class RestApplication
 extends jakarta.ws.rs.
 core.Application {

}

Example of class to handle URL
requests:
@Path("/notifications")
public class NotificationsResource {
 @GET
 @Path("/ping")
 public Response ping() {
 return Response.ok().entity("Service online").build();
 }
 @GET
 @Path("/{id}")
 @Produces(MediaType.APPLICATION_JSON)
 public Response getNotification(@PathParam("id") int id) {
 return Response.ok().entity(new Notification(id, "john",
"test notification")).build();
 }
 @POST
 @Path("/")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public Response postNotif(Notification n) {
 return Response.status(201).entity(n).build();
 }
}

23.04.2024 Programming in Java 2 170

JAX-RS: Path and Query parameters
@Path("/")
public class DatasetRegisterServiceEndpoint {
 public static final String UUID = "uuid";
 private static final String R_X_PARAM = "rx";
 private static final String R_Y_PARAM = "ry";
 private static final String R_Z_PARAM = "rz";
 private static final String VERSION_PARAM = "version";
 private static final String MODE_PARAM = "model";
 private static final String TIMEOUT_PARAM = "timeout";
 // ...

 @Path("datasets" + "/{" + UUID + "}" + "/{" + R_X_PARAM + "}" + "/{" + R_Y_PARAM + "}" +
 "/{" + R_Z_PARAM + "}" + "/{" + VERSION_PARAM + "}" + "/{" + MODE_PARAM + "}")
 @GET
 public Response start(@PathParam(UUID) String uuid, @PathParam(R_X_PARAM) int rX,
 @PathParam(R_Y_PARAM) int rY, @PathParam(R_Z_PARAM) int rZ,
 @PathParam(VERSION_PARAM) String version,
 @SuppressWarnings("unused") @PathParam(MODE_PARAM) String mode,
 @QueryParam(TIMEOUT_PARAM) Long timeout) {
//EXAMPLE Query: GET /datasets/445666-5555644-555555/1/1/1/latest/write?timeout=10000
 return /*...*/null;
 }
}

23.04.2024 Programming in Java 2 171

JAX-RS: Build HTTP response
@GET
public Response start1(@PathParam(UUID) String uuid,
 @PathParam(R_X_PARAM) int rX, @PathParam(R_Y_PARAM) int rY,
 @PathParam(R_Z_PARAM) int rZ, @PathParam(VERSION_PARAM)
 String version, @PathParam(MODE_PARAM) String mode,
 @QueryParam(TIMEOUT_PARAM) Long timeout) {

 log.debugv("start: timeout = {}", timeout);
 Response resp = checkVersionUuidTS.run(uuid, version);
 if (resp != null) {
 return resp;
 }
 return Response.temporaryRedirect(URI.create("/"
 + uuid + "/" + rX + "/" + rY + "/" + rZ + "/" + version)).build();
}

23.04.2024 Programming in Java 2 172

JAX-RS: Structured data in API
//JSON data are sent in POST request
@POST
@Path("datasets/")
@Consumes(MediaType.APPLICATION_JSON)
public Response
createEmptyDataset(DatasetDTO dataset)
{

// JSON data are sent in GET response
@GET
@Path("datasets/")
@Produces(MediaType.APPLICATION_JSON)
public DatasetDTO
createDataset(/*...*/) {

23.04.2024 Programming in Java 2 173

JSON Binding API (JSR 367)
public class Person2 {
 private int id;
 @JsonbProperty("person-name")
 private String name;
 @JsonbNillable
 private String email;
 @JsonbTransient
 private int age;
 @JsonbDateFormat("dd-MM-yyyy")
 private LocalDate registeredDate;
 private BigDecimal salary;
 @JsonbNumberFormat(locale =
"en_US",
 value = "#0.0")
 public BigDecimal getSalary() {
 return salary;
 }

● @JsonbProperty – which is
used for specifying a custom
field name

● @JsonbTransient – when we
want to ignore the field during
deserialization/serialization

● @JsonbDateFormat – when we
want to define the display
format of the date

● @JsonbNumberFormat – for
specifying the display format for
numeric values

● @JsonbNillable – for enabling
serialization of null values

23.04.2024 Programming in Java 2 174

Quarkus
● https://quarkus.io
● MicroProfile – optimize J2EE to

Microservices
– JAX-RS, JAXB, CDI

● Supersonic Subatomic Java
● Full-stack Framework
● OpenJDK HotSpot, GraalVM
● Microservices
● Small footprint
● Reduced boot time

https://quarkus.io/

23.04.2024 Programming in Java 2 175

Quarkus: Simplified Hibernate ORM with Panache
● Makes mapping simple
● Active record.
● Repository.
● Advanced queries.
● Transactions.
● Lock management.
● Custom IDs
● Mocking

23.04.2024 Programming in Java 2 176

Panache: Active Record example
@Entity
public class Person extends PanacheEntity {
 private String name;
 private LocalDate birth;
 private Status status;

 public enum Status {
 Alive, Deceased
 }
}

 // creating a person
 Person person = Person.builder()
 .name("Ada Lovelace").birth(
 LocalDate.of(1815, Month.DECEMBER, 10))
 .status(Status.Deceased).build();

 // persist it
 person.persist();

 // note that once persisted, you don't need
to explicitly save your entity: all
 // modifications are automatically persisted
on transaction commit.

 // check if it's persistent
 if (person.isPersistent()) {
 // delete it
 person.delete();
 }

 // getting a list of all Person entities
 List<Person> allPersons = Person.listAll();

23.04.2024 Programming in Java 2 177

// finding a specific person by ID
person = Person.findById(personId);

// finding a specific person by ID
via an Optional
Optional<Person> optional = Person
 .findByIdOptional(personId);
person = optional.orElseThrow(
 NotFoundException::new);

// finding all living persons
List<Person> livingPersons = Person.list(
 "status", Status.Alive);

// counting all persons
long countAll = Person.count();

// counting all living persons
long countAlive = Person.count(
 "status", Status.Alive);

Panache: Active Record example
// delete all living persons
Person.delete(
 "status", Status.Alive);

// delete all persons
Person.deleteAll();

// delete by id
boolean deleted = Person
 .deleteById(personId);

// set the name of all living persons to
'Mortal'
Person.update(
 "name = 'Mortal' where status = ?1"
 , Status.Alive);

23.04.2024 Programming in Java 2 178

Panache: Active Record example II
//All list methods have equivalent stream
versions.
try (Stream<Person> persons =
 Person.streamAll()) {
 List<String> namesButEmmanuels =
 persons.map(p -> p.getName()
 .toLowerCase())
 .filter(n -> !"emmanuel".equals(n))
 .toList();
}

@Entity
public class Person extends PanacheEntity {
 private String name;
 private LocalDate birth;
 private Status status;

 public static Person findByName(String name) {
 return find("name", name).firstResult();
 }

 public static List<Person> findAlive() {
 return list("status", Status.Alive);
 }

 public static void deleteStefs() {
 delete("name", "Stef");
 }

 public enum Status {
 Alive, Deceased
 }

23.04.2024 Programming in Java 2 179

Panache: Repository pattern
@ApplicationScoped
public class PersonRepository implements
 PanacheRepository<Person> {

// put your custom logic here as instance
methods

 public Person findByName(String name) {
 return find("name"
 , name).firstResult();
 }

 public List<Person> findAlive() {
 return list("status", Status.Alive);
 }

 public void deleteStefs() {
 delete("name", "Stef");
 }
}

@Inject
private PersonRepository
 personRepository;

@GET
public long count() {
 return personRepository.count();
}

23.04.2024 Programming in Java 2 180

Quarkus: Getting Started
mvn io.quarkus:quarkus-maven-
plugin:1.13.0.Final:create
 -DprojectGroupId=vsb.java2.koz01
 -DprojectArtifactId=
 rest-getting-started
 -DclassName=
 "vsb.java2.rest.GreetingResource"
 -Dpath="/hello"

https://code.quarkus.io/
Add extension:
● Hibernate ORM with Panache

[quarkus-hibernate-orm-
panache]

● RESTEasy Classic [quarkus-
resteasy]

● RESTEasy Classic JSON-B
[quarkus-resteasy-jsonb]

● JDBC Driver - H2 [quarkus-jdbc-
h2]

● YAML Configuration [quarkus-
config-yaml]

@Path("/hello")
public class GreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "Hello RESTEasy";
 }
}

https://code.quarkus.io/

23.04.2024 Programming in Java 2 181

Quarkus: Package and run application
● ./mvnw package

– rest-getting-started-1.0.0-SNAPSHOT.jar
– quarkus-run.jar + quarkus-app/lib/

● java -jar target/quarkus-app/quarkus-run.jar
● ./mvnw quarkus:dev
● ./mvnw compile quarkus:dev
● Using main method

23.04.2024 Programming in Java 2 182

Quarkus: run application + config
@QuarkusMain
public class AppMain {
 public static void main(
 String[] args) {
 Quarkus.run(args);
 }
}

greeting:
 message: "hello"
quarkus:
 test:
 continuous-testing: disabled
 console:
 enabled: false
 datasource:
 username: app
 password: app
 jdbc:
 url:
jdbc:h2:file:./db/java2
 hibernate-orm:
 database:
 generation: create

23.04.2024 Programming in Java 2 183

Quarkus: Native application
● With GrallVM installed

– ./mvnw package -Pnative.
● Linux executable with docker installed

– /mvnw package -Pnative -Dquarkus.native.container-
build=true

● Creating docker container
– ./mvnw package -Pnative -Dquarkus.native.container-

build=true -Dquarkus.container-image.build=true
●

23.04.2024 Programming in Java 2 184

REST client in Java: Libraries and Frameworks
● Apache CXF
● Jersey
● Spring RestTemplate
● Commons HTTP Client
● Apache HTTP Components (4.2) Fluent adapter
● OkHttp
● Ning Async-http-client
● Feign
● Retrofit
● Volley
● google-http
● Unirest
● Resteasy JakartaEE
● jcabi-http
● restlet
● rest-assured

23.04.2024 Programming in Java 2 185

REST client in Java - OpenAPI - Swagger
● Generate OpenAPI descriptino YAML

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>Quarkus-smallrye-openapi</artifactId>
</dependency>

● http://localhost:8080/q/openapi

http://localhost:8080/q/openapi

23.04.2024 Programming in Java 2 186

REST client in Java - OpenAPI - Swagger
● Generate client – pom.xml
● No modules – delete module-

info.java
● Depencencies:

<!-- Swagger dependencies BEGIN *********************************-->
<dependency>
<groupId>io.swagger.codegen.v3</groupId>
<artifactId>swagger-codegen-maven-plugin</artifactId>
<version>3.0.52</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>io.gsonfire</groupId>
<artifactId>gson-fire</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>com.squareup.okhttp3</groupId>
<artifactId>okhttp</artifactId>
<version>4.12.0</version>
</dependency>
<dependency>
<groupId>com.squareup.okhttp3</groupId>
<artifactId>logging-interceptor</artifactId>
<version>4.12.0</version>
</dependency>
<!-- Swagger dependencies END** *********************************-->

● Pom.xml – build – blugins
<plugin>
 <groupId>org.openapitools</groupId>
 <artifactId>
 Openapi-generator-maven-plugin
 </artifactId>
 <!-- RELEASE_VERSION -->
 <version>7.2.0</version>
 <!-- /RELEASE_VERSION -->
 <executions>
 <execution>
 <goals>
 <goal>generate</goal>
 </goals>
 <configuration>
 <inputSpec>
 http://localhost:8080/q/openapi
 </inputSpec>
 <generatorName>java</generatorName>
 </configuration>
 </execution>
 </executions>
</plugin>

23.04.2024 Programming in Java 2 187

Apache CXF
● JAX-RS 2.0 Client API
● Proxy-based API
● CXF WebClient API

<dependency>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-rs-client</artifactId>
<version>3.0.15</version>
</dependency>

23.04.2024 Programming in Java 2 188

Apache CFX
@Path("/bookstore")
public interface BookStore {
 @GET
 Books getAllBooks();

 @Path("{id}")
 BookResource getBookSubresource(
 @PathParam("id") long id)
 throws NoBookFoundException;
}

public interface BookResource {
 @GET
 Book getBook();
}

BookStore store = JAXRSClientFactory.create("http://bookstore.com", BookStore.class);

// (1) remote GET call to http://bookstore.com/bookstore
Books books = store.getAllBooks();

// (2) no remote call
BookResource subresource = store.getBookSubresource(1);

// {3} remote GET call to http://bookstore.com/bookstore/1
Book b = subresource.getBook();

23.04.2024 Programming in Java 2 189

Spring.io
● The Spring Framework provides a comprehensive

programming and configuration model for modern Java-
based enterprise applications - on any kind of
deployment platform.

● Container for CDI
● Framework for WEB application – not only
● Many extensions

23.04.2024 Programming in Java 2 190

Spring.io - starting
● https://start.spring.io/ - create maven project for you

– Spring WEB
– Spring Data JPA
– H2 Database

https://start.spring.io/

23.04.2024 VEA - Vývoj Enterprise Aplikací 191

Spring - @Component

23.04.2024 Programming in Java 2 192

Spring.io – running app
@SpringBootApplication
public class Java2Lect07Application {

 public static void main(String[] args) {
 SpringApplication.run(Java2Lect07Application.class, args);
 }

}

23.04.2024 Programming in Java 2 193

Spring.io - Rest Controller
@RestController
@RequestMapping(path = "api")
public class RestApiController {
 @GetMapping("/")
 public String hello() {
 return "Hi!";
 }
 @GetMapping({ "/persons", "/persons/" })
 public List<Person> getAllPersosn() {
 return Arrays.asList(new Person("David", 10), new Person("Jan", -98));
 }
 @PostMapping("/persons")
 public Person savePersosn(@RequestBody Person person) {
 System.out.println(person);
 return person;
 }
}

23.04.2024 Programming in Java 2 194

Spring.io - JPA
public interface PersonRepository extends JpaRepository<Person,
Long>, CustomPersonRepository{
}

public class RestApiController {

 @Autowired
 PersonRepository personRepository;

 @GetMapping({ "/persons", "/persons/" })
 public List<Person> getAllPersosn() {
 return personRepository.findAll();

23.04.2024 Programming in Java 2 195

CDI
● Framework/container need bean
● Found class with proper type (same, descendant,

implementation)
● Create instance – constructor with no parameters
● JVM run class constructor
● Framework/container inspect bean and inject

autowired/injected properties
● Framework/container run method anotated with

@PostConstruct
● Framework/container use bean

23.04.2024 Programming in Java 2 196

CDI
● Framework/container need bean
● Found class with proper type (same, descendant,

implementation)
● Create instance – constructor with parameters - autowiring
● JVM run constructor
● Framework/container inspect bean and inject

autowired/injected properties
● Framework/container run method anotated with

@PostConstruct
● Framework/container use bean

23.04.2024 Programming in Java 2 197

CDI bean - example
@Service
public class PersonBL {

 @Autowired
 protected PersonRepository
 personRepository;

 public Person save(
 Person entity) {
 return personRepository
 .save2(entity);
 }

@Service
public class PersonBL2 {

 protected PersonRepository
 personRepository;

 public PersonBL2(
 PersonRepository
 personRepository) {
 this.personRepository =
 personRepository;
 }

 public Person save(
 Person entity) {
 return personRepository
 .save2(entity);
 }

23.04.2024 Programming in Java 2 198

CDI magic
● Framework/container automatically create transactions, take

care of bean life-cycle, take care about security
● How?
● CDI bean are injected into framework.
● You can inject CDI been to your classes (CDI bean).
● You probably do not get the object of class you want (inject).

– You get object of descendant class which is generated
automatically.

– All method are overridden and do “The magic“ you want
(annotated) – transactions, security, lifecycle

23.04.2024 Programming in Java 2 199

6th Lecture
● Internationalization
● BigInteger, BigDecimal
● Concurrency

– Lock objects
– Executors
– Concurrent collections
– Atomic variables
– ThreadLocalRandom
– CompletableFuture

23.04.2024 Programming in Java 2 200

Internationalization
● Support for different character sets and for universal

(UTF-8, UTF-16)
● Support for specific settings: format (number, date, ….),

currencies, texts and other resources (multimedia, data)
● Locale is a class that identifies a combination of

language and region:
– Locale(String language)
– Locale(String language, String country)
– Locale czechLocale = new Locale(“cs”,”CZ”)

23.04.2024 Programming in Java 2 201

String localization
ResourceBundle bundle = ResourceBundle.getBundle("MessageBundle", locale);
System.out.println("" + bundle.getString("greetings"));

● Files in resources directory:
– MessageBundle.properties

greetings = Hello

– MessageBundle_de.properties
greetings = Hallo

– MessageBundle_fr.properties
greetings = Bonjour

– MessageBundle_it.properties
greetings = Ciao

● For German, French and Italian is used given text and default for other
(Hello).

23.04.2024 Programming in Java 2 202

Chain of Responsibility Design Pattern
● It avoids coupling senders of a request to its receiver by

giving more than one object a chance to handle the
request. Chain the receiving objects and pass the
request along the chain until an object handles it.

23.04.2024 Programming in Java 2 203

Chain of Responsibility Example

23.04.2024 Programming in Java 2 204

Chain of Responsibility Design Pattern

23.04.2024 Programming in Java 2 205

Chain of Responsibility – resource bundles
● ExampleResource
● ExampleResource_en
● ExampleResource_en_US
● ExampleResource_en_US_UNIX

Locale locale = Locale.of("en", "en_US");
ResourceBundle exampleBundle = ResourceBundle.getBundle(
 "package.ExampleResource", locale);

23.04.2024 Programming in Java 2 206

Formatting (with predefined format)
● Numbers

NumberFormat nf = NumberFormat.getNumberInstance(Locale.FRANCE);
String valueStr = nf.format(Math.PI);
System.out.println(valueStr);
//------------------------
//Output is: 3,142

● Currency
Locale locale_enGB = locale.UK;
Currency currency = Currency.getInstance(locale_enGB);
NumberFormat currencyFormat = NumberFormat.getCurrencyInstance(locale_enGB);
System.out.println(currency.getDisplayName() + ": " + currencyFormat.format(100.0));
//--
//Output is: British Pound: £100.00

● Datetime
DateTimeFormatter dateTimeFormat =
DateTimeFormatter.ofLocalizedDateTime(FormatStyle.FULL).withLocale(Locale.of("cs", "CZ"));
System.out.println(dateTimeFormat.format(ZonedDateTime.now()));
//---
//Output is:čtvrtek 21. listopadu 2019 15:33:34 Středoevropský standardní čas

23.04.2024 Programming in Java 2 207

Big values
● Double does not have unlimited precision

double val = 0.1;
for (int i = 0; i < 10; i++) {
 val += 0.1;
}
System.out.printf("val = " + val);
//--- output ---------------------
//val = 1.0999999999999999

23.04.2024 Programming in Java 2 208

BigDecimal and BigInteger
● https://www.baeldung.com/java-bigdecimal-biginteger

23.04.2024 Programming in Java 2 209

BigDecimal
● BigDecimal represents an immutable arbitrary-precision

signed decimal number.
– Unscaled value
– Scale (32 bit)

● High-precision arithmetic
● Variety constructors(String, character array, int, long,

and BigInteger) and factory method valueOf (double,
long)

23.04.2024 Programming in Java 2 210

BigDecimal operations
● Arithmetic operation - add, subtract, multiply, divide, …
● Relational operation – compareTo, equals (compares

also scale)
● Functions – abs, pow, sqrt,..
● Various attributes – precision, scale, sign
● Rounding – 8 modes

23.04.2024 Programming in Java 2 211

BigInteger
● immutable arbitrary-precision integers
● used when integers involved are larger than the limit of

long type
● Constructor (String, byte array) and valueOf (long)

23.04.2024 Programming in Java 2 212

BigInteger operations
● Similar to int and long but cannot overflow
● Arithmetic, bitwise, - as methods
● Bit manipulation methods
● GCD, modular arithmetic, prime generation, primality

testing,

23.04.2024 Programming in Java 2 213

Money in Java
“A large proportion of the computers in this world
manipulate money, so it's always puzzled me that money
isn't actually a first class data type in any mainstream
programming language. “
Martin Fowler

23.04.2024 Programming in Java 2 214

Money in Java - standards
● Joda money
● JSR 354

– To provide an API for handling and calculating monetary
amounts

– To define classes representing currencies and monetary
amounts, as well as monetary rounding

– To deal with currency exchange rates
– To deal with formatting and parsing of currencies and

monetary amounts

23.04.2024 Programming in Java 2 215

Monetary

Money

 - number: BigDecimal [1]

FastMoney

 - number: long [1]
«Interface»
CurrencyUnit

«Interface»
MonetaryAmount

 + math ops()

«Interface»
CurrencySupplier

 + getCurrency(): CurrencyUnit

«Interface»
MonetaryAmountFormat

 + format(in amount: MonetaryAmount): String

«Interface»
CurrencyConversion

«Interface»
MonetaryOperator

 + apply(in amount: MonetaryAmount): MonetaryAmount

«Interface»
MonetaryRounding

MonetaryConversions

«use»

«use»

«use»

«use»

«use»

«use»

«use»

JSR 354 - model

23.04.2024 Programming in Java 2 216

JSR 354 - CurrencyUnit
 @Test
 void givenCurrencyCode_whenString_thanExist() {
 CurrencyUnit usd = Monetary.getCurrency("USD");

 assertNotNull(usd);
 assertEquals(usd.getCurrencyCode(), "USD");
 assertEquals(usd.getNumericCode(), 840);
 assertEquals(usd.getDefaultFractionDigits(), 2);
 }

 @Test
 void givenCurrencyCode_whenNoExist_thanThrowsError() {
 UnknownCurrencyException thrown = Assertions.assertThrows(
 UnknownCurrencyException.class, () -> {
 Monetary.getCurrency("AAA");
 });
 assertEquals("Unknown currency code: AAA", thrown.getMessage());
 }

23.04.2024 Programming in Java 2 217

JSR 354 - MonetaryAmount
 @Test
 void givenAmounts_whenStringified_thanEquals() {
 CurrencyUnit usd = Monetary.getCurrency("USD");
 MonetaryAmount fstAmtUSD = Monetary
 .getDefaultAmountFactory().setCurrency(usd)
 .setNumber(200).create();
 Money moneyof = Money.of(12, usd);
 FastMoney fastmoneyof = FastMoney.of(2, usd);

 assertEquals("USD", usd.toString());
 assertEquals("USD 200", fstAmtUSD.toString());
 assertEquals("USD 12", moneyof.toString());
 assertEquals("USD 2", fastmoneyof.toString());
 }

23.04.2024 Programming in Java 2 218

JSR 354 – Monetary Arithmetic
 @Test
 void givenCurrencies_whenCompared_thanNotequal() {
 MonetaryAmount oneDolar = Monetary.getDefaultAmountFactory()
 .setCurrency("USD").setNumber(1).create();
 Money oneEuro = Money.of(1, "EUR");
 assertFalse(oneEuro.equals(FastMoney.of(1, "EUR")));
 assertTrue(oneDolar.equals(Money.of(1, "USD")));
 }
 @Test
 void givenAmounts_whenSummed_thanCorrect() {
 MonetaryAmount[] monetaryAmounts = new MonetaryAmount[] {
 Money.of(100, "CHF"), Money.of(10.20, "CHF")
 , Money.of(1.15, "CHF") };
 Money sumAmtCHF = Money.of(0, "CHF");
 for (MonetaryAmount monetaryAmount : monetaryAmounts) {
 sumAmtCHF = sumAmtCHF.add(monetaryAmount);
 }
 assertEquals("CHF 111.35", sumAmtCHF.toString());
 }

23.04.2024 Programming in Java 2 219

JSR 354 – Monetary Rounding
 @Test
 void givenAmount_whenRounded_thanEquals() {
 MonetaryAmount fstAmtEUR = Monetary
 .getDefaultAmountFactory().setCurrency("EUR")
 .setNumber(1.30473908).create();
 MonetaryAmount roundEUR = fstAmtEUR
 .with(Monetary.getDefaultRounding());

 assertEquals("EUR 1.30473908", fstAmtEUR.toString());
 assertEquals("EUR 1.3", roundEUR.toString());
 }

23.04.2024 Programming in Java 2 220

JSR 354 – Currency Conversion
 @Test
 void givenAmount_whenConversion_thenNotNull() {
 MonetaryAmount oneDollar = Monetary
 .getDefaultAmountFactory().setCurrency("USD")
 .setNumber(1).create();

 CurrencyConversion conversionEUR = MonetaryConversions
 .getConversion("EUR");
 MonetaryAmount convertedAmountUSDtoEUR = oneDollar
 .with(conversionEUR);

 assertEquals("USD 1", oneDollar.toString());
 assertNotNull(convertedAmountUSDtoEUR);
 }

23.04.2024 Programming in Java 2 221

JSR 354 - Formatting
 @Test
 void givenLocale_whenFormatted_thanEquals() {
 MonetaryAmount oneDollar = Monetary
 .getDefaultAmountFactory().setCurrency("USD")
 .setNumber(1).create();

 MonetaryAmountFormat formatUSD = MonetaryFormats
 .getAmountFormat(Locale.US);
 String usFormatted = formatUSD.format(oneDollar);

 assertEquals("USD 1", oneDollar.toString());
 assertNotNull(formatUSD);
 assertEquals("USD1.00", usFormatted);
 }

23.04.2024 Programming in Java 2 222

JSR 354 – Formatting II
 @Test
 void givenAmount_whenCustomFormat_thanEquals() {
 MonetaryAmount oneDollar = Monetary
 .getDefaultAmountFactory().setCurrency("USD")
 .setNumber(1).create();

 MonetaryAmountFormat customFormat = MonetaryFormats
 .getAmountFormat(AmountFormatQueryBuilder
 .of(Locale.US).set(CurrencyStyle.NAME)
 .set("pattern", "00000.00 ¤").build());
 String customFormatted = customFormat.format(oneDollar);

 assertNotNull(customFormat);
 assertEquals("USD 1", oneDollar.toString());
 assertEquals("00001.00 US Dollar", customFormatted);
 }

23.04.2024 Programming in Java 2 223

Concurrency - references
● https://docs.oracle.com/javase/tutorial/essential/

concurrency/forkjoin.html

23.04.2024 Programming in Java 2 224

Lock object
● Similar to mechanism of synchronized sections
● Can back out of and attempt to acquire lock

– tryLock()

23.04.2024 Programming in Java 2 225

Executors
● Executor interfaces
● Thread Pool
● Fork/Join

23.04.2024 Programming in Java 2 226

Executors – Executor Interfaces
● Executor - a simple interface that supports launching

new tasks.
● ExecutorService - a subinterface of Executor, which adds

features that help manage the lifecycle, both of the
individual tasks and of the executor itself.

●

● ScheduledExecutorService - a subinterface of
ExecutorService, supports future and/or periodic
execution of tasks.

●

23.04.2024 Programming in Java 2 227

Executor
● Behavior depends on implementation.

(new Thread(r)).start();

// -------------------------

e.execute(r);

23.04.2024 Programming in Java 2 228

ExecutorService
● extends Executor:

– shutdown()
– shutdownNow()
– isShutdown()
– isTerminated()
– awaitTermination(long, TimeUnit)
– submit(Callable<T>)
– submit(Runnable, T)
– submit(Runnable)
– invokeAll(Collection<? extends Callable<T>>)
– invokeAll(Collection<? extends Callable<T>>, long, TimeUnit)
– invokeAny(Collection<? extends Callable<T>>)
– invokeAny(Collection<? extends Callable<T>>, long, TimeUnit)

23.04.2024 Programming in Java 2 229

ScheduledExecutorService
● extension of ExecutorService

– schedule
– scheduleAtFixedRate
– scheduleWithFixedDelay

23.04.2024 Programming in Java 2 230

Thread Pools
● Consist of worker threads – can be used to execute multiple tasks
● Minimizes the overhead due thread creation
● Factory methods in java.util.concurrent.Executors:

– newFixedThreadPool
– newCachedThreadPool
– newSingleThreadExecutor
– ScheduledExecutorService – different versions
– newVirtualThreadPerTaskExecutor

● java.util.concurrent.ThreadPoolExecutor and
java.util.concurrent.ScheduledThreadPoolExecutor

23.04.2024 Programming in Java 2 231

Fork/Join
● Implementation of ExecutorService – designed for work

that could be broken into smaller pieces
● The goal is to use all the available processing power
● Distinct from a thread pool implementing work-stealing

algorithm
● The main class is ForkJoinPool

23.04.2024 Programming in Java 2 232

Fork/join basic scheme usage
● if (my portion of the work is small enough)

– do the work directly
● else

– split my work into two pieces
● invoke the two pieces and wait for the results

23.04.2024 Programming in Java 2 233

Fork/join – example
public class ForkBlur extends
RecursiveAction {
 private int[] mSource;
 private int mStart;
 private int mLength;
 private int[] mDestination;
 // Processing window size;
 // should be odd.
 private int mBlurWidth = 15;

 public ForkBlur(int[] src,
 int start, int length
 , int[] dst) {
 mSource = src;
 mStart = start;
 mLength = length;
 mDestination = dst;
 }
 protected void computeDirectly() {
//…
 }

 protected static int
 sThreshold = 100000;

 protected void compute() {
 if (mLength < sThreshold) {
 computeDirectly();
 return;
 }

 int split = mLength / 2;

 invokeAll(new ForkBlur(
 mSource, mStart, split
 , mDestination),
 new ForkBlur(mSource, mStart
 + split, mLength – split
 , mDestination));
 }
}

23.04.2024 Programming in Java 2 234

Fork/join – run example
1) Create a task that represents all of the work to be

done.
// source image pixels are in src
// destination image pixels are in dst
ForkBlur fb = new ForkBlur(src, 0, src.length, dst);

2) Create the ForkJoinPool that will run the task
ForkJoinPool pool = new ForkJoinPool();

3) Run the task.
pool.invoke(fb);

23.04.2024 Programming in Java 2 235

Concurrent Collections
● BlockingQueue – blocks or times out when full/empty

during addition/retrieving
● ConcurentMap – interface that defines useful atomic

operation
● ConcurentNavigableMap – extends ConcurrentMap

23.04.2024 Programming in Java 2 236

Atomic Variables
● Provides thread-safe operation for variable holding and

modification
● AtomicInteger, AtomicLong, …
● volatile – key word for Memory Visibility and Order

beetween thread
– To ensure that updates to variables propagate predictably to

other threads, we should apply the volatile modifier to those
variables.

23.04.2024 Programming in Java 2 237

ThreadLocalRandom
● For concurrent access its using provides better

performance

int r = ThreadLocalRandom.current().nextInt(4, 77);

23.04.2024 Programming in Java 2 238

CompletableFuture
● https://www.callicoder.com/java-8-completablefuture-

tutorial/

23.04.2024 Programming in Java 2 239

CompletableFuture - description
● extends Future – methods done, isDone – with:

– can be manually completed,
– manually perform further action on a CompletableFuture’s

result without blocking,
– multiple CompletableFutures can be chained together,
– multiple CompletableFutures can be combined together,
– exception handling.

23.04.2024 Programming in Java 2 240

Creating CompletableFuture with constructor
CompletableFuture<String> completableFuture =
 new CompletableFuture<String>();

String result = completableFuture.get();

completableFuture.complete("Future's Result");

23.04.2024 Programming in Java 2 241

Factory methods in CompletableFuture - runAsync
//Run a task specified by a Runnable Object asynchronously.
CompletableFuture<Void> future = CompletableFuture.runAsync(
 new Runnable() {
 @Override
 public void run() {
 // Simulate a long-running Job
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 System.out.println(
 "I'll run in a separate thread than the main thread.");
 }
});

//Block and wait for the future to complete
future.get();

23.04.2024 Programming in Java 2 242

Factory methods in CompletableFuture -
supplyAsync
// Run a task specified by a Supplier object asynchronously
CompletableFuture<String> future = CompletableFuture.supplyAsync(
 new Supplier<String>() {
 @Override
 public String get() {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Result of the asynchronous computation";
 }
});

// Block and get the result of the Future
String result = future.get();
System.out.println(result);

23.04.2024 Programming in Java 2 243

CompletableFuture – use Executor
//Variations of runAsync() and supplyAsync() methods

public static CompletableFuture<Void>
runAsync(Runnable runnable)

public static CompletableFuture<Void>
runAsync(Runnable runnable, Executor executor)

public static <U> CompletableFuture<U>
supplyAsync(Supplier<U> supplier)

public static <U> CompletableFuture<U>
supplyAsync(Supplier<U> supplier, Executor executor)

23.04.2024 Programming in Java 2 244

Transforming and acting on a CompletableFuture
● thenApply, thenAccept, thenRun

//Create a CompletableFuture
CompletableFuture<String> whatsYourNameFuture = CompletableFuture
 .supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "David";
});
//Attach a callback to the Future using thenApply()
CompletableFuture<String> greetingFuture =
 whatsYourNameFuture.thenApply(name -> {
 return "Hello " + name;
});

//Block and get the result of the future.
System.out.println(greetingFuture.get()); // Hello David

23.04.2024 Programming in Java 2 245

Combine two dependent futures using
thenCompose()
public CompletableFuture<User> getUserDetail(
 String userId) {
 return CompletableFuture.supplyAsync(() -> {
 return UserService.getUserDetails(userId);
 });
}
public CompletableFuture<Double> getCreditRating(
 User user) {
 return CompletableFuture.supplyAsync(() -> {
 return CreditRatingService.getCreditRating(user);
 });
}

CompletableFuture<Double> result =
 getUserDetail(userId).thenCompose(
 user -> getCreditRating(user));

23.04.2024 Programming in Java 2 246

Combine two independent futures using
thenCombine()
System.out.println("Retrieving weight.");
CompletableFuture<Double> weightInKgFuture =
CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return 65.0;
});

System.out.println("Retrieving height.");
CompletableFuture<Double> heightInCmFuture =
CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return 177.8;
});

System.out.println("Calculating BMI.");
CompletableFuture<Double> combinedFuture =
weightInKgFuture.thenCombine(heightInCmFuture,
 (weightInKg, heightInCm) -> {
 Double heightInMeter = heightInCm / 100;
 return weightInKg / (heightInMeter *
heightInMeter);
 });

System.out.println("Your BMI is - " +
combinedFuture.get());

23.04.2024 Programming in Java 2 247

Combining multiple CompletableFutures together
public static CompletableFuture<Void>
allOf(CompletableFuture<?>... cfs)

public static CompletableFuture<Object>
anyOf(CompletableFuture<?>... cfs)

23.04.2024 Programming in Java 2 248

 Handle exceptions using exceptionally() callback
Integer age = -1;

CompletableFuture<String> maturityFuture =
 CompletableFuture.supplyAsync(() -> {
 if (age < 0) {
 throw new IllegalArgumentException("Age can not be negative");
 }
 if (age > 18) {
 return "Adult";
 } else {
 return "Child";
 }
}).exceptionally(ex -> {
 System.out.println("Oops! We have an exception - " + ex.getMessage());
 return "Unknown!";
});

System.out.println("Maturity : " + maturityFuture.get());

23.04.2024 Programming in Java 2 249

Handle exceptions using the generic handle()
method
Integer age = -1;
CompletableFuture<String> maturityFuture =
 CompletableFuture.supplyAsync(() -> {
 if (age < 0) {
 throw new IllegalArgumentException("Age can not be negative");
 }
 if (age > 18) {
 return "Adult";
 } else {
 return "Child";
 }
}).handle((res, ex) -> {
 if (ex != null) {
 System.out.println("Oops! We have an exception - " + ex.getMessage());
 return "Unknown!";
 }
 return res;
});
System.out.println("Maturity : " + maturityFuture.get());

23.04.2024 Programming in Java 2 250

7th lecture
● Java NIO
● Serialization

23.04.2024 Programming in Java 2 251

23.04.2024 Programming in Java 2 252

23.04.2024 Programming in Java 2 253

23.04.2024 Programming in Java 2 254

23.04.2024 Programming in Java 2 255

23.04.2024 Programming in Java 2 256

	Slide 1
	Slide 2
	Architecture?
	Enterprise application characteristic_clipboard0
	Enterprise application characteristic_clipboard1
	Enterprise application characteristic
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Charakteristika enterprise aplikací
	Kinds of Enterprise Application _clipboard2
	Thinking About Performance
	Layering
	Layer vs. Tier
	Example of „Good“ Architecture
	Java EE Platform_clipboard6
	Java Servlet
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Patterns_clipboard4
	Patterns_clipboard5
	Intercepting Filter
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	JavaBeans - základy
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 150
	Slide 151
	Representational State Transfer (REST)_clipboard65
	Representational State Transfer (REST)
	Slide 154
	RESTfull – API rules_clipboard66
	RESTfull – API rules_clipboard67
	RESTfull – API rules_clipboard68
	RESTfull – API rules_clipboard69
	RESTfull – API rules_clipboard70
	RESTfull – API rules – HTTP methods_clipboard71
	RESTfull – API rules – HTTP methods_clipboard72
	RESTfull – API rules – HTTP methods_clipboard73
	RESTfull – API rules – HTTP methods
	RESTfull – API rules
	Slide 165
	Slide 166
	Slide 167
	RESTfull – API CoD
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Spring - @component
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256

