
www.vsb.cz

2

09/20/23 SK 2

Kvalita Softwaru – část Testování

David Ježek
VŠB – Technická Universita Ostrava
Fakulta elektrotechniky a informatiky

Katedra informatiky

09/20/23 SK 3

Historie
• Můra

zachycená v
pomocném
relé počítače
Harvard Mark
II na
Harvardské
univerzitě, 9
září 1945

The First "Computer Bug" Moth found trapped between
points at Relay # 70, Panel F, of the Mark II Aiken Relay
Calculator while it was being tested at Harvard University, 9
September 1945. The operators affixed the moth to the
computer log, with the entry: "First actual case of bug being
found". They put out the word that they had "debugged" the
machine, thus introducing the term "debugging a computer
program". In 1988, the log, with the moth still taped by the
entry, was in the Naval Surface Warfare Center Computer
Museum at Dahlgren, Virginia.

While Grace Hopper was working on the Harvard Mark II Computer at Harvard University, her
associates discovered a moth stuck in a relay and thereby impeding operation, whereupon she
remarked that they were "debugging" the system. Though the term computer bug cannot be
definitively attributed to Admiral Hopper, she did bring the term into popularity. The remains of the
moth can be found in the group's log book at the Smithsonian Institution's
National Museum of American History in Washington, D.C..[1]

3

http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Harvard_Mark_II
http://en.wikipedia.org/wiki/Harvard_University
http://en.wikipedia.org/wiki/Moth
http://en.wikipedia.org/wiki/Relay
http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Smithsonian_Institution
http://en.wikipedia.org/wiki/National_Museum_of_American_History
http://en.wikipedia.org/wiki/Washington,_D.C.

4

09/20/23 SK 4

Co je to Testování software
A) Testování je demonstrace, že v programu NEJSOU žádné vady?

B) Testování demonstruje, že program provádí požadovanou funkcionalitu bezchybně?

C) Testování je proces, který demonstruje, že program dělá to co má dělat?

D) Testování je proces spouštění programu se záměrem nalézt vady?

Testování vs. Zajištění jakosti (Quality Assurance)

● The process consisting of all lifecycle activities, both static and dynamic, concerned with
planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for
purpose and to detect defects. (ISTQB)

● Activities focused on providing confidence that quality requirements will be fulfilled. (ISTQB)

• Důkaz, že v programu NEJSOU žádé vady:
Pokud je našim cílem ukázat, že v programu nejsou žádné vady, budeme podvědomě ovlivnění

tímto cílem, což znamená, že budeme mít sklon použít data, u kterých je malá
pravděpodobnost, že způsobí selhání. Na druhou stranu pokud našim cílem bude ukázat,
že program má vady, budeme volit data, která mají větší pravděpodobnost objevení vady.
Tento novější přístup je větším přínosem pro program než ten bývalý.

• Testování ukazuje, že program provádí požadovanou funkcionalitu bezchybně:

• Testování je proces, který demonstruje, že programdělá to co má dělat:
Program který dělá to co má pořád obsahuje vady. Což znamená, že pokud je v programu

zřejmá vada program nedělá to co má, ale vady jsou v programu i když program dělá to co
má.

Na testování programů je lépe nahlížet jako na destruktivní proces snažící se najít vady (jejichž
přítomnost se předpokládá) v programu. Úspěšný testovací případ je ten, který posune
vývoj tím způsobem, že způsobí selhání programu. Jistě, nakonec chceme použít
testování k zajištění jistého stupně přesvědčení, že program dělá to co dělat má a nedělá to
co dělat nemá, ale výše zmíněný přístup je nejlepší k dosažení nejlepšího výsledku v počtu
nalezených vad.

5

09/20/23 SK 5

Co je to Testování software
A) Testování je demonstrace, že v programu NEJSOU žádné vady?

B) Testování demonstruje, že program provádí požadovanou funkcionalitu bezchybně?

C) Testování je proces, který demonstruje, že program dělá to co má dělat?

D) Testování je proces spouštění programu se záměrem nalézt vady?

Testování vs. Zajištění jakosti (Quality Assurance)

● The process consisting of all lifecycle activities, both static and dynamic, concerned with
planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for
purpose and to detect defects. (ISTQB)

● Activities focused on providing confidence that quality requirements will be fulfilled. (ISTQB)

Testování je proces spouštění programu
se záměrem nalézt vadu.

Glenford J. Myers

• Důkaz, že v programu NEJSOU žádé vady:
Pokud je našim cílem ukázat, že v programu nejsou žádné vady, budeme podvědomě ovlivnění

tímto cílem, což znamená, že budeme mít sklon použít data, u kterých je malá
pravděpodobnost, že způsobí selhání. Na druhou stranu pokud našim cílem bude ukázat,
že program má vady, budeme volit data, která mají větší pravděpodobnost objevení vady.
Tento novější přístup je větším přínosem pro program než ten bývalý.

• Testování ukazuje, že program provádí požadovanou funkcionalitu bezchybně:

• Testování je proces, který demonstruje, že programdělá to co má dělat:
Program který dělá to co má pořád obsahuje vady. Což znamená, že pokud je v programu

zřejmá vada program nedělá to co má, ale vady jsou v programu i když program dělá to co
má.

Na testování programů je lépe nahlížet jako na destruktivní proces snažící se najít vady (jejichž
přítomnost se předpokládá) v programu. Úspěšný testovací případ je ten, který posune
vývoj tím způsobem, že způsobí selhání programu. Jistě, nakonec chceme použít
testování k zajištění jistého stupně přesvědčení, že program dělá to co dělat má a nedělá to
co dělat nemá, ale výše zmíněný přístup je nejlepší k dosažení nejlepšího výsledku v počtu
nalezených vad.

6

09/20/23 SK 6

Co lze testovat
● Od testování uživatelem zadaných požadavků na systém

až po monitorování systému v provozu.
● Od testování funkcionality systému k ověřování dalších

aspektů softwaru:
– Dokumenty (specifikace)
– Návrh (model)
– Kód
– Kód + platforma
– Produkce, akceptace
– Použití, podnikový proces

• From testing user requirements to monitoring the system in operation:
Testing is not done only once (e.g. with the first version of the product), but it is an continuous

activity throughout product’s entire lifecycle (from user requirements, through system design
and implementation, to monitoring the system in operation and its maintenance). Testing it
most effective in early phases of the development.

• From testing the functionality to checking all other aspects of software:
Testing is not focusing only to the system functionality but to all other attributes of the software:

• Documents (specifications)
• Design (model)
• Code
• Code+platform
• Production, acceptance
• Usage, business process

• Verification:
Its goal is to answer the question: “Have we done the system correctly?” Verification uses a

previous development step (i.e. functional specification prior to coding) as the reference. A
piece of code that fulfils its specification is verified.

• Validation:
Its goal is to check whether correct product has been built, i.e. whether it fulfils the customers

needs. Thus, any step in the development process can be validated against user
requirements.

The goal of testing may be verification or validation.

7

09/20/23 SK 7

Skutečnost v softwarovém testování
● Testování může ukázat přítomnost vad, ale nemůže

prokázat absenci vad. (Dijkstra)
● Všechny vady nemohou být nalezeny.
● Testování nevytváří kvalitní software ani neodstraňuje

vady.
● Vývoj bez vad znamená – mimo jiné – testovat od

samého začátku.
● Perfektní vývojový proces je nemožný, kromě teorie.
● Perfektní požadavky: nereálné

7

• Testing can show the presence of errors but cannot show the absence of errors:
There are still some errors never found in the software.
• All defects can not be found:
Even for simple programs/applications, the number of possible input combination or possible

paths through the program is so large that all cannot be checked.
• Testing does not create quality software or remove defects:
It is the responsibility of development.
• Building without faults means – among other – testing very early:
Populární “argument” proti testování je: “Mněly by jsme tvořit bezchybně od samého začátku a

ne hledat vady, když už je vše hotovo”. Jistě. Ale “bezchybně od samého začátku” znamená
mimo jiné, pořádně vše kontrolovat od samého začátku a po celý čas vývojového procesu.
Inspekce specifikace požadavků a dokumentů návrhu může do jisté míry nahradit
systémové testy a akceptační testy, ale neznamená to „vývoj bez testování“!

• Perfect development process is impossible, except in theory:
In practice, the way from concept to ready product cannot be guaranteed to be error-free

(inaccurate requirements specifications, cognitive errors, organizational errors). Therefore
the need to test the final product, regardless how perfect development is.

• Perfect requirements: cognitive impossibility:
Validation of requirements – are they what we really want? – is a kind of testing. But it is often

impossible to define all requirements correctly in advance. Testing of the first version of a
product is often a kind of additional requirements engineering: “is it what is really needed?

8

09/20/23 SK 8

Testovací terminologie
● “Neexistuje” všeobecně akceptovaná množina pojmů.
● ISEB vychází z Britského standardu BS 7925-1 a BS 7925-2

– http://www.testingstandards.co.uk/bs_7925-1.htm

– http://www.testingstandards.co.uk/bs_7925-2.htm

● ISO/IEC/IEEE 29119 Software Testing (1-5)
Nahrazuje:
– IEEE 829 Test Documentation

– IEEE 1008 Unit Testing

– BS 7925-1 Vocabulary of Terms in Software Testing

– BS 7925-2 Software Component Testing Standard

● International Software Testing Qualifications Board (ISTQB) - https://www.istqb.org/
● ISTQB Glossary https://www.istqb.org/downloads/glossary.html
● Mnohé standardy v softwarovém testování poskytují pouze částečnou terminologii.

• Not generally accepted set of terms:
Different experts, tools vendors, companies,

and countries use different terminologies
(sometimes very exotic). These problems
arise very obviously, e.g. after merge or
acquisition of more companies.

• Definition of: ISEB
(Information Systems Examinations Board,
U.K.,
www.bcs.org/bcs/products/qualifications/ise
b) A subsidiary of the British Computer
Society (BCS) that provides industry-
recognized professional training and
qualifications for IS competency, ability and
performance. ISEB works to develop ITIL
and ISO 9000-based products and
services. See ITIL, BCS and ISO 9000.

• ISEB follows British Standards BS 7925-1
and BS 7925-2:

BS are owned by British Standards Institution
(BSI). These two standards were developed
by British Computer Society (BCS), Specialist
Interest Group In Software Testing (SIGIST)
in 1998.

• Other standards in software testing provide
partial terminologies:

• QA standards ISO series 9000, 10000,
12000, 15000

• CMMI
• Industry specific standards
• Testing standards BS 7925-1, BS 7925-2,

IEEE 829, IEEE 1008, IEEE 1012

http://www.testingstandards.co.uk/bs_7925-1.htm
http://www.testingstandards.co.uk/bs_7925-2.htm
https://www.istqb.org/downloads/glossary.html
http://www.pcmag.com/encyclopedia_term/0,2542,t=ITIL&i=45502,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=BCS&i=38492,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=ISO+9000&i=45470,00.asp

9

09/20/23 SK 9

Proč terminologie?
● Špatná komunikace
● Příklad: komponenta – modul – unit – základní(basic)–

návrh – vývojové,... testování
● Neexistuje ”dobrá” a ”špatná” terminologie, pouze

nedefinovaná a definovaná.
● Obtížnost definování procesu.
● Obtížnost popisu stavu testu a testování.

• Poor communication:
If every test manager puts different meaning to

each term, he/she spends lot of time on
defining what is what.

• Example: component – module – unit – basic
– design – developer, ... testing:

Not only names differ but their precise meaning
as well, which makes mapping difficult. Still
worse if the same word means two
completely different things, like “component”
(either module, unit or “an independent
component for component-based
development”).

• There is no ”good” and ”bad” terminology,
only undefined and defined:

Some people readily argue about the “right”
names for things but almost any defined,
standardized and generally accepted
terminology is almost always better than a
“better” but not standardized terminology.

• Difficult to describe processes:
Without adopted and accepted test

terminology, process definition is difficult. The
sentence like “component integration testing
is followed by system testing” means nothing
unless “component integration testing” and
“system testing” are defined.

• Difficult to describe status:
“This product has passed Internal Acceptance

Test and Final Quality Checkpoint” – hard to
tell whether it is a good or bad product
without knowing what these terms mean.

10

09/20/23 SK 10

Testování v obchodních termínech

peníze

peníze

Vývoj

Testování

produkt

• In Development, “money” (investment) result in products, that can be sold any yield
revenue.

• In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

• Testing produces three kind of outputs:
• risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
• bug information: input to development to enable them to remove those bugs (and,

possibly, to the customer to let them avoid the bugs)
• process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

11

09/20/23 SK 11

Testování v obchodních termínech

peníze

peníze

Vývoj

Testování

produkt

Analýza rizik

Informace o vadách

Procesní informace

• In Development, “money” (investment) result in products, that can be sold any yield
revenue.

• In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

• Testing produces three kind of outputs:
• risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
• bug information: input to development to enable them to remove those bugs (and,

possibly, to the customer to let them avoid the bugs)
• process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

12

09/20/23 SK 12

Testování snižuje cenu

0.1x

1x

10x

100x

Specifikace
požadavků

Návrh Testování ÚdržbaImplementace

Cena nalezení a
opravy vady

Životní fáze produktu

The cost of discovering, localizing, correcting and removing a fault is often hundreds or
thousands of times higher in ready product than it is in the early states of development.

The cost of re-testing, regression testing, and updating or replacing the faulty software multiply
very quickly after release (especially in mass production).

Test is most effective in early phases:
Contrary to traditional approach, test need not wait until development is ready. Test – reviews,

inspections and other verification techniques for documentation and models - is actually the
most effective in very early stages of any development process.

13

09/20/23 SK 13

Testování a Kvalita
● Test měří a podporuje kvalitu.
● Testování je část zajištění jakosti (Quality Assurance)
● Mnoho měřítek jakosti/kvalit:

– Funkční kvalita (tradiční)
– Nefunkční kvalita (např. Výkon)
– Kvalitativní atributy (spravovatelnost, znovupoužitelnost,

testovatelnost, ...)
– Použitelnost pro všechny účastníky(prodejce, maloobchodník, operátor,

koncový uživatel, ...)
● Testovací techniky: nástroje pro měření kvality efektivně a

výkonně.
● Správa testů: Jak vše zorganizovat.

• Test measures and supports quality:
Test has two goals: to measure and visualize (the level of quality becomes known) quality and

to support achieving quality by identifying product and process faults.
• Testing is a part of Quality Assurance:
The goal is to achieve planned and known quality, not to test. If it could be achieved without

testing, test would disappear. The goal for testing is therefore to minimize the volume of
testing without compromising quality or to achieve as good (reliable) quality measurement
as possible with given resources and time, not to “test as much as possible”.

• Many qualities:
• Functional quality: the system does what the user required.
• Non-functional quality: these aspects (e.g. performance) are growing in importance.

Cannot be reliably engineered without extensive testing.
• Quality attributes: there are other attributes (e.g. maintainability, reusability, testability,

…) that must be check by testing too.
• Usability for all stakeholders: “Usability” is not only important but multidimensional. What

is comfortable for the operation may be uncomfortable for the end-user. Therefore
growing need for measuring and quality assessment in this area.

• Test techniques: tools and methods to measure quality efficiently and effectively:
Test theory contains knowledge how to test efficiently (so that desired levels of quality and test

reliability are achieved) and effectively (so that it is done as cheaply as possible).
• Test management: how to organize this:
Test management has much in common with general project and process management.

14

09/20/23 SK 14

Složitost
● Software – a jeho prostředí – je příliš složitý na

provedení úplných testů jeho chování.
● Software je obklopen.
● Software má lidské uživatele.
● Software je částí workflow systému organizace.

• Software is too complex to exhaustively test its behaviour:
Even for relatively simple programs/applications, the number of possible input combinations or

possible paths through the program is so large that all cannot be checked. Then testing is
necessary as a king of art of predicting under uncertainty, choosing the few tests we can
afford to run that give us best confidence in program’s future correct behavior.

• Software environment is too complex to test it exhaustively:
A simple piece of code can be run on different PC-machines, OS (and their versions), with

different printers, on different browsers. The number of combination easily becomes huge.
• Software can be embedded:
The testing products means testing SW, HW and “mechanics” around. Again, complexity. Again,

methods required to make the best of this mess.
• Software has often human users:
For most applications, the behavior (and needs) of the users cannot be fully predicted by the

engineering means only. Testing (acceptance, usability) helps to tackle this aspect.
• Software is part of the organization’s workflow:
Engineering considerations are not the only important considerations for many software

products. Any useful knowledge about product quality is a combination of engineering
quality and the product’s quality contribution during organizational or marketing usage.

15

09/20/23 SK 15

Úplné testování
● Úplné testování je nemožné.
● Dokonce i podle teorii, je úplné testování zbytečně

nákladné, protože nepřiřazuje testům priority.
● Smluvní požadavky na testování.
● Svědomitý postup je důležitý z právního pohledu.

• Exhaustive testing is impossible:
Even for modest-sized applications with few

inputs and outputs, the number of test cases
quickly becomes huge.

• Contractual requirements on testing:
The contract between the vendor and the

customer may contain clauses on the
required amount of testing, acceptable
reliability levels, or even on specific test
techniques or test coverage measures.

• Non-negligent practice important from the
legal point of view:

If you ever get sued by your customer, his or
her lawyers will sure try the trick of accusing
you of negligence because your testing was
not “exhaustive”. As defense, the
impossibility of exhaustive testing should be
raised, and you should be able to prove that
your testing was performed according to a
non-negligent practice.

16

09/20/23 SK 16

Jak moc testovat?
● Obchodní rozhodnutí založené na akceptovatelné míře rizika

– Kritérium splnění testu.

– Kritérium prioritizace testů.

– Rozhodovací strategie pro dodání

– Test manažer předkládá míru kvality produktu

● Testování není nikdy připraveno

● Odpovědí je málokdy ”víc testů”, ale spíše ”lepší testování”, podívejme se na ukončovací
kritéria:
– Všechny testovací případy byli spuštěny

– Všechny testovací případy se dokončili

– Neexistuje nevyřešené (závažné) oznámení o incidentu.

– Předefinované pokrytí bylo dosaženo.

– Požadovaná spolehlivost (MTBF) byla dosažena.

– Odhadnutý počet zbývajících vad je dostatečně nízký.

• This is a risk-based, business decision:
• Test completion criteria – must be specified in advance in test plan
• Test prioritization criteria - scales on which to compare test cases’ relative importance

(severity, urgency, probability, visibility, business criticality, etc.)
• Decision strategy for the delivery – must be specified in advance (what shall happen if

test completion criteria are not fulfilled)
• Test manager presents products quality - he/she is responsible for the estimation and

presentation of product quality but the business decision based on this data is made
by responsible manager (project manager, project owner, product owner, etc.).

• Test is never ready:
As exhaustive testing is not possible, we can always test a little more, and there is always some

justification for it in (the diminishing) probability that more faults will be found. Unless
completion criteria are established and test cases prioritized, the probability of finding more
faults cannot be reliably estimated

• The answer is seldom “more testing” but rather “better testing”:
Testing must be based on the combination of completion criteria:

• All test cases executed
• All test cases passed
• No unresolved (serious) incident reports
• Pre-defined coverage achieved

•
Required reliability (MTBF - Mean time between

failures) achieved
• Estimated number of remaining faults low enough

17

09/20/23 SK 17

Testování na základě rizik
● Testování hledá vady, které – pokud jsou odstraněny –

sníží riziko selhání v provozu systému.
● Testování na základě rizik

• Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure

in operation as this is the most obvious indication of quality software.
• Risk-based testing

• The chosen amount and quality of testing shall be based on how much
risk is acceptable

• Test design (choosing what to test) shall be based on the involved risks
• The order of testing shall be chosen according to the risks

• Error: the ”mistake” (human, process or machine) that introduces a fault into
software:

• Human mistake: users forget a need. Requirements engineer
misinterprets users’ need. Designer makes a logical mistake.
Programmer makes a coding mistake.

• Process mistake: requirements not uniquely identifiable, no routines for
coping with changing/new requirements, not enough time to perform
design inspections, poor control over programmers’ activities, poor
motivation, …

• Machine mistake: incorrect compiler results, lost files, measurement
instruments not precise enough…

• Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient

bandwidth of a bus or a communication link.
• Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to

failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A

faulty SW or HW “crashes” the system. A faulty system introduces longer
delays than allowed during heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

18

09/20/23 SK 18

Základní pojmy
● Chyba(Error):”omyl” (lidská, procesní nebo strojová),

která zanáší vady do softwaru.
● Vada(Fault): ”bug” nebo ”nedostatek (defect)”, chybná

část kódu nebo hardwaru.
● Selhání(Failure): pokud se provede vadný kód, může to

vést k chybnému výsledku (to znamená k selhání).

Chyba Vada Selhánívytváří příčinou

• Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure

in operation as this is the most obvious indication of quality software.
• Risk-based testing

• The chosen amount and quality of testing shall be based on how much
risk is acceptable

• Test design (choosing what to test) shall be based on the involved risks
• The order of testing shall be chosen according to the risks

• Error: the ”mistake” (human, process or machine) that introduces a fault into
software:

• Human mistake: users forget a need. Requirements engineer
misinterprets users’ need. Designer makes a logical mistake.
Programmer makes a coding mistake.

• Process mistake: requirements not uniquely identifiable, no routines for
coping with changing/new requirements, not enough time to perform
design inspections, poor control over programmers’ activities, poor
motivation, …

• Machine mistake: incorrect compiler results, lost files, measurement
instruments not precise enough…

• Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient

bandwidth of a bus or a communication link.
• Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to

failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A

faulty SW or HW “crashes” the system. A faulty system introduces longer
delays than allowed during heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

19

09/20/23 SK 19

Cena selhání
● Spolehlivost: je pravděpodobnost že nenastane selhání.
● Slavný ”Arianne”, American Airlines - rezervační systém a

ostatní
● Kvalita života
● Bezpečné-kritické systémy
● Embedded (mobilní) systémy
● Specifikace požadavků na použitelnost v embedded

systémech a webových aplikacích.

Famous: ”Arianne”, American Airlines booking system and more:
The financial cost can be shocking, many billions of dollars. As compared to the estimated

cost of additional testing that would probably have discovered the fault (a few hundred
thousand dollars).
• Arianne: two faults that did not cause failures in the old rocket model. An overflow

exception caused by a different start trajectory and missing exception handling
code. Could easily be found if tested.

• Americal Airlines: new booking system (1988) with complex mathematical
algorithms for optimization of the numbers of business class and economy class
passengers. It had a fault, which resulted in approximately 4 passengers fewer
on every flight. Billions of lost revenue after a few months’ operation were the
first indication there was a fault at all!

• Quality of life:
As anyone using a PC or a buggy VCR software realizes, failures need not be catastrophes

to sharply reduce the joy of living.
• Safety-critical systems:
More and more safety-critical systems contain software – the necessity of high safety and

reliability grows. The cost of failure is injury or human life (railway, aircraft, medical
systems). For many safety-critical systems the important attribute is usability (low
usability can cause “operator mistake” or “human factor” in an accident, coming usually
from confusing or unusable information, especially in stress situations).

• Embedded systems
Embedded systems (whether safety-critical or not), require high-quality software, because

of the difficulty (or impossibility) of updates. Remember the cost of software errors in
some mobile phones.

• Usability requirements for embedded systems and Web applications:
Embedded systems and Web applications are mass consumer products, where customers

require easy usage. Failure to provide it results in lost revenues or market shares,
which is a novel experience for software industry, used more to putting requirements on
customers than the other way round!

20

09/20/23 SK 20

Definice testovacího procesu
● Plánování testů
● Specifikace testů
● Provádění testů
● Záznam testů a vyhodnocování
● Ukončovací kritéria

• Test process as part of development or
production process

Test is a part of QA, and test process should
not be defined separately, but should be seen
in the context of overall development
process.

• Large companies have own process
definitions

Most development and production companies
have own test processes. There can be of
course similarities (though used
terminologies are often strikingly different),
but nevetheless many thousands different
test processes exist in industrial reality.

• “COTS” test process
COTS (Commercial Off The Shelf)
It is possible to buy a test processes. The most

known vendor today is probably IBM Rational
with its RUP – Rational Unified Process (test
process is part of it). Such a process
contains the descriptions of the workflow,
example documents as well as tools and
methods for adapting it to the customer’s
environment. Consulting companies, QA and
test tool vendors may have their own test
processes for sale, often tailored to the way
their tools work.

• Test process and test strategy
Test process (how testing is done) is a

realization of test strategy: required product
quality and test reliability, used development
process, etc.

21

09/20/23 SK 21

Plánování testů

Testovací
strategie

Projektová
specifikace

Testovací
proces

Aplikovaný
Testovací

proces

Plán
testů

Výjimky z
testovací
strategie

A company’s Test Strategy together with its
Test Process (defined in the organization) are
adopted to the current project based on a
Project Specification. This results into an
Applied Test Process, i.e. an overall vision
“how we will test this time”. This vision is the
implemented (described in detail) in a Test
Plan. Often, Test Plan is a document written
in a natural language.

The process of creating a Test Plan is test
planning. The is mostly done very early
during project. Later, the processes of test
estimation, monitoring and control may lead
to changes in the test plan.

22

09/20/23 SK 22

Cíle testového plánu
● Vysokoúrovňový testový plán a více detailnější testové

plány.
● Spojený s projektovým plánem.
● Dodržuje plán zajištění jakosti (QA plan)
● Správa konfigurací, požadavky, správa incidentů

Even the best test plan will not work unless it is
synchronized with other areas, project and
technical.

• High-level test plan and more detailed test
plans

Depending on project size and complexity, test
plan can sensibly be divided into one high-
level test plan and some detailed test plans.
The division can follow test area or test level,
or specific aspects of testing.

• Project plan
Test plan must be inspected for correctness

and compliance with overall project plan.
Sometimes (in small projects) the test plan is
the part of a project plan.

• Follows the QA plan
Hopefully, the function and contents of a test

plan is not “discovered” anew for each
project, but included in the company’s quality
strategy and project’s quality plan.

• Configuration management, requirements,
incident management

These areas may either be the part of a test
plan or belong somewhere else (CM Plan),
depending on the overal QA strategy.

23

09/20/23 SK 23

Specifikace testů
The complete documentation of the test design, test cases
and test procedures for a specific test item. (ISTQB)
● Specifikace testů definuje co testovat.
● Specifikace testů je součástí „testware“ (testové případy,

testovací skripty, testovací data).
● Základními stavebními kameny testů jsou testovací

případy (test cases).
● Specifikace testů – instrukce – skript
● Specifikace testů – požadavky
● Specifikace testů – hodnotící zpráva

• Test specification defines what to test
Test specification are repositories of test cases. They should be free from organizational issues,

which belong to the test plan(s).
• Test specification is part of testware
Testware – test cases, test scripts, test data, etc. is often under CM control (manages either by

test tool or by a separate tool).
• Basic building blocks of test specifications are test cases
Test cases are generated when applying test design techniques. The shell be general and

repeatable.
• Test specification – instruction – script
Test cases need not contain all detailed information on how to perform them. This information

may be put into a separate description, sometimes called test instructions (this approach is
not practical because of maintenance difficulties).

If test execution is automated, then the instructions for a test tool are called test script (test
program). Test script can replace test case (instructions).

• Test specification – requirements
It is desirable that for every test case, there is a link to the requirements behind it and for every

requirement, there are links to all test cases that verify it. This is very hard to achieve and
maintain without using test tools (test management tools, e.g. Test Manager).

• Test specification – reporting
The test specification must support logging and reporting during and after test execution, mainly

through the identification of test cases and their steps. This can be easily automated by
using test tools (test running tools, e.g. Robot)

24

09/20/23 SK 24

Testovací případy (Test case)
● Jedinečné jméno/titulek
● Jedinečné ID
● Popis
● Podmínky/ předpoklady
● Akce (kroky)
● Očekávané výsledky

Cvičení

• Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

• Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

• Description
Brief description explaining what functionality

the case case covers.
• Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
• Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

• Expected results
Reaction of the system to the performed action.

25

09/20/23 SK 25

1.4-Základní testovací proces - pojmy (ISTQB)
● test case - A set of input values, execution preconditions, expected results and execution

postconditions, developed for a particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a specific requirement.

● test case result - The final verdict on the execution of a test and its outcomes, such as pass, fail,
or error. The result of error is used for situations where it is not clear whether the problem is in
the test object.

● test case specification - A document specifying a set of test cases (objective, inputs, test
actions, expected results, and execution preconditions) for a test item.

● test specification - A document that consists of a test design specification, test case
specification and/or test procedure specification.

● test script - Commonly used to refer to a test procedure specification, especially an automated
one.

● test procedure specification - A document specifying a sequence of actions for the execution
of a test. Also known as test script or manual test script.

● Test Design Specification - A document specifying the test conditions (coverage items) for a
test item, the detailed test approach and identifying the associated high-level test cases.

Cvičení

• Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

• Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

• Description
Brief description explaining what functionality

the case case covers.
• Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
• Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

• Expected results
Reaction of the system to the performed action.

26

09/20/23 SK 26

Provádění testů
● Manuálně
● Automatizovaně
● Testovací sekvence
● Testovací prostředí
● Testovací data

• Manual
Tester follows the description from the test case and performs step by step all specified actions.

Prone to errors, boring (monkey testing) and time-consuming. It is recommended that the
author of the test case performs it first.

• Automated
Test tool executes test case according to predefined instructions (test scripts or test program).

The automation scope can include any of / all of the following:
• Preparation (set-up to fulfill preconditions)
• Execution
• Result evaluation (comparing actual and expected results)
• Clean-up (putting system back into some known state)

• Test sequence
Sometimes it is not practical to execute each test case separately but it is better to put test

cases into a sequence, e.g.:
• Insert new record
• Search existing record
• Modify existing record
• Delete existing record

• Test environment
There are more environments used for developing, testing and maintaining software

applications (DEV – development, IT – functional and performance testing, QA –
acceptance testing, PROD – production). Configuration files of test environment as part of
testware are under CM control.

• Test data
Test data are various input and output files (for expected and actual results) that must be

managed properly as part of testware. If test data are taken from the production, they must
be degradated.

27

09/20/23 SK 27

Záznam testů a vyhodnocování
● Záznam aktuálních výstupů a porovnání s očekávanými

výstupy.
● Off-line vyhodnocování výsledků.
● Logování testů
● Zpráva o testech
● Záznam pokrytí testy
● Zpráva incidentů

• Recording actual outcomes and comparison against expected outcomes
Manual testing: If actual and expected outcomes match, then test case passed. If not, then test case

failed, actual outcomes are recorded and incident (defect) is created and assigned to development.
Automated testing: Comparison is done automatically, everything is recorded and even incidents are

created.
• Off-line test result evaluation
Sometimes the immediate result (pass/fail) is impossible (too fast execution to allow on-line evaluation by

a lower analysis tool or the final result is available only after some other tests have been performed,
etc.), so during test execution the results are gathered for the evaluation, which is done later.

• Test log
It is a log of “all” (relevant and important) what happened during test execution. This activity (log creation)

is best to automate, as it is repetitive, boring and requires exactness. It is used for (1) off-line
evaluation,(2) failure analysis and debugging and (3) for archiving and future reference.

• Test report
Is a summary of the results of all executed test cases. Must contain as well complete information on

configuration and versions of test environment, testware and test object. Some test tools are capable
to produce test report.

• Recording test coverage
If test cases are mapped to requirements, test coverage can be easily derived. When executing test

cases, the results are projected into requirements with the information how much functionality was
successfully tested.

• Incident management
Answer the following questions:
1. Was this really a failure?
2. What presumably caused this failure?
3. How to assign correction responsibility?
Incident must be repeatable – put enough information to the incident report to enable reproducing the

incident by the developer who is fixing it.

28

09/20/23 SK 28

Ukončování testů
● Kritéria ukončení testů musí být specifikována předem.
● Rozhodovací strategie pro rozhodnutí o vydání/distribuci musí být specifikována

předem.
● Test manažer je zodpovědný za odhadnutí a předložení kvality produktu ne za

rozhodnutí o vydání/distribuci.
– Spuštěné TC

– Úspěšné TC

– Neúspěšné TC

– Provedené TC

– Intenzita selhání

– Počet hlášených incidentů

– Odhad kvality produktu

– Spolehlivost tohoto odhadu

– Plánovaný odhad kvality produktu.

• Test completion criteria must be specified in advance
In the test plan or similar document.
• Decision strategy for the release/delivery decision must be specified in

advance
What shall happen if test completion criteria are not fulfilled, but

deadlines are approaching and there is strong pressure to release?
The strategy for making this decision should be defined in advance.

• Test manager is responsible for the estimation and presentation of the
product quality, not for release/delivery decision

It is the responsibility of test manager to preset to project management
accurate and up-to-date data on:

1. Number of percentage of run test cases
2. Number and percentage of passed tests
3. Number and percentage of failed tests
4. Trends in test execution (cumulative number of executed test cases)
5. Trends in failure intensity
6. Similar data on the number of incident reports, their status and trends
7. Estimation of product quality based on the data available
8. Reliability (level of significance) of this estimation
9. Projected estimation of product quality and test reliability for various

scenarios

29

09/20/23 SK 29

Kritéria ukončení
● Všechny testovací případy byli provedeny.
● Všechny testovací případy dopadly úspěšně.
● Neexistují nevyřešení incidenty.
● Neexistují nevyřešené závažné incidenty.
● Počet nalezených vad.
● Předefinované pokrytí bylo dosaženo

– Pokrytí kódu

– Pokrytí funkcionality

– Pokrytí požadavků

– Pokud ne, musí se navrhnout více testovacích případů

● Požadovaná spolehlivost (MTBF) byla dosažena
● Odhadovaný počet vad je dostatečně nízký.

• All test cases executed
It is a sensible criterion, provided good quality, coverage and reliability of those tests

(otherwise the less test cases we have, the easier to achieve completion).
• All test cases passed
The previous criterion plus additionally that there must be no failed tests – strong

requirement not achievable in practice.
• No unresolved incident reports
It may be the same as the previous one but not necessarily: some incident reports

may be postponed, rejected (e.g. caused by faults of test environment or testware,
etc.).

• No unresolved serious incident reports
The previous criterion might be too strong – we can divide incident reports according

to severity (e.g. 1 and 2 must be resolved).
• Number of faults found
Generally a useless criterion, as it is the estimated number of remaining faults that

matter. The assumption is that many found faults means few remaining (this can
be wrong – many found faults may mean many remaining).

• Pre-defined coverage achieved
Generally better that “all tests… no incidents…” family, because they address the

issue of achieved test quality/reliability as well:
• Code coverage: there is a number of different code coverage measures

that tell what proportion of tested code have been exercised by executed
tests.

• Functional coverage: even very high code coverage does not guarantee
that “all” (paths, user scenarios) has been tested. Therefore, it should be
complemented by some kind of functional coverage.

• Requirements coverage: all code and all functions may have been tested,
but in order to discover missing functionality, tests should cover all
requirements.

• Required reliability (MTBF) achieved
This can only be calculated if statistical testing is used (MTBF – Mean Time Between

Failures).
• Estimated number of remaining faults low enough
Based on the number and frequency of faults discovered so far during testing, an

estimation of the number of remaining faults can be made.

30

09/20/23 SK 30

Psychologické aspekty testování
● Hlavním cílem je najít vady (NE dokázat správnost)
● Testování je opakující se a detailní
● Testování přináší špatné zprávy
● Testování je “negativní a destruktivní”
● Kariéra testera
● Jak testovat příště?
● Nezávislé testování
● Metriky

• Primary intent to find faults (NOT to prove correctness)
This comes from the definition of testing.
• Testing is repetitive and detailed
Many activities which belong to testing are repetitive, requiring attention to detail. If not organized correctly, they may

feel boring: not providing enough stimulation and variety.
• Testing brings bad news
If the goal is to “succeed” and “deliver”, then successful testing brings bad news (more work to development, delayed

releases). Besides, when testers identify failures, developers feel sometimes accused of having made errors
(which should not be the case, but often is).

• Testing is “negative and destructive”
You sure recognize that terrible feeling when you have prepared a wonderful dinner, but your spouse (husband, wife))

fails to be impressed and notices instead a small stain on the tablecloth? Then you call him/her “negative and
destructive”. This is what testers do for a living…

• Testing career
In some companies, the top level for a tester’s advancement is Test Manager, whereas developers easily advance to

Project Managers and into higher managerial levels. In reality, testers make better project managers and high-
level managers because they are used to see the whole instead of the details, to adopt the user perspective, to
think in terms of risk estimation, to think in terms of quality.

• How to test then?
• Attitude: successful test causes failures (finding faults, not hiding them, shall be rewarded).
• Attitude and maturity ladder:

• Testing equals debugging
• Testing is to prove that it works
• Testing is to find where it does not work
• Testing is to reduce the risk that it fails
• Testing is to measure and estimate the risk that it fails
• Testing is mental attitude

• Independent testing
Outsiders make better testers than insiders. However, debugging is better done by people with intimate knowledge of

the way system is build.
• Test cases designed by the developer
• Test cases designed by someone else (developer)
• Test cases designed by another department
• Test cases designed by another organization (outsourced testing)
• Test cases not designed by a person (generated automatically by tools)

Independence: not only test design, but planning, support, execution, evaluation
• Metrics
By gathering and distributing metrics you help developers and management understand what test does.

31

09/20/23 SK 31

1.5 – Opakované testování (Re-Testing)
● Znovu spuštění testovacího případu, který naposledy

způsobil selhání
● Aktivováno dodáním opravy a změnou stavu incidentu.
● Spuštění nového testovacího případu pokud selhání bylo

způsobeno náhodou.
● Testování na podobné nebo související vady.

• Re-running of the test case that caused failure previously
A test case has caused a test object to fail. The fault that (supposedly) caused this failure has

been discovered and removed (fixed). The very same test case is executed on the new
(corrected) version of the system to ensure that the fault has really been successfully fixed.

• Triggered by delivery and incident report status
Re-testing is normally done after the delivery of a fixed build and after the corresponding

incident report has been put into a “fixed” (“corrected”, “re-test”, “put into build”, or similar
name) status. Some kind of private re-test before formal release may be used as well.

• Running of a new test case if the fault was previously exposed by chance
When failure occurred by chance without any intentional test case being executed (e.g. by

“smoke-test”, “sanity-check”, or “ad-hoc” testing), a new test case should be designed and
added. Re-testing means then the execution of this new test case.

• Testing for similar or related faults
During re-testing, even test cases looking for similar faults may be executed. For example if a

record deletion from a file caused failure, even other record deletion routines may be
tested. Re-testing related faults is advisable too. For example if a record deletion method
has been fixed, then other methods belonging to the same class can be re-tested after
correcting the fault. This can be defined as “increased testing”, or new test design caused
by faults already found.

32

09/20/23 SK 32

Regresní testování
● Regrese z důvodu opravy vady (vedlejší účinky)
● Regrese z důvodu přidání nové funkcionality
● Regrese z důvodu nové platformy
● Regrese z důvodu nové konfigurace nebo po úpravách

na žádost zákazníka
● Regrese a plánované dodání oprav

• Regression due to fixing the fault (side effects)
On average, according to empirical data, 10-25% of all fixes actually introduce new faults,

sometimes in areas seemingly “far away” (temporally, functionally or structurally) from the
original fault. To be able to discover the new faults, test cases seemingly “far away” from
the fixed fault must be executed on fixed builds.

• Regression due to added new functionality
Adding new functionality may introduce faults into already existing functionality, or expose faults

existing previously, but not found. Therefore, old functionality must be tested again for
releases with new functionality.

• Regression due to new platform
A system that executes correctly in one environment may fail in another environment, either due

to hidden faults or interface faults. Therefore, regression testing may be required even
when not a single software instruction has been changed.

• Regression due to new configuration or after the customization
Sometimes called “configuration testing”. For example, a Java script depends on HW, operating

system and browser of the client machine. Including different versions of them, the number
of possible combinations is very large, requiring impossibility large amount of regression
testing. Special strategies are available to tackle this.

• Regression and delivery planning
To decrease the amount of regression testing, a regression test suite may be run once on a

release with many fault corrections and new functionality added. If an incremental
methodology is used (e.g. RUP), then some increments (usually the latest ones) are
focusing only on bug fixing which means that only re-testing and regression testing is
needed. Regression testing is often used in maintenance when emergency fixes and “extra”
functionality is introduced.

33

09/20/23 SK 33

Regresní schéma
● Snížení frekvence dodávání
● Schéma Round-robin
● Rozšířená selekce pro testovací případy
● Statistický výběr testovacích případů
● Paralelní testování
● “Kouřové testy (Smoke-test)” pro nouzové opravy
● Optimalizace regresní sady:

– Všeobecná (znalost systému, účel testovacích případů, pokrytí testy)
– Historická (klesající regrese pro stabilní funkcionalitu)
– Závislosti (Související funkcionalita)
– Koordinace mezi úrovněmi testovacích případů (vyhnutí se redundantní regrese

na různých úrovních testování)

• Less frequent deliveries
If a regression test takes longer than the time between releases, decreasing the delivery frequency may be an option.

If a number of fixes and functionality enhancements are delivered together, less frequent deliveries are possible
without increasing the overall development time.

• Round-robin scheme
Example: A regression test suite has 300 test cases. It takes 1 day to execute 100 test cases. Releases come every

day. Test cases no 1-100 are executed on release N, 101-200 on N+1, 201-300 on N+2, then again 1-100 on
N+1, etc. Even if no release is fully regression tested, a relatively good measure of product quality is achieved.

• Additional selection of test cases
The regression test suite may be pruned to fit the available time. A selection of regression test cases may be used for

most releases, while the complete test suite will be executed only before external releases, quality checkpoints,
project milestones, etc.

• Statistical selection of test cases
Provided that the data on the probability distribution of user actions is available, test cases can be ordered according

to their “importance”, i.e. the relative frequency of the user action that they test. In this way, even if the complete
regression test suite is not executed, the reliability level can be estimated for releases.

• Parallel testing
By dividing test execution into a number of parallel tracks, that can execute independently and in parallel, calendar

test execution time can be significantly decreased. This applies both to manual and to automatic testing. The cost
is that multiple amount of test equipment and of testers are required.

• “Smoke-test” for emergency fixes
Emergency fix – exceptional release that fixes one fault (or low number of faults) or sometimes introduces a new

(small in scope) functionality and its delivery is urgently required. As changes in the system are relatively small,
complete testing is not needed.

“Smoke-test” or “sanity-check” means execution of a subset of the most important test cases from the regression suite
with the goal to check if there is not major problem in the system after the change. Even in the emerging
situation, some kind of “smoke-test” must be performed.

• Optimisation of regression suite
• General – basic test techniques can help choose test cases for regression test suites effectively.

Required level of test coverage can be used to estimate the needed amount of regression testing.
Good system understanding is required to identify and remove repetitive or less important test cases.
Redundant test cases can be removed.

• History – regression test cases may become obsolete with time. Stable functionality where faults are
no longer discovered during regression testing, need not be tested as extensively as new, unstable
functionality, or as a system area with a history of many faults.

• Dependencies – provided a well-designed system with clear-cut dependencies and interfaces, it is
possible to minimize the amount of regression for areas that are not related and not connected to the
area, where recent changes have occurred.

• Test-level co-ordination – savings in regression test time can often be achieved by coordinating tests
run on different levels, to avoid reperition.

34

09/20/23 SK 34

Regrese a automatizace
● Sady regresních testů spadají pod management

konfigurací (CM)
● Tvorba a sledování incidentů pro testovací případy
● Automatizace se nejvíce vyplatí u regresního testování
● Automatizace testů řízená regresí
● Inkrementální vývoj

• Regression test suites under CM control
All test cases shell be archived and under version control to be able to return back to already

not used test cases. Regression test cases are changing from release to release. This
applies even more to automated regression testing which increases the amount of
testware: test scripts, test programs, test data, test configurations, etc.

• Incident tracking for test cases
Test cases (especially test scripts, test programs, test data) can be faulty or changed for other

reasons (e.g. effectiveness). These changes should be controlled and traceable like any
software changes. The development and maintenance of testware should be handled like
development and maintenance of any other software, i.e. planned, designed, under version
management, etc.

• Automation pays best in regression
When test automation is considered, it shall be first of all applied to regression testing. The

strategy for regression testing must therefore be known before the automation strategy is
developed. Large amount of regression requires automation (the automation is effective
starting from number of releases > 3). Performance testing cannot be done without tools
(load generation, monitoring, performance measurement, etc.). These tools and test cases
may therefore be candidates to be included in regression testing.

• Regression-drive test automation
Introducing test automation into projects must be planned according to the needs of the

regression test strategy.
• Incremental development
New development methods (“incremental development”, “daily build”, “Rapid Application

Development”, RUP, etc.) become increasingly popular. They are characterized by frequent
deliveries, incremental functionality growth, and fast feedback from test to development.
Therefore, they require heavy regression testing, which makes both test automation and
other techniques for regression optimization especially important.

35

09/20/23 SK 35

1.6 – Očekávané výsledky
Proč jsou nezbytné?
● Test = měření kvality = porovnání aktuálního výsledku s

očekávaným výsledkem
● A co měření výkonu?
● Výsledky(Results) = Outcomes; výsledek ≠ výstup
● Definice testovacího případu: podmínky – vstupy –

očekávané výsledky
● Výsledky jsou částí testware – Management konfigurací

(CM)

• Test = measuring quality = comparing actual outcome with expected outcome
Test is verifying whether something is correct or not – means by definition comparing two

values: actual and expected. Random testing is (1) normally not really testing at all (2) or
testing actual results against our vague and unspecified outcome expectations.

• What about performance measurement?
Performance measurement = benchmarking.
Performance requirements are notoriously vague or absent, but performance testing is thriving.

Explanation? It is then either testing against informal, unspecified “random requirements” or
a kind of requirement engineering (trying to find out what the requirements should be) by
running ready product.

• Results = outcomes; outcomes ≠ outputs
Application outputs can be test case outcomes, but not all test cases outcomes are outputs –

performance levels, state transitions, data modifications are possible test case outcomes
which are not application outputs. In order to evaluate them, test environment must provide
access to them: through special test outputs, debug tools, etc.

• Test case definition: preconditions – inputs – expected outcomes
When expected test result/outcome is missing, then it is NOT a test case specification at all.

Unspecified or insufficiently specified expected outcomes make some failures harder to
discover.

• Results are part of testware – CM control
Often, the expected outcome is a data file. Unless it can be incorporated in a test specification,

it will require to be under separate CM control. Changing the expected outcome file will
have the same effect as directly changing the test specification – a common baseline for
them will therefore be required.

36

09/20/23 SK 36

Typy výsledků
● Výstup
● Změna stavu
● Změna dat
● Jednoduché a složené výsledky
● “Dlouhotrvající” výsledky
● Kvalitativní atributy (čas, velikost, etc.)
● Netestovatelné?
● Vedlejší účinky

• Outputs
They are most easily observable, therefore often utilized as outcomes/results. Outputs have

very many forms: displayed or changed GUI objects, sent messages or signals, printouts,
sounds, movements.

• State transitions
Does the system perform correct state transition for a given set of inputs? Outputs following

transitions are often used to judge, but the new state is the expected outcome.
• Data changes
Has data changed correctly?
• Simple and compound results
Results may be simple (“Error message appears”) or compound (“new record put into

database, index updated, display adjusted, message sent…”).
• “Long-time” results
For example, testing for long-time stability: system still works correctly after a week.
• Quality attributes (time, size, etc.)
Most non-functional requirements are of this kind.
• Non-testable?
(1) Possibly valid requirements, but formulated in a non-testable way, e.g. “sufficient

throughput to handle typical traffic”.
(2) Valid, measurable requirements, which cannot be measured due to technical constraints.
• Side-effects
Implicitly, every test case has an invisible clause in expected outcome definition “the program

does this… and nothing incorrect happens”. “Nothing incorrect” is easily implied, but
impossible to verify.

37

09/20/23 SK 37

Zdroje výsledků
Nalezení nebo spočítání správných očekávaných výsledků je
mnohdy mnohem těžší než by se mohlo zdát. Je to hlavní úloha
při přípravě testovacích případů.
● Požadavky
● Oracle
● Specifikace
● Existující systém
● Jiné obdobné systémy
● Standardy
● NE kód

• Requirements
Sufficiently detailed requirement specifications can be used directly as the source of expected

test results. Most often however, requirements do not have sufficient quality.
• Oracle
According to BS 7925-1 it is “a mechanism to produce the predicted outcomes to compare with

the actual outcomes of the software under test”; often a program, another similar
application, etc.

• Specifications
Specifications other than requirement specification (e.g. design specification, use case

specification, interface specification, function specification) are generally a good source of
expected outcomes – verification means testing whether system works “according to
specification”.

• Existing systems
Previous, verified versions of the same system can be used as oracle for getting correct

expected results.
• Other similar systems
Any other software – commercial or not – that has already been sufficiently verified and

implements part of the functionality of the tested system, often makes a good oracle.
• Standards
Many standards, e.g. in telecommunications, contain detailed specifications that can be used as

expected test results. A good example of a test case suite built entirely around standard
specification is Sun’s test suite for verification whether a JVM (Java Virtual Machine)
conforms to Sun’s Java standard.

• NOT code
(nor the same specification if specification is the test object), Because anything compared to

itself (the same source of expected and actual outcomes) will always give “correct” results.

38

09/20/23 SK 38

Obtížnost porovnání
● GUI
● Komplexní výsledky
● Absence vedlejších efektů
● Časový aspekt
● Neobvyklé výstupy (multimedia)
● Problém s reálným časem (Real-time) a dlouhým během

(Long-time)
● Komplexní výpočty
● Inteligentní a “fuzzy” porovnání

• GUI
Notoriously difficult expected results. Prone to frequent changes, complex, often asynchronous. If treated

on pixel level, often useless, require some kind of object approach. Most tools existing today do not
cope well with moving or scrolling components.

• Complex outcomes
Actually, GUI outputs are one of them. Comparison may be difficult simple because the results are large

and complex.
• Absence of side-effects
For most test cases, there are infinitely many possible outcomes that must not happen. For a test case

“press key” with expected outcome “text <<key pressed>> appears” there are innumerable things
that are expected NOT to happen: program does not crash, database is not deleted, no – say –
blinking green triangle appears in the middle of the screen… etc. Verifying this is impossible, on the
other hand some degree of observant caution is necessary.

• Timing aspects
Outcomes that either occur very quickly or last very short time, or are asynchronous, or occur after

undefined delay may all be hard to verify correctly.
• Unusual outputs (multimedia)
Video sequences, complex graphics, sounds, smells, etc. are very hard to test.

• Real-time and long-time difficulties
(it is a sub-set of “absence of side effects”)
For real-time, multithread applications there may exist hidden faults that only cause failure when certain

rare timing conditions are fulfilled. Such failures are not easily repeatable. During long-time
execution a gradual “decay” of software may occur (stability testing aims at those problems). Typical
example of such problems are memory-leaks.

• Complex calculations
Their results are hard to verify, may only “look right”. AA booking system fault 1988.
• Intelligent and “fuzzy” comparisons
Whenever correct result is not fully deterministic or analogue rather than discrete, it is difficult to verify.

39

09/20/23 SK 39

1.7-Prioritizace testů
Proč prioritizovat testovací případy?
● Určit důležitost a pořadí (v čase)
● “Nikdy není dost času”
● Testování přichází až na konec a je postiženo zpožděním

všech ostatních.
● Je těžké udělat dobrou prioritizaci (vícenásobná kritéria

s různou váhou).

• Decide importance and order (in time)
To prioritize test cases means to measure their

importance on an ordinal scale, then plan
test execution accordingly (typically, in
descending order of importance, i.e. more
important cases before less important).

• “There is never enough time”
Dedicated testers easily become paranoid –

they suspect faults everywhere and want to
verify every tiny detail. To balance this desire
with business reality, we must choose what is
most important to test, i.e. prioritize.

• Testing comes last and suffers for all other
delays

The day for customer delivery is often holy, but
development is nevertheless delayed.
Planned test time is cut as a result, often with
short notice, with no time for re-planning.
Keeping ones test cases prioritized so that
most important are run first guarantees that
we will…

• Prioritizing is hard to do right (multiple criteria
with different weights)

Prioritizing test cases is not an easy job. There
are different criteria and different methods to
apply them. Prioritizing test cases is part not
only of testing but of risk management.

40

09/20/23 SK 40

Prioritní kritéria
● Vážnost (selhání)
● Priorita (urgentnost)
● Pravděpodobnost
● Viditelnost
● Priorita požadavků
● Zpětná vazba na/od

vývojářů
● Obtížnost (testu)

● Co zákazníci chtějí
● Náchylnost ke změně
● Náchylnost k selhání
● Kritické z hlediska byznysu
● Složitost (testovaného

objektu)
● Obtížnost opravy

This is a tentative list of possible prioritization criteria (scales on which to compare test cases’
relative importance). This list is not ordered (i.e. it gives no clue to which criteria are more
important). The criteria are not independent nor exclusive. For operational usage, they must
be defined more in details. Put them into columns are mark each test case with the level of
importance:
• H – high
• M – medium
• L – low

• Severity (failure); the consequences of failure (in operation): 1 – fatal, 2 – serious, 3 –
disturbing, 4 – tolerable, 5 – minor

• Priority (urgency): how important it is to test this particular function as soon as possible: 1 –
immediately, 2 – high priority, 3 – normal queue, 4 – low priority

• Probability: the (estimated) probability of the existence of faults and failure in operation
• Visibility: if a failure occurs, how visible it is? (it relates to “severity”)
• Requirement priorities: if requirements are prioritized, the same order shall apply to test

cases
• Feedback to/from development: do the developers need test results to proceed? (similar to

“priority”). Do the developers know a specific tricky area or function?
• Difficulty (test): is this test case difficult to do (resource- and time-consuming?)
• What the customer wants: ask the customer what he prefers (it relates to “requirements

priorities”)
• Change proneness: does this function change often?
• Error proneness: is it a new, badly designed, or well-knows “stinker” feature?
• Business criticality: related to “severity” and “what the customer wants”
• Complexity (test object): related to “error proneness”
• Difficult to correct: a fault known to be difficult to correct, may be given lower priority

(provided severity is sufficiently low)

41

09/20/23 SK 41

Metody prioritizace
● Náhodná (ponechá se pořadí ze specifikace)
● Expertův “sedmý smysl”
● Na základě historických zkušeností s obdobným projektem,

produktem nebo zákazníkem.
● Testování podle statistiky používání (Statistical Usage Testing)
● Dostupnost: dodaných kódů, nástrojů, prostředí, doménových

expertů…
● Tradiční analýza rizik (SWOT, …)
● Multidimenzionální analýza rizik (Multi-criteria decision analysis)

– analytic hierarchy process (AHP)

• Random (the order specs happen)
No method at all, but “the order test specs

happen” may actually mirror both the
“priority” and “business criticality” as well as
“requirements prioritization” – the not so bad.

• Experts’ “gut feeling”
Experts with testing, technical and domain

(application) knowledge do the prioritization.
Experts are good to have, but their “gut
feeling” may often be misleading, unless
structured methods (see below) are followed.

• Based on history with similar projects,
products or customers

Documented data on previous fault history,
priority, severity, etc. is used to prioritize test
cases for current project/product according to
some chosen criterion (or a chosen
combination of criteria).

• Statistical Usage Testing
The main criteria is the long-time frequency of

usage in operation. The underlying
assumption is that frequency of usage
correlates strongly with severity, probability,
visibility, “what the customer wants”, and
business criticality. Test suite is randomly
generated based on known probability
distribution of user actions.

• Traditional Risk Analysis
Importance = probability * consequence.

Rough-and-ready method, easy to use, easy
to misuse. Does not give any support to
accommodate multiple prioritization criteria.

• Multidimensional Risk Analysis
Prioritization based on statistical decision

theory. Very seldom used in managerial
practice.

42

09/20/23 SK 42

2.1 – Modely pro testování
Verifikace, Validace a Testování
● Verifikace: Proces vyhodnocení systému nebo

komponenty, který určí zda produkt dané vývojové
etapy splňuje podmínky určené na začátku této etapy –
vytváříme systém správně

● Validace: Rozhodnutí o správnosti produktu
softwarového vývoje s ohledem na potřeby a požadavky
zákazníka – vytváříme správný systém

● Testování: Proces vykonávání/spouštění softwaru pro
ověření zda splňuje specifikované požadavky a detekci
chyb.

Testing is not only test execution. Static
analysis can be performed before the code
has been written. Writing and designing test
cases is also part of testing. Reviews of
requirement specifications and models, and
of any other documents, belong to testing as
well.

09/20/23 SK 43

IEEE standards
3.1.36 verification:

● (A) The process of evaluating a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase.

● (B) The process of providing objective evidence that the software and its associated
products conform to requirements (e.g., for correctness, completeness, consistency,
accuracy) for all life cycle activities during each life cycle process (acquisition, supply,
development, operation, and maintenance); satisfy standards, practices, and conventions
during life cycle processes; and successfully complete each life cycle activity and satisfy all
the criteria for initiating succeeding life cycle activities (e.g., building the software
correctly).

3.1.35 Validation:
● (A) The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements.
● (B) The process of providing evidence that the software and its associated products satisfy

system requirements allocated to software at the end of each life cycle activity, solve the
right problem (e.g., correctly model physical laws, implement business rules, use the
proper system assumptions), and satisfy intended use and user needs.

● NOTE—For (A), see IEEE Std 610.12-1990 [B3].
● NOTE—For subdefinition (A), see IEEE Std 610.12-1990 [B3].

09/20/23 SK 44

BS 7925-1
● verification: The process of evaluating a system or

component to determine whether the products of the
given development phase satisfy the conditions
imposed at the start of that phase. [IEEE]

● validation: Determination of the correctness of the
products of software development with respect to the
user needs and requirements. [IEEE]

09/20/23 SK 45

ISTQB Glosary
Verification Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that specified requirements have
been fulfilled.

Validation Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that the requirements for a specific
intended use or application have been fulfilled.

09/20/23 SK 46

V&V – Where is truth?

http://www.chambers.com.au/glossary/verification_validation.php

09/20/23 SK 47

V&V – Where is truth?

http://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/

48

09/20/23 SK 48

2.1-Modely pro testování
Vodopádový model

Analýza
požadavků

Specifikace
požadavků

Návrh

Implementace

Testování

Údržba

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Requirements Definition
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the software
requirements specification.

Design
Once the SRS is developed, software engineers should have a complete description of the requirements

the software must implement. This enables software engineers to begin the design phase. It is during
this phase that the overall software architecture is defined and the high-level and detailed design
work is performed. This work is documented in the software design description.

Coding
The information contained in the SDD should be sufficient to begin to the coding phase. During this

phase, the design is transformed or implemented in code. If the SDD is complete, the coding phase
proceeds smoothly, since all of the information needed by software engineers is contained in the
SDD.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the SRS and the SDD already in the coding phase.
These tests determine if the software meets defined requirements. A software validation test plan
defines the overall validation testing process. Individual test procedures (test cases, test scripts, test
programs) are developed based on a logical breakdown of requirements. The results of the testing
activities are usually documented in a software validation test report. Following the successful
completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

49

09/20/23 SK 49

Vývojový životní cyklus iterativní

Analýza
požadavků

Definice
požadvků

Návrh

Implementace

Testování

Údržba

Zpětná vazba

(feedback)

Hlavní cyklus

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Requirements Definition
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the software
requirements specification.

Design
Once the SRS is developed, software engineers should have a complete description of the requirements

the software must implement. This enables software engineers to begin the design phase. It is during
this phase that the overall software architecture is defined and the high-level and detailed design
work is performed. This work is documented in the software design description.

Coding
The information contained in the SDD should be sufficient to begin to the coding phase. During this

phase, the design is transformed or implemented in code. If the SDD is complete, the coding phase
proceeds smoothly, since all of the information needed by software engineers is contained in the
SDD.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the SRS and the SDD already in the coding phase.
These tests determine if the software meets defined requirements. A software validation test plan
defines the overall validation testing process. Individual test procedures (test cases, test scripts, test
programs) are developed based on a logical breakdown of requirements. The results of the testing
activities are usually documented in a software validation test report. Following the successful
completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

09/20/23 SK 50

Zjednodušený náhled na modely

Čas

Analýza

Návrh

Implementace

Testování

Vodopád Extrémní programování (XP)Iterativní (RUP, SCRUM)

• Waterfall
There is no ideal model. Waterfall model is the right one in ideal world.
Analysis - I understand everything
Design - I design perfect solution with complete and right knowledge of customer and target platform
Coding - Design is coded without bugs
Testing – Well, why the hell test ideal system? Testing can be omitted…
Eureka!!! the system is accepted and it fulfills all stakeholder needs
but ideal does not exist in reality therefore waterfall model is out of touch with reality

• Iterative (RUP, SCRUM)
The development is divided into iterations. In the

first iteration we focus on a big picture. The project is split into small pieces (iterations), in which we deliver
product to the customer to get customer feedback. Iterations are here to reduce time we are walking the
wrong way (one iteration usually takes 2- 3 weeks). The iteration must not be changed during processing, all
plans/bugs/etc must be planned for the next iteration. There must be no disturbance from the iteration plan -
focus on the target. The iteration should end as planned and evaluated. Unfinished tasks together with bugs
found in this iteration must be estimated again and planned for the beginning of the next iteration. Do not
save bugs for later, unfixed bug means the work was not done. One or two iterations are planned just to
remove bugs (no new functionality is implemented). In SCRUM terminology an iteration is called a Sprint.

• Extreme programming (XP)
It goes about agile software development methodology (rapid development), the set of daily practices that embody

and encourage particular XP values: communication (simple design, common metaphors, collaboration of users
and programmers, frequent verbal communication and feedback), simplicity (starting with the simplest
solution), feedback (from the system by writing unit tests and running periodic integration tests, from the
customer by acceptance testing, from the team by quick response to new requirements), courage (design and
code for today and not for tomorrow – developers feel comfortable with refactoring their code when
necessary) and respect between team members.

50

51

09/20/23 SK 51

V-model: Úrovně testování

Testování
integrace systému

Příprava
testování

Provádění
testů

 Specifikace → Návrh → Implementace → Testování

Požadavky
zákazníka

Akceptační
testování

Specifikace
systému

Testování
systému

Návrh Testování
Integrace komponent

Implementace Testování
komponent

Kód

Vady
implementace

Vady návrhu

Vady v specifikaci systému

Vady v požadavcích zákazníka

For each stage in the model there are
deliverables to the next stage, both
development and testing. Such a delivery is
an example of a baseline.

For example, when the user requirements are
ready, they are delivered both to the next
development stage and to the corresponding
test level, i.e. acceptance testing. The user
requirements will be used as input to the
system specification (where the system
requirements will be the deliverable to the
next stage) and the acceptance test design.

Note that this is a simplified model. In reality,
the arrows should point in both directions
since each stage naturally will find faults and
give feedback to the previous stages.

52

09/20/23 SK 52

Úrovně testování
● Testování komponent
● Testování integrace komponent
● Testování systému (funkční a nefunkční)
● Testování integrace systému
● Akceptační testování
● Obslužné testování (Maintenance testing)

• The objectives are different for each test level
(see the V-model)

• Test techniques used (black- or white- box)
• Object under test, e.g. component, grouped

components, sub-system or complete
system

• Responsibility for the test level, e.g.
developer, development team, an
independent test team or users

• The scope of testing

53

09/20/23 TSK 53

Testování komponent
● První možnost vůbec něco spustit
● Rozdílné označení (Unit, Modul, Základní(Basic), …

Testování)
● Obvykle provádějí programátoři
● Mělo by testovat aktivitu v největším detailu

The objective of component (unit, module)
testing is to find bugs in individual
components (units, modules) by testing them
in an isolated environments. Component
testing is the first dynamic testing activity in
the development life cycle. Traditionally (and
most practically) component testing have
been performed by programmers. One major
reason for this is that component testing
tends to require knowledge of the code which
is why developers are well suited for this.
Unfortunately component testing is often
viewed more as a debugging activity than as
a testing activity.

Mature ladder:
• Developers are checking their own modules

with little or no documentation (they are blind
for their own faults)

• Buddy checking of modules by peer
developers who didn’t develop the modules
(a good compromise)

• Planned activity, design of test cases,
recording of test results and qualified
decision about test completion criteria

54

09/20/23 TSK 54

Proces komponentního testování (BS 7925-2)

konec

Plánování
testování

komponenty

Specifikace testu
komponenty

Provádění
testu

komponenty

Záznam a
vyhodnocení

testu
komponenty

Ukončení
testu

komponenty?

začátek

Oprava plánu testu komponenty a opakovat

Oprava specifikace testu komponenty a opakovat

Oprava specifikace testu komponenty a opakovat

Oprava komponenty a opakovat

• Component Test Planning
The component test planning contains two phases. In the first phase the overall project test strategy (generic) and the

project test plan (project specific) are defined. The project test strategy includes test case selection methods,
documentation, entry and exit criteria as well as the component test process itself. The project test plan contains
information of the scope of the project, the resources needed and how to apply the strategy in the current project.
The second phase of the planning deals with components individually. For each component a separate
component test plan is produced (to list the specific test case design techniques, the test measurement
techniques, the tools including stubs and drivers and the test completion criteria that apply to the specific
component).

• Component Test Specification
Component test specification is the activity of applying the test design techniques specified in the component test plan

to the information in the design specification, producing a number of test cases. The test cases should be
documented in the component test case specifications. Each test case should also have a unique name and
contain enough detailed instructions on how to perform the test case and a reference to the requirement that is
tested by that test case.

• Component Test Execution
During component test execution, the test cases are executed on the actual module, preferable in the priority order.

However, things might happen during the execution of the test cases which may force deviations from the
planned order of execution. This is normal and quite all right as long as the deviations are conscious choices.

• Component Test Recording
During the execution of test cases, test results are produced. Basically there are two types of results: logs and

pass/fail results. A log is just a chronological list of events that took place during the execution. The second type
of result is the result of comparing the actual and the expected output. After a fault is located it usually pays off to
investigate where the fault was first introduced in the design process and it is a good practice to correct the fault
in all documents that contain the fault. A component test report is the document which contains a summary of all
results of the second type.

• Component Test Completion?
Based on the information in the component test reports, the specified exit criteria in the test strategy and/or the test

plans, and the current time budget, the decision whether or not to continue testing, can be performed. Here there
are also several options:

• Enough coverage has been obtained and quality of test object is OK => component testing can be
ended and the component delivered to the next level of testing (usually to component integration
testing).

• All test cases have been executed but enough coverage has not yet been achieved => more test cases
have to be designed and executed to increase the coverage.

• Time is out but the quality of the test object is too low => negotiate with project stakeholders to get
more time to test and to correct faults (this is however typically NOT the responsibility of the test sub-
project).

55

09/20/23 TSK 55

Testování komponent – co testovat
● Algoritmus a logiku
● Datové struktury (globální a lokální)
● Rozhraní (Interfaces)
● Nezávislé cesty
● Podmínky ohraničení
● Ošetření vad

● Algorithms and logic:
● - Have algorithms and logic

been correctly implemented?
●

● Data structures (global and local):
● - Are global data structures

used?
● - If so, what assumptions are

made regarding global data?
● - Are these assumptions valid?
● - Is local data used?
●

- Is the integrity of local data maintained during all steps of an
algorithm’s execution?

●

● Interfaces:
● - Does data from calling

modules match what this
module expects to receive?

● - Does data from called
modules match what this
module provides?

●

● Independent paths:
● - Are all independent paths

through the modules
identified and exercised?

●

● Boundary conditions:
● - Are the boundary conditions

known and tested to ensure
that the module operates
properly at its boundaries?

●

● Error handling:
● - Are all error-handling paths

exercised?

56

09/20/23 SK 56

Rational Unified Process (RUP)
● Iterativní vývoj softwaru
● Management požadavků
● Architektura na bázi

komponent

● Vizuální modelování
softwaru

● Verifikace kvality softwaru
● Kontrola změn

Počátek Rozpracování Vytváření Předání

Milník Milník Milník Milník

Time

RUP is an example of object-oriented methodologies that emphasize the incremental, iterative, and concurrent nature
of software development.

RUP is a product process developed by Rational Software Corporation that provides project teams with a guide to
more effective use of the industry-standard Unified Modeling Language (UML). RUP also provides software-
engineering best practices through templates, guidelines, and tools. Most of the tools are, as you might guess,
also provided by Rational.

The RUP is based on four consecutive phases. The purpose of the inception phase is to establish the business case
for the project. This is done by creating several high-level use case diagrams, defining success criteria, risk
assessment, resource estimate, and an overall plan showing the four phases and their approximate time frames.
Some deliverables the inception phase might include are:

• A vision statement
• An initial set of use cases
• An initial business case
• An initial risk assessment
• An initial project plan
• Prototypes
The purpose of the elaboration phase is to analyze the problem domain, establish the overall product architecture,

eliminate the highest risks, and refine the project plan. Evolutionary prototypes are developed to mitigate risks
and address technical issues and business concerns. Some key deliverables this phase might include are:

• A relatively complete use case model supplemented with text as appropriate
• Architecture description
• Revised risk assessment
• Revised project plan
• Initial development plan
• Initial user manual
During the construction phase, the remaining components are developed, and thoroughly tested. Key deliverables

from this phase include:
• Software product operating on target platform
• Revised user manual
• Complete description of current release
The purpose of the transition phase is to transition the product from development to the user community. Activities that

would typically be performed include:
• Beta testing by users
• Conversion of existing information to new environment
• Training of users
• Product rollout

57

09/20/23 SK 57

Rational Unified Process (RUP)

RUP is an example of object-oriented methodologies that emphasize the incremental, iterative, and concurrent nature
of software development.

RUP is a product process developed by Rational Software Corporation that provides project teams with a guide to
more effective use of the industry-standard Unified Modeling Language (UML). RUP also provides software-
engineering best practices through templates, guidelines, and tools. Most of the tools are, as you might guess,
also provided by Rational.

The RUP is based on four consecutive phases. The purpose of the inception phase is to establish the business case
for the project. This is done by creating several high-level use case diagrams, defining success criteria, risk
assessment, resource estimate, and an overall plan showing the four phases and their approximate time frames.
Some deliverables the inception phase might include are:

• A vision statement
• An initial set of use cases
• An initial business case
• An initial risk assessment
• An initial project plan
• Prototypes
The purpose of the elaboration phase is to analyze the problem domain, establish the overall product architecture,

eliminate the highest risks, and refine the project plan. Evolutionary prototypes are developed to mitigate risks
and address technical issues and business concerns. Some key deliverables this phase might include are:

• A relatively complete use case model supplemented with text as appropriate
• Architecture description
• Revised risk assessment
• Revised project plan
• Initial development plan
• Initial user manual
During the construction phase, the remaining components are developed, and thoroughly tested. Key deliverables

from this phase include:
• Software product operating on target platform
• Revised user manual
• Complete description of current release
The purpose of the transition phase is to transition the product from development to the user community. Activities that

would typically be performed include:
• Beta testing by users
• Conversion of existing information to new environment
• Training of users
• Product rollout

09/20/23 SK 58

Test Driven Development
● TDD adopts a “Test-First” approach in which unit tests

are written before code.
● This idea, which dates back to ancient times, was

formalized in the mid-1990s by Kent Beck, who made it
one of the pillars of the Extreme Programming (XP)
methodology.

● TDD is a way of managing fear during programming.

59

09/20/23 SK 59

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

60

09/20/23 SK 60

TDD – Clean Tests
● The test code is as important if not more important than

the production code!
– readability
– simple, clear and as dense a test as possible
– a unit test should represent only one concept and contain

only one assertion

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

61

09/20/23 SK 61

TDD – Clean Tests
● 5 other rules that can be easily memorized using the

acronym FIRST:
– Fast: a test must be fast to be executed often.
– Independent: tests must not depend on each other.
– Repeatable: a test must be reproducible in any environment.
– Self-Validating: a test must have a binary result (Failure or

Success) for a quick and easy conclusion.
– Timely: a test must be written at the appropriate time, i.e.

just before the production code it will validate.

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

62

09/20/23 SK 62

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

63

09/20/23 SK 63

Test Driven Development
● Test structure - Effective layout of a test case ensures all required actions

are completed, improves the readability of the test case, and smooths the
flow of execution. Consistent structure helps in building a self-documenting
test case. A commonly applied structure for test cases has (1) setup, (2)
execution, (3) validation, and (4) cleanup.

● Setup: Put the Unit Under Test (UUT) or the overall test system in the state
needed to run the test.

● Execution: Trigger/drive the UUT to perform the target behavior and
capture all output, such as return values and output parameters. This step
is usually very simple.

● Validation: Ensure the results of the test are correct. These results may
include explicit outputs captured during execution or state changes in the
UUT.

● Cleanup: Restore the UUT or the overall test system to the pre-test state.
This restoration permits another test to execute immediately after this one.
[8]

64

09/20/23 SK 64

Individual best practices states that one should
● Separate common set-up and teardown logic into test support services

utilized by the appropriate test cases.
● Keep each test oracle focused on only the results necessary to validate its

test.
● Design time-related tests to allow tolerance for execution in non-real time

operating systems. The common practice of allowing a 5-10 percent margin
for late execution reduces the potential number of false negatives in test
execution.

● Treat your test code with the same respect as your production code. It also
must work correctly for both positive and negative cases, last a long time,
and be readable and maintainable.

● Get together with your team and review your tests and test practices to
share effective techniques and catch bad habits. It may be helpful to review
this section during your discussion.

65

09/20/23 SK 65

Practices to avoid - "anti-patterns"
● Having test cases depend on system state manipulated from

previously executed test cases (i.e., you should always start a
unit test from a known and pre-configured state).

● Dependencies between test cases. A test suite where test
cases are dependent upon each other is brittle and complex.
Execution order should not be presumed. Basic refactoring of
the initial test cases or structure of the UUT causes a spiral of
increasingly pervasive impacts in associated tests.

● Interdependent tests. Interdependent tests can cause
cascading false negatives. A failure in an early test case breaks
a later test case even if no actual fault exists in the UUT,
increasing defect analysis and debug efforts.

66

09/20/23 SK 66

Practices to avoid - "anti-patterns"
● Testing precise execution behavior timing or

performance.
● Building "all-knowing oracles". An oracle that inspects

more than necessary is more expensive and brittle over
time. This very common error is dangerous because it
causes a subtle but pervasive time sink across the
complex project.

● Testing implementation details.
● Slow running tests.

09/20/23 SK 67

Test Driven Development
Myth

● You create a 100% regression test suite
Reality

Although this sounds like a good goal, and it is, it unfortunately isn't realistic for several reasons:

● I may have some reusable components/frameworks/... which I've downloaded or purchased which
do not come with a test suite, nor perhaps even with source code. Although I can, and often do,
create black-box tests which validate the interface of the component these tests won't completely
validate the component.

● The user interface is really hard to test. Although user interface testing tools do in fact exist, not
everyone owns them and sometimes they are difficult to use. A common strategy is to not automate
user interface testing but instead to hope that user testing efforts cover this important aspect of
your system. Not an ideal approach, but still a common one.

● Some developers on the team may not have adequate testing skills.

● Database regression testing is a fairly new concept and not yet well supported by tools.

● I may be working on a legacy system and may not yet have gotten around to writing the tests for
some of the legacy functionality.

09/20/23 SK 68

Test Driven Development
Myth
● You only need to unit test

Reality
● For all but the simplest systems this is completely false.
● The agile community is very clear about the need for a

host of other testing techniques.

09/20/23 SK 69

Test Driven Development
Myth
● TDD is sufficient for testing

Reality
● TDD, at the unit/developer test as well as at the

customer test level, is only part of your overall testing
efforts.

● At best it comprises your confirmatory testing efforts,
but you must also be concerned about independent
testing efforts which go beyond this.

09/20/23 SK 70

Test Driven Development
Myth

● TDD doesn't scale
Reality

This is partly true, although easy to overcome. TDD scalability issues include:

1) Your test suite takes too long to run. This is a common problem:

– First, separate your test suite into two or more components. One test suite contains the tests for the new functionality that
you're currently working on, the other test suite contains all tests. You run the first test suite regularly, migrating older tests
for mature portions of your production code to the overall test suite as appropriate. The overall test suite is run in the
background, often on a separate machine(s), and/or at night.

– Several levels of test suite -- development sandbox tests which run in 5 minutes or less, project integration tests which run
in a few hours or less, a test suite that runs in many hours or even several days that is run less often.

2) Not all developers know how to test.
● That's often true, so get them some appropriate training and get them pairing with people with unit testing skills.

3) Everyone might not be taking a TDD approach.

– Taking a TDD approach to development is something that everyone on the team needs to agree to do.
● they either need to start

● they need to be motivated to leave the team

● team should give up on TDD.

71

09/20/23 SK 71

3.3 – Statická analýza
Statické analýzy
“Analýza programu vykonávaná
bez spouštění programu.” – BS
7925-1
● Nedostupný kód
● Parametry – záměna typů
● Možné překročení hranic pole

(array bound violations)
● Vady nalezené kompilátorem
● Složitost programu

Hustota
vad

Složitost

• Unreachable code
Part of a code that you can’t reach, e.g.

uncalled functions or procedures. Also called
dead code.

• Parameter type mismatches
E.g. a variable declared with one type is sent to

a procedure, but the procedure expects a
variable of another type.

 Possible array bound violations
Trying to access an element index outside the

boundary value of the array.
 Faults found by compilers
Fault types found by compilers depend first of

all on the language – what is legal in it. For
example, data type mismatches, missing
files, possible division by 0, ranges without
stop value, misuse of variables.

 Program complexity
There are tools that can measure the

complexity of a program. It also presents the
percentage of loops, IF-statements, etc. High
complexity often causes problems, but
extremely complex programs are often given
to the most skilled people, who are aware of
the difficulties and thus makes an extra effort.
Therefore the fault intensity could be lower
for these programs.

72

09/20/23 SK 72

Statická analýza
● % změněného zdrojového kódu
● Grafická reprezentace vlastností kódu:

– Graf toku (Control flow graph – CFG)
1: (A) int n = read_num();
2: (A) if(n % 2 == 0){
3: (B) System.out.println(n + " is even.");
4: (C) } else {
5: (C) System.out.println(n + " is odd.");
6: (D) }

– Strom volání
– Sekvenční diagramy
– Třídní diagramy

Cvičení

A

BC

D

• % of the source code changed
Some tools can analyse and tell how many %

of the source code have been changed and
which parts that have been changed => input
to test case generation.

• Graphical representation of code properties
Depends on development tools features.

73

09/20/23 SK 73

Analýza datových toků
● Zaměřeno na používaní dat (lépe se analyzuje sekvenční

kód)
● Příklady:

– Přistup k proměnné po tom co byla uvolněna (ukazatel)
– Přístup k proměnné předtím než byla definována
– Definice bez použití

if(b > c){
 a=3;
 a=5;
 System.out.println(a);
}

a=3;
if(a < 3){
 b=7;
 System.out.println(b);
}

Note: Not to be confused with data flow testing
which is a dynamic test case selection
method.

• Considers the use of data
How are the variables used through the code?

• Definitions with no intervening use
IF B > C THEN A = 3;
 A = 3; IF A < 3 THEN
 A = 5; B = 7;
 Print A; Print B;
END; END;

• Attempted use of a variable after it is
killed

For example an attempt to read a variable
outside its scope.

• Attempted use of a variable before it is
defined

74

09/20/23 SK 74

Statické metriky
● McCabova Cyclomatická míra složitosti (McCabe’s

Cyclomatic complexity)
M = E − N + 2P

E = počet hran
N = počet uzlů
P = počet grafových komponent

● Řádky kódu (Lines of Code - LoC)
● Fan-out a Fan-in
● Úroveň vnoření

Cvičení

A

BC

D

• McCabe’s Cyclomatic complexity
Is defined as the number of decisions in a program or control flow graph + 1.
M = E − N + 2P where
M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

Implications for Software Testing
M is a lower bound for the number of possible paths through the control flow graph.
M is an upper bound for the number of test cases that are necessary to achieve a complete branch coverage.

• Lines of Code (LoC)
Lines of code. It’s a common measurement of the size of a program.
• Fan-out and Fan-in
Fan-out is the amount of modules a given module calls. Modules with high Fan-out are often found in the upper part of

the call tree.
Fan-in is the amount of modules that call a specific module. Modules with high Fan-in are often found in the lower part

of the call tree.
If a module has both high fan-in and fan-out, consider to redesign it.
• Nesting levels
For example many IF-statements nested into each other get a deep nesting level. This means that the code is difficult

to understand. It is even worse when the cyclomatic complexity is also high.
One nesting level:
IF X > 5 THEN
 PRINT “BIG”;
ELSE
 PRINT “SMALL”;
ENDIF;

Who nesting levels:
IF X > 5 THEN
 IF X < 10 THEN
 PRINT “BIG UNIT”;
 ENDIF;
ELSE
 IF X != 0 THEN
 PRINT “SMALL UNIT”;
 ENDIF;
ENDIF;

75

09/20/23 SK 75

4 – Dynamické testovací techniky
● 4.1. – Testování Black a White box
● 4.2. – Techniky Black box testování
● 4.3. – Techniky White box testování
● 4.4. – Testová data
● 4.5. – Tipování vad (Error Guessing)

This part deals with dynamic testing techniques
– methods that use executable test cases.
These techniques are further divided into two
groups (white-box and black-box testing
techniques).

76

09/20/23 SK 76

4.1 – Testování Black- a White-box
● Strategie

– Co je účelem testování?
– Co je cílem testování?
– Jak dosáhnout cíle?

● Metody výběru testovacích případů (Test Case)
– Který testovací případ bude proveden?
– Je to dobrý reprezentant pro všechny možné testovací

příklady?
● Kritéria pokrytí

– Jak mnoho kódu (požadavků, funkcionality) je pokryto?

A good way of dealing with a testing problem is
to first clarify the purpose of testing, then to
define a goal and finally to develop a strategy
for how to reach the goal.

Once the goal has been defined, a test case
selection strategy can be constructed. The
obvious strategy would be to test everything,
but due to infinite possibilities of choosing
input this strategy is simply not feasible. Thus
we need to carefully select the test cases that
are to be executed. These test cases should
be good representatives of all the possible
test cases. To simplify the selection there
exists a large number of test case selection
methods, most of them are associated with
coverage criteria to determine when to stop
testing.

Coverage is a measurement of how much has
been done compared to the total amount of
work.

77

09/20/23 SK 77

Metody výběru testovacích případů (Test Case)
● White-box / Strukturální / Logic driven

– Založeno na implementaci (struktura kódu)

● Black-box / Funkcionální / Data driven
– Na základě požadavků (funkcionální specifikace, rozhraní)

Cvičení

Test cases for dynamic execution are usually
divided into two groups depending on the
source of information used for creating the
test case.

• White-box
Test cases are based on information about the

implementation of the test object (structure of
the code). The inputs of white-box test cases
are generated from the implementation
information (from the code). The testing is
based on the program logic.

• Black-box
Test cases are aimed at testing the functionality

of the test object. The inputs of black-box test
cases are taken either from the requirements
or from a model created from the
requirements. Testing is based on inputs and
respective outputs.

When the input of a test case is determined,
the next step is to define the expected output.
All test cases always take the expected
output from the requirements for that
particular input to find out how the object
under test should react on that input.

78

09/20/23 SK 78

Důležitost testovacích metod

White-box

Black-box

Testování komponent Testování integrace

komponent

Testování systému Akceptační testování

The two types of test cases are used a little bit differently in the development lifecycle. White-
box test cases are mostly used in the early test phases of the development lifecycle and
are of less usage higher up in the testing hierarchy.

There are two reasons for this:
1. The most important is that most white-box methods require extensive knowledge of the

code and other parts of the implementation. Later test phases are usually performed by
dedicated test specialists with neither deep implementation knowledge nor access to this
information.

2. The other reason for not using white-box test case selection methods in later test stages is
related to coverage. White-box test cases are usually more fine grained than black-box test
cases. Fine grained test case selection methods require a large number of test cases in
order to reach high coverage.

Black-box testing techniques are used throughout the development lifecycle. The main
advantage with black-box testing techniques is that they only depend on the requirements,
which means that test cases can be prepared before the implementation is complete.

Both methods are important. If only white-box testing would be performed, some requirements
are not tested (performance requirements). On the other hand if only black-box test cases
are used, some parts of the code might remain untested (special features called when a
certain value is entered in a certain cell).

79

09/20/23 SK 79

Měření pokrytí kódu
● Kolik kódu bylo provedeno?
● Metody pokrytí kódu:

– Pokrytí segmentu
– Pokrytí dvojic volání

● Podpora nástrojů:
– Často jsou vhodné
– Pro white-box testování jsou skoro nezbytné

Pokrytí kódu =
Provedené segmenty kódu/dvojice volání

Všechny segmenty kódu/dvojice volání

Code coverage metrics respond the question – How much of the code is being executed?
There are usually 2 metrics:

• Segment coverage
A segment is a set of program statements that are executed unconditionally or executed

conditionally based on the value of some logical expression. 85% is a practical coverage
value.

• Call-pair coverage
A call pair is an interface whereby one module invokes another. Call-pair coverage is especially

useful integration testing to ensure that all module interfaces are exercised. 100% is a
practical coverage value.

As already has been mentioned, white-box testing techniques use implementation information
to derive the input part of the test cases. Most often some aspect of the code, for instance
the source code statements, is used for this purpose. Even with quite small programs, the
task of keeping track of which statements that have already been tested and which
statements that yet remain to be tested is quite difficult. The solution to this problem is to
use a tool. There are a large number of commercial code coverage tools available for this.
They all work in the same manner: before the source code of the object to be tested is
compiled, the code is instrumented by adding extra instructions at strategic places in the
original code. This is done by the tool.

The source code with the extra instructions is then compiled as usual and test cases are then
executed in the normal way. The added instructions continuously log the progress of the
testing and from the results of the logging instructions the tool can calculate which parts of
the code that have been executed. Obviously the extra inserted instructions consume
execution resources thus distorting performance measurements, so this type of tool is not
appropriate during system testing.

Nevertheless, the use of such tools increase both the quality and the productivity of the testing
in the earlier test phases.

80

09/20/23 SK 80

Testování na základě požadavků
● Jak mnoho vlastností produktu je pokryto testovacími

případy (Test Case)?
● Metrika pokrytí požadavků:

● Jaký je průběh testů?
● Metrika pokrytí testů:

Pokrytí požadavků =
Testované požadavky

Celkový počet požadavků

Pokrytí testů =
Provedené testovací případy

Celkový počet testovacích případů

The basic for all black-box testing is the
requirements.

The simplest but still structured way of creating
test cases is to write one test case for each
requirement. The main drawback with this
approach is that most requirements require
more than one test case to be tested
thoroughly, and different requirements
require a different amount of test cases. In
this case we can create the coverage matrix
that tracks requirements to test cases and
vice versa. This feature is usually included in
test management tools.

Requirement Coverage responds the question:
How much of the product’s features is
covered by test cases?

Test Coverage responds the question: What’s
the test progress?

81

09/20/23 SK 81

Vytváření modelů
● Vytváření modelů – obecné vlastnosti

– Používají se k organizaci informací
– Často se odhalí vady už při tvorbě modelu

● Testování na základě modelů
– Testovací případy jsou získány z modelů
– Příklady

● Testování syntaxe, Testování přechodu mezi stavy, Testování na
základě diagramu případu užití

– Pokrytí je určeno použitým modelem

Cvičení

A more elaborate way of creating black-box
test cases is to transform a set of
requirements into a model of the system and
derive the test cases from the model instead
of directly from the requirements.

In most model-based testing techniques there
are well defined coverage criteria which are
simple to calculate and interpret.

The main drawbacks with models are limited
scope and validation. Often the purpose of
the model and the modeling technique used,
limits the scope of the model. For instance a
syntax graph only captures the syntax of a
language. The semantic of that language
must be covered somewhere else. The result
is that several models need to be developed
and used in order to get a reasonable
coverage of the system under test.

The other problem with models is that errors
might be made when constructing the model
so care must be taken to validate the model
against the requirements.

However, a bonus with the model approach is
that the structured nature of the model often
fives the maker of the model a good overview
of the system, discovering mistakes and
discrepancies among the requirements.

82

09/20/23 SK 82

Metody Black-box testování
● Ekvivalentní rozdělení
● Analýza hraničních hodnot
● Testování přechodu mezi stavy
● Graf příčin a následků (Cause-Effect Graphing)
● Testování syntaxe
● Náhodné testování

Cvičení

• Cause-Effect Graphing
A model based method, which relates effects

with causes through Boolean expressions.
The main focus is on different combinations
of inputs from the equivalence classes.
Cause-effect graphing is a way of doing this
whilst avoiding the major combinatorial
problems that can arise.

• Syntax Testing
A model based method, which focuses on the

syntax or rules (how different parts may be
assembled) of a language (used during
implementation). This method generates
valid and invalid input data to a program. It is
applicable to programs that have a hidden
language that defines the data. Syntax
generator is needed.

• Random Testing
A model based method, which puts the end-

used of the system in focus and based on
usage profiles randomly selects test cases.
This is an example of statistical method
where standard deviation is measured.

83

09/20/23 SK 83

Ekvivalentní rozdělení
● Identifikují se množiny vstupních hodnot, za

předpokladu, že testovaný systém zachází stejně se
všemi hodnotami v dané množině

● Vytvoří se jeden testovací případ pro každou
identifikovanou množinu (třídu ekvivalence -
equivalence class)

● Nejzákladnější testovací technika

Cvičení

Equivalence class partitioning is one of the
most basic black-box testing techniques. The
underlying idea is that the input domain can
be divided into a number of equivalence
classes. The characteristic of an equivalence
class is the assumption that all values
belonging to that class are handled in exactly
the same manner by the program.

If this assumption is true, then it would suffice
to select one single test case for each
equivalence class, since multiple test cases
from the same equivalence class would
repeat the same test.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested equivalence classes by the total
number of equivalence classes.

The workflow when using equivalence
partitioning is to analyze the specification and
try to identify all likely equivalence classes.
When doing this it is important to remember
that there may be dependencies between
different input variables. The next step is to
check that the whole input domain has been
covered, i.e. every possible input value
belongs to exactly one equivalence class.
The final step is to choose one
representative value form each equivalence
class to form the test case for that
equivalence class.

84

09/20/23 SK 84

Ekvivalentní rozdělení (Příklad)

Záporná částka
Dělitelný 10 a

menší nebo roven
200

Nedělitelný 10 a
menší než 200 Více než 200

Dostatek peněz
na účtu 1. Výběr zamítnut 2. Výběr povolen

3. Výběr zamítnut 4. Výběr zamítnut

Nedostatek peněz
na účtu

5. Výběr zamítnut 6. Výběr zamítnut 7. Výběr zamítnut 8. Výběr zamítnut

chybná platná chybná

9 10 200 201

Částka výběru

chybná

0-10

Cvičení

Example: “A withdrawal from an ATM (Automatic Teller Machine) is granted if the account
contains at least the desired amount. Furthermore, the amount withdrawn must be an even
number of 10 EUR. The largest amount that can be withdrawn is 200 EUR.”

By analyzing the requirements we find several different independent dimensions to this
problem:

• Is there enough money in the account?
• Is the desired amount an even 10-number?
• Is the desired amount outside the correct 0-200 range?
One way to organize the information is to make a table as above. Each cell in the table

represents an equivalence class, which means that there should be eight test cases to
solve this testing problem with equivalence partitioning.

In this example one could argue that negative withdrawal is not technically possible, and even if
it was possible, the amount of money in the account would be irrelevant.

This discussion illustrates two difficult questions: how much should we really test? And which
tests are most important?

Mostly this boils down to a matter of taste. Our view is that it is better to include too much when
designing test cases that to miss vital functionality. Test cases should however always be
assigned a priority based on importance to the end user and importance to future testing.

High priority test cases above could be 2, 3, 4 and 6.
Medium priority test cases above could be 7 and 8.
Low priority test cases above could be 1 and 5.

85

09/20/23 SK 85

Analýza hraničních hodnot
● Pro každou identifikovanou hranici ve vstupech a

výstupech se vytvoří dva testovací případy. Jeden na
každé straně hranice, tak blízko hranici jak jen to je
možné.

Cvičení

Boundary Value Analysis is a refinement of
equivalence class partitioning. Instead of
choosing any representative from each
equivalence class, interest is focused around
the boundaries of each class. The idea is to
select one test case for each boundary of the
equivalence class. The properties of a test
case is thus that is belongs to a defined
equivalence class and that it tests a value
that it is preferable on, or at least reasonably
close to one of the boundaries of the
equivalence class.

The main reason why boundaries are important
is that they are generally used by
programmers to control the execution of the
program, for instance through if- or case-
statements. Since the boundaries are being
built into the program, this is also where
mistakes are likely to happen

Not that every boundary will be tested twice
since there are two different equivalence
classes on the two sides of the border, and
that there well be a test for that boundary in
both these equivalence classes.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested boundaries by the total number of
boundaries.

86

09/20/23 SK 86

Analýza hraničních hodnot (Příklad)

chybná správná chybná

2 3 8 9

Teplota

8

3

Vstup:

+20,000

+8,0001

+8,0000

+3,0000

+2,9999

-20,000

Očekávaný výstup:

červená

červená

zelená

zelená

červená

červená

Cvičení

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

87

09/20/23 SK 87

Analýza hraničních hodnot (Příklad)

Cvičení

X

Y

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

88

09/20/23 SK 88

Analýza hraničních hodnot (Rodné číslo)

Cvičení

Prvních šest čísel rodného čísla je vždy částí data narození dané osoby.

– První dvojčíslí je posledním dvojčíslím roku narození.

– Druhé dvojčíslí je měsícem narození (případně doplněné o úvodní nulu).

– Třetí dvojčíslí je dnem narození (případně doplněné o úvodní nulu).

● Po prvních šesti číslech zpravidla následuje lomítko "/", které se však při zápisu na technických nosičích
často vynechává.

● Do 31.12.1953 se za lomítko přidávaly právě tři číslice. Ty vyjadřují pořadové číslo narozené osoby v daný
den.

● Od 1. 1. 1954 se za lomítko kromě těchto třech číslic přidává ještě čtvrtá číslice, sloužící jako kontrolní
číslice.

– Kontrolní číslice se doplní tak, aby celé rodné číslo bylo beze zbytku dělitelné jedenácti. Na posledním místě
rodného čísla je tak zbytek po dělení devítimístného rodného čísla číslem jedenáct. Z tohoto pravidla existuje
výjimka. Pokud je zbytek po dělení devítimístného čísla roven deseti (a neexistuje žádná kontrolní číslice, která by
splňovala předchozí podmínku), jako kontrolní číslice se použije nula (a celé rodné číslo pak dělitelné jedenácti
není). Tato výjimka byla použita zhruba u tisícovky rodných čísel a přidělování takových rodných čísel bylo roku
1985 podle interního předpisu Federálního statistického úřadu č. Vk. 2898/1985 ukončeno.

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

89

09/20/23 SK 89

Analýza hraničních hodnot (Rodné číslo)

Cvičení

Rozlišení mužů a žen
Obecně platí, že ženám se ke druhému dvojčíslí rodného čísla (tedy k měsíci
narození) přičítá číslo 50. Od roku 2004 (zákonem č. 53/2004 Sb.) je zavedena
možnost v případě, že jsou v nějaký den vyčerpána všechna platná čtyřčíslí,
použít alternativní rodné číslo, u kterého mají muži k číslu měsíce přičteno
číslo 20 a ženy 70.
Možné kombinace čísel

● 00-99 pro první dvojčíslí
● 01-12, 21-32, 51-62 a 71-82 pro druhé dvojčíslí
● 01-31 pro třetí dvojčíslí
● 000-9999 pro část za lomítkem

Regulární výraz
[0-9]{2}[01235678][0-9][0-3][0-9]\/?[0-9]{3,4}

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

90

09/20/23 SK 90

Analýza hraničních hodnot (Řetězce)

Cvičení

● Délka min/max
● Prázdný
● Bíle znaky– mezery, tabulátory, zalomení řádku
● Oddělovače – středník, čárka, dvojtečka, uvozovky,

apostrofy
● Speciální znaky
● UTF-8 - čeština, čínština, ...

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

91

09/20/23 SK 91

Analýza hraničních hodnot – srovnání
● Detekce vady v případě nejčastějších chyb :

● Počet testovacích případů (jedna dimenze) BVA = 2*EP

Požadavek Vada v imp. ER (EP) AHH (BVA)

A < 18 A < =18 Ne Ano

A < 18 A > 18 Ano Ano

A < 18 A < 20 Možná Ano

Cvičení

Which is better, Equivalence Partitioning (EP)
or Boundary Value Analysis (BVA)?

The answer depends on what we mean by
better. Test cases made by BVA will catch
more types of errors, but on the other hand
there will be more test caes, which is more
time consuming.

If you do boundaries only, you have covered all
the partitions as well:

• Technically correct and may be OK if
everything works correctly

• If the test fails, is the whole partition wrong,
or is a boundary in the wrong place – have
to test mid-partition anyway

• Testing only extremes may not give
confidence for typical use scenarios
(especially for users)

• Boundaries may be harder (more costly) to
set up

92

09/20/23 SK 92

Cíle testování?

• Důkladný přístup: PČ(VP), NČ(IP), PSH(VB), NSH(IB)
• V časové tísni záleží na hlavním účelu testování

– Minimálně - důvěra v uživatele: Pouze PČ(VP)?
– Maximální nalezení vady: PSH(VB) nejprve (a dále NSH(IB)?)

Podmínky Platná část Tag Neplatná část Tag Platná strana
hranice Tag Neplatná strana

hranice Tag

Cvičení

93

09/20/23 SK 93

Testování přechodu mezi stavy
● Funkční chování je namodelováno pomocí stavového

automatu
● Vytvoření testovacích případů pro:

– A) každý stav automatu.
– B) použití každého přechodu automatu (0-přechodové

pokrytí)
– C) každou možnou posloupnost přechodů (n-přechodové

pokrytí)
● Pokrytí

– Záleží na vnitřní strategii

Cvičení

State machine based testing is a quite useful model based black-box testing technique, since
any type of functionality that can be represented as a finite state machine can be tested
using this technique.

The first step when using state machine testing is to construct the model itself. Sometimes,
state machines are used by designers and constructors as implementation tools. In those
cases, the state machines can of course be used directly. Otherwise the state machine
model has to be constructed based on the requirements by the testers.

Often during construction of the state machine models, faults are found. One of the key
properties with a state machine is that all input types can occur regardless of the state of
the machine. If a state machine model previously has not been drawn, there are almost
always disregarded combinations of state and input, which are very easily discovered when
building the model.

When the model is finished, the next step is to construct test cases from it. There are several
different strategies. The simplest and least powerful is to cover each state in the model at
least once. As soon as there are more than one way of reaching a particular state, state
coverage will most likely leave some transitions untested. A more elaborate strategy is
therefore to focus on the transitions between the states. 0-switch coverage requires one
test case for each possible transition in the model. 1-switch coverage requires a test case
for every possible pair of consecutive transitions and finally n-switch coverage requires a
test case for every possible n+1 consecutive transitions in the model.

94

09/20/23 SK 94

Testování přechodů mezi stavy (příklad)

Světla vypnuta Bíla zapnuta

Modrá
zapnuta

Zelená
zapnuta

Červená
zapnuta

Reset

Reset

Reset

Reset

Reset

Systém zapnut
Modré tlačítko

Zelení tlačítko

Červené tlačítko

Modré tlačítko

Modré tlačítko

Zelení tlačítko

Červené tlačítko

Zelení tlačítko

Červené tlačítko

Zelení tlačítko

Modré tlačítko

Červené tlačítko

Modré tlačítko

Zelení tlačítko

Červené tlačítko

Cvičení

Example:
• Four keys, four lamps
• After the start, all lamps are off
• A colored key turns “its” lamp on, if all lamps are off
• Next colored key turns the white lamp on and the colored off
• The Reset key turns the white lamp off and resets the system

There are 5 states.
To determine how many transitions there are, it is helpful to calculate the number of transitions out from

each state (in our case there are 4 transitions):
(5*4 + 1) = 21 transitions (0-switch)
(5*4*4 + 4) = 84 pairs of transitions (1-switch)
It’s easy to understand that ‘time-outs’, common is real-time applications, will make it even more

advanced.
Create test cases:
• A) touching each state

• 5 test cases – sufficient for such a simple system
• B) using each transition (0-switch coverage)

• 21 test cases – if the white lamp did not turn on after the green lamp, it is necessary to use
“each transition” to catch this fault

• C) using every possible pair of transitions (1-switch coverage)
• 84 test cases – if the Reset key does not work after the red lamp and the blue key (but

works after all other keys), finding this fault requires trying “all pairs of transitions”
To discover a fault which, for example, causes the system to hang after a thousand loops, still another

strategy is required.
The number of tested inputs is another dilemma. Should all possible inputs be tried in each state? The

strategy described here do not answer this question.

95

09/20/23 SK 95

4.3. – White-box testování
● Vstupy testovacích případů jsou vždy odvozeny od

implementace (kódu)
● Nejčastější informace potřebné k implementaci TC:

– Výrazy
– Rozhodovací bloky v kódu
– Použití proměnných

● Očekávané výstupy pro testovací případy jsou získány
vždy z požadavků!

Cvičení

When creating white-box test cases the basis
in the implementation. The input part of the
test case is derived from the implementation.

Commonly used implementation properties
include code structure and how variables are
used in the code. Less common but
nevertheless interesting implementation
properties are call-structures and
process/object interactions.

Regardless of the white-box test method
chosen, expected output is always extracted
from the requirements and not from the
implementation itself.

96

09/20/23 SK 96

White-box Testovací metody
● Testování výrazů/instrukcí (Statement Testing)
● Testování skoků/rozhodování
● Testování toku dat
● Testování podmínek skoků
● Testování kombinace podmínek skoků
● Testování změny podmínky
● Testování LCSAJ

Cvičení

• Statement Testing
The idea with statement coverage is to create enough test cases so that every statement in the

source code has been executed at least once
• Branch/Decision Testing
The idea with decision coverage is to execute every single decision in the code at least twice

(both possible outcomes of the decision should be executed in order to reach full decision
coverage)

• Data Flow Testing
Test cases are designed based on variable usage within the code
• Branch Condition Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes

Test cases shall be designed to exercise individual Boolean operand values
within

decision conditions.
• Branch Condition Combination Testing
A test case design technique in which test cases are designed to execute combination of

branch condition outcomes

Test cases shall be designed to exercise combinations of Boolean operand
values

within decision conditions.

• Modified Condition Decision Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes that independently affect a decision outcome

Test cases shall be designed to demonstrate that Boolean operands within a
decision condition can independently affect the outcome of the decision.

• LCSAJ Testing
Linear Code Sequence And Jump (LCSAJ) – Select test cases based on jump-free sequence

of code. It consists of the following three items: the start of the linear sequence of
executable statements, the end of the linear sequence, and the target line to which control
flow is transferred at the end of the linear sequence.

97

09/20/23 SK 97

Graf kontrolního toku/vývojový diagram
public void doAirconditioning() {

 double temp = readTemperature();

 Aircondition airCondState = null;

 if(temp <= 15) {

 airCondState = Aircondition.HEATING;

 }

 else if(temp >= 25) {

 airCondState = Aircondition.COOLING;

 }

 airCondState.execute();

}

Cvičení

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

This is a small piece of code, which
implements the temperature regulation. The
function “adjust_temperature” is called
without arguments. The first thing it does is to
read the current temperature, and then
depending on the value, either the heater is
switched on, the cooler is switched on, or the
system is left untouched. The global variable
control holds the current setting of the heater
and cooler.

To the right the is the corresponding control
flow graph. To aid the understanding of the
control flow graph strategic parts of the code
may be inserted in the diamonds and boxes.

McCabe’s cyclomatic complexity measure: No.
of diamonds + 1 (2 + 1 = 3) – it says that the
more decisions there are in a piece of code,
the more complex this piece of code is.

Statement Coverage =< Decision Coverage =<
McCabe’s Measure (3)

98

09/20/23 SK 98

Testování výrazů/instrukcí (Statement coverage)
● Provede se každý výraz/instrukce kódu alespoň jednou

během provádění testovacích případů
● Vyžaduje nástroje

– Instrumentace kódu
– Měření

● Pokrytí

Cvičení

Pokrytí výrazů =
Provedené výrazy

Celkový počet výrazů

Statement coverage is a fundamental white-
box testing technique. This idea of statement
coverage is to create enough test cases so
that every statement in the source code has
been executed at least once.

The workflow when using statement coverage
is to first execute all existing black-box test
cases that has been created while monitoring
the execution. This monitoring is in all but the
simplest test cases performed with tool
support. When all black-box test cases have
been executed, the tool can report which
parts of the code that remain untested. The
idea is now to construct new test cases that
will cover as many of the remaining
statements as possible. Start with the part of
the code that should be reached, walk
backward in the code to determine the values
of the input variables required to reach the
desired part of the code. With the specified
values of the input variables, check the
specification for the expected results, and
execute the new test case while monitoring.

One common mistake is to take the expected
result from the code itself. This will result in a
test case that well always succeed, which of
course is not the intention with testing.

99

09/20/23 SK 99

Testování výrazů/instrukcí
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

Cvičení

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

When creating test cases for statement
coverage we can make use of the control
flow graph. We know the statement coverage
requires statements in the code to be
executed. We also know that the boxes and
the diamonds represent all the statements in
the code.

By following the two blue arrows through the
code we cover all the diamonds and all the
boxes are covered and thus we have
statement coverage (according to the relation
with McCabe measure there should be three
or less test cases and in this case two were
enough).

By examine the relation we can now also
deduce that in the optimal choice of test
cases, number of test cases for decision
coverage should be either two or three:

Statement Coverage (2) =< Decision Coverage
=< McCabe’s Measure (3)

100

09/20/23 SK 100

Testování skoků/rozhodování (Branch/Decision
Testing)

● Vytvoří se testovací případy tak aby se každé rozhodnutí
provedlo s výsledkem TRUE a FALSE
– Ekvivalentní k provedení všech skoků

● Vyžaduje nástroje
– Instrumentace kódu
– Měření

● Pokrytí

Cvičení

Pokrytí rozhodování =
Provedené výstupy rozhodnutí

2 * Celkový počet rozhodování

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

101

09/20/23 SK 101

Testování skoků/rozhodování
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

Cvičení

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

When creating test cases for statement
coverage we can make use of the control
flow graph. We know the statement coverage
requires statements in the code to be
executed. We also know that the boxes and
the diamonds represent all the statements in
the code.

By following the two blue arrows through the
code we cover all the diamonds and all the
boxes are covered and thus we have
statement coverage (according to the relation
with McCabe measure there should be three
or less test cases and in this case two were
enough).

By examine the relation we can now also
deduce that in the optimal choice of test
cases, number of test cases for decision
coverage should be either two or three:

Statement Coverage (2) =< Decision Coverage
=< McCabe’s Measure (3)

09/20/23 SK 102

Testování pokrytí cest (Path coverage)
● Pokrytí všech možných průchodů kódem (kombinace

jednotlivých rozhodování)
● Kód s cykly

– testy všechny možné počty průchodu → nereálné
– Doporučené testovat: 0 průchodů, 1 průchod, n průchodů

● Pokrytí

Cvičení

Pokrytí cest =
Počet testovaných cest

2 ^ Počet rozhodnutí

102

103

09/20/23 SK 103

Testování pokrytí cest
public void adjustTemperature2() {

 double temp1 = readTempeSensor1();

 double temp2 = readTempeSensor2();

 Aircondition acUnit1State = null;

 Aircondition acUnit2State = null;

 if(temp1 <=15) {

 acUnit1State = Aircondition.HEATING;

 }

 if(temp2>=25) {

 acUnit2State = Aircondition.COOLING;

 }

 acUnit1State.execute();

 acUnit2State.execute();

}

Cvičení

temp1 = readTempeSensor1();

temp2 = readTempeSensor2();

acUnit1State = null;

acUnit2State = null;

temp1 =< 15

temp2 >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

When creating test cases for statement
coverage we can make use of the control
flow graph. We know the statement coverage
requires statements in the code to be
executed. We also know that the boxes and
the diamonds represent all the statements in
the code.

By following the two blue arrows through the
code we cover all the diamonds and all the
boxes are covered and thus we have
statement coverage (according to the relation
with McCabe measure there should be three
or less test cases and in this case two were
enough).

By examine the relation we can now also
deduce that in the optimal choice of test
cases, number of test cases for decision
coverage should be either two or three:

Statement Coverage (2) =< Decision Coverage
=< McCabe’s Measure (3)

09/20/23 SK 104

Testování toku dat (Data flow coverage)
01: public QResult quadratic(double a,
double b, double c) {

02: double disc = b*b - 4*a*c;

03: QResult r = new QResult();

04: if(disc < 0) {

05: r.isComplex = true;

06: } else {

07: r.isComplex = false;

08: }

09: if(!r.isComplex) {

10: r.r1 = (-b + Math.sqrt(disc))/(2*a);

11: r.r2 = (-b - Math.sqrt(disc))/(2*a);

12: }

13: return r;

14: }

line
kategorie

definice c-use p-use
1 a,b,c
2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2
4 disc
5 r.isComplex
6

7 r.isComplex
8
9 r.isComplex

10 r.r1 a,b,disc
11 r.r2 a,b,disc
12

13
 r.isComplex

, r.r1, r.r2

14

Cvičení

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

104

09/20/23 SK 105

Testování toku dat (Data flow coverage)
line kategorie

definice c-use p-use
1 a,b,c
2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2
4
5 disc
6 r.isComplex
7
8 r.isComplex
9

10 r.isComplex
11 r.r1 a,b,disc
12 r.r2 a,b,disc

13
 r.isComplex,

r.r1, r.r2
14

Cvičení

Dvojice
definice → použití proměnné
Počátek → konec c-use p-use

1→2 a,b,c
1→11 a,b,c
1→12 a,b
2→5 disc
2→11 disc
2→12 disc
3→10 r.isComplex

3→13
r.isComplex,

r.r1, r.r2
6→10 r.isComplex
6→13 r.isComplex
8→10 r.isComplex

8→13 r.isComplex
11→13 r.r1
12→13 r.r2

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

105

09/20/23 SK 106

Testování podmínek skoků (Branch Condition Testing)
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

Případ A B C

1 FALSE FALSE FALSE

2 TRUE TRUE TRUE

Cvičení

Každý oberand podmínky se musí provést pro
hodnotu true i false.

106

09/20/23 SK 107

Testování kombinace podmínek skoků
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

• Testuje všechny
kombinace
booleovských hodnot A,
B, C

Cvičení

Případ A B C

1 FALSE FALSE FALSE

2 TRUE FALSE FALSE

3 FALSE TRUE FALSE

4 FALSE FALSE TRUE

5 TRUE TRUE FALSE

6 FALSE TRUE TRUE

7 TRUE FALSE TRUE

8 TRUE TRUE TRUE

Každý oberand podmínky se musí provést pro
hodnotu true i false.

107

09/20/23 SK 108

Testování změny výsledku podmínky
Případ A B C Výstup

A1 FALSE FALSE TRUE FALSE
A2 TRUE FALSE TRUE TRUE

Případ A B C Výstup
B1 FALSE FALSE TRUE FALSE
B2 FALSE TRUE TRUE TRUE

Případ A B C Výstup
C1 FALSE TRUE TRUE TRUE
C2 FALSE TRUE FALSE FALSE

Případ A B C Výstup
1 (A1,B1) FALSE FALSE TRUE FALSE

2 (A2) TRUE FALSE TRUE TRUE
3 (B2,C1) FALSE TRUE TRUE TRUE

4 (C2) FALSE TRUE FALSE FALSE

Cvičení

Modified Condition Decision Testing and Coverage
Modified Condition Decision Coverage (MCDC) is a pragmatic compromise

which requires fewer
test cases than Branch Condition Combination Coverage. It is widely used in

the development of
avionics software, as required by RTCA/DO-178B.
Modified Condition Decision Coverage requires test cases to show that each

Boolean operand (A, B
and C) can independently affect the outcome of the decision. This is less than

all the combinations (as
required by Branch Condition Combination Coverage).
For the example decision condition [A or (B and C)], we first require a pair of

test cases where
changing the state of A will change the outcome, but B and C remain constant,

i.e. that A can
independently affect the outcome of the condition:

108

09/20/23 SK 109

Testování LCSAJ
(Linear Code Sequence and Jump)

Cvičení

1.int main (void) {

2. int count = 0, totals[MAXCOLUMNS], val =
0;

3. memset (totals, 0, MAXCOLUMNS *
sizeof(int));

4. count = 0;

5. while (count < ITERATIONS) {

6. val = abs(rand()) % MAXCOLUMNS;

7. totals[val] += 1;

8. if (totals[val] > MAXCOUNT) {

9. totals[val] = MAXCOUNT;

10. }

11. count++;

12. }

13. return (0);

14.}

LCSAJ
Číslo Start Konec Skok

na

1 1 5 13

2 1 8 11

3 1 12 5

4 5 5 13

5 5 8 11

6 5 12 5

7 11 12 5

8 13 13 −1

http://en.wikipedia.org/wiki/
Linear_code_sequence_and_jump

109

110

09/20/23 SK 110

4.4 – Testová data
Příprava testových dat
● Profesionální generátory dat
● Modifikovaná/degradovaná reálná data
● Nástroje pro administraci dat
● Vlastní generátory dat
● Excel, SQL skripty
● Nástroje pro automatizované testování (nástroje pro

spouštění testů, nástroje pro přípravu dat, nástroje pro
zátěžové testování, generátory zátěže, atd.)

• Professional data generators
• Data generator controlled by syntax and semantics
• Stochastic data generator
• Data generator based on heuristic algorithms
• Combination of previous methods

• Modified production data
The data must be degraded (omitting sensitive data) before using as test data. The advantage

is that we have test data that are close to real production data. The disadvantage is that
data must be modified to have all combinations needed for test cases.

• Data administration tools
E.g. File-AID/Data Solution (Compuware), RC Extract (CA), Startool/Comparex (Serena),

Relational Tools for Servers (Princeton Softech), detailed knowledge of DB structure and
links is needed. Tools are ready for it’s sometimes difficult and laborious.

• Own data generators
Development resources are needed, suitable when combining with Excel. Sophisticated data

can be generated which are tailored to the needs of test cases.
• Excel
DB tables are stored in Excel, SQL scripts generate DB structures tailored to the needs of test

cases. The initial data has to be stored manually – laborious.
• Test automation tools
E.g. WinRunner, QuickTest Pro, LoadRunner, SilkPerformer, etc. Data can be generated during

nights, test data can be stored to database, Excel or text files. Tools are often expensive.

111

09/20/23 SK 111

Co ovlivňuje přípravu testových dat?
● Složitost a funkcionalita aplikace
● Použitý vývojový nástroj
● Opakování testování
● Množství potřebných dat

• Complexity and functionality of the
application

It directly influences the range of testing,
mutual linking and the amount of test data
(financial systems must be tested in more
details than registration systems).

• Used development tool
In case of using test automation tools, the

development environment must be
compatible with used test tools.

• Repetition of testing
The efficiency of using test automation tools is

higher the higher repetition of the same test
cases (regression testing) is (valid not only
for test data preparation but also for test
execution.

• The amount of data needed
Small data records are prepared by simple

tools (Excel, SQL scripts). Bigger data
records are prepared by automation tools.

112

09/20/23 SK 112

Doporučení pro testová data
● Nemazejte stará testová data
● Popisujete testová data
● Kontrolujte testová data
● Očekávané výsledky

• Don’t remove old test data
Create test data archive for future use.
• Describe test data
Create your own information system from

metadata describing content, form and
effectiveness of test data.

• Check test data
Test data must be error free.
• Expected results
Don’t underestimate time needed for setting

expected results for generated test data.

	Slide 1
	Slide 2
	Historie
	1.1- Co je to Testování softwaru (2)
	Slide 5
	1.1- Co je to Testování softwaru (3)
	1.1- Co je to Testování softwaru (4)
	1.2-Testovací terminologie
	1.2-Testovací terminologie (2)
	1.3-Proč je testování nezbytné (2)
	Slide 11
	1.3-Proč je testování nezbytné (3)
	1.3-Proč je testování nezbytné (4)
	1.3- Proč je testování nezbytné (5)
	1.3- Proč je testování nezbytné (7)
	1.3- Proč je testování nezbytné (6)
	1.3- Proč je testování nezbytné (8)
	Slide 18
	1.3- Proč je testování nezbytné (9)
	1.4-Základní testovací proces
	1.4-Základní testovací proces (2)
	1.4-Základní testovací proces (3)
	1.4-Základní testovací proces (4)
	1.4-Základní testovací proces (5)
	Slide 25
	1.4-Základní testovací proces (6)
	1.4-Základní testovací proces (6)
	1.4-Základní testovací proces (7)
	1.4-Základní testovací proces (8)
	1.5-Psychologie testování
	1.6-Opakované testování a Regresní testování (2)
	1.6-Opakované testování a Regresní testování (3)
	1.6-Opakované testování a Regresní testování (4)
	1.6 - Opakované testování a Regresní testování (5)
	1.7-Očekávané výsledky
	1.7-Očekávané výsledky (2)
	1.7-Očekávané výsledky (3)
	1.7-Očekávané výsledky (4)
	1.7-Prioritizace testů
	1.7-Prioritizace testů (2)
	1.7-Prioritizace testů (3)
	2.1-Modely pro testování
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	V&V – Where is truth?
	2.1-Modely pro testování (2)
	2.1- Modely pro testování (3)_clipboard0
	2.1- Modely pro testování (3)
	2.1- Modely pro testování (4)
	2.1- Modely pro testování (5)
	2.4 – Testování komponent
	2.4 – Testování komponent (2)
	2.4 – Testování komponent (3)
	2.1- Modely pro testování (8)
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	3.3 – Statická analýza
	3.3 – Statická analýza (2)_clipboard0
	3.3 – Statická analýza (3)
	3.3 – Statická analýza (4)
	4 – Dynamické testovací techniky
	4.1 – Testování Black- a White-box
	4.1 – Testování Black- a White-box (2)
	4.1 – Testování Black- a White-box (3)
	4.1 – Testování Black- a White-box (4)
	4.2 –Techniky Black-box testování
	4.2 –Techniky Black-box testování (2)
	4.2 –Techniky Black-box testování (3)
	4.2.1 – Ekvivalentní rozdělení
	4.2.1 – Ekvivalentní rozdělení (2)
	4.2.2 – Analýza hraničních hodnot
	4.2.2 – Analýza hraničních hodnot (2)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	4.2.2 – Analýza hraničních hodnot (3)
	4.2.2 – Analýza hraničních hodnot (4)
	4.2.3 –Testování přechodu mezi stavy
	4.2.3 –Testování přechodu mezi stavy (2)_clipboard0
	4.3 – Techniky White-Box testování
	4.3 – Techniky White-Box testování (2)
	4.3 – Techniky White-Box testování (3)
	4.3.1 – Testování výrazů/instrukcí (Statement coverage)
	4.3.1 – Testování výrazů/instrukcí (2)_clipboard0
	4.3.2 – Testování skoků/rozhodování (Branch/Decision Testing)
	Slide 101
	Testování pokrytí cest (Path coverage)
	Slide 103
	Slide 104
	Slide 105
	4.3.4 – Testování podmínek skoků (Branch Condition Testing)_clipboard1
	Slide 107
	4.3.6 – Testování změny podmínky_clipboard3
	4.3.7 – Testování LCSAJ (Linear Code Sequence and Jump)_clipboard4
	4.4 – Testová data
	4.4 – Testová data (2)
	4.4 – Testová data (3)

