

www.vsb.cz

VEA – Vývoj Enterprise Aplikací

David Ježek
david.jezek@vsb.cz

Tel: 597 325 874
Místnost: EA406

17.02.2024 VEA - Vývoj Enterprise Aplikací 4

Architecture?
● impressive-sounding words
● the highest-level breakdown of a system into its parts
● decisions that are hard to change
● architecture is a subjective thing, a shared understanding of a system's design

by the expert developers on a project
● Commonly this shared understanding is in the form of the major components

of the system and how they interact.
● decisions, in that it's the decisions that developers wish they could get right

early on because they're perceived as hard to change
● if you find that something is easier to change than you once thought, then it's

no longer architectural
● architecture boils down to the important stuff—whatever that is.

Architecture
The software industry delights in taking words and stretching them into a myriad of subtly

contradictory meanings. One of the biggest sufferers is "architecture." I tend to look at
"architecture" as one of those impressive-sounding words, used primarily to indicate that
we're talking something that's important. But I'm pragmatic enough not to let my cynicism
get in the way of attracting people to my book. :-)

"Architecture" is a term that lots of people try to define, with little agreement. There are two
common elements: One is the highest-level breakdown of a system into its parts; the other,
decisions that are hard to change. It's also increasingly realized that there isn't just one way
to state a system's architecture; rather, there are multiple architectures in a system, and the
view of what is architecturally significant is one that can change over a system's lifetime.

From time to time Ralph Johnson has a truly remarkable posting on a mailing list, and he did
one on architecture just as I was finishing the draft of this book. In this posting he brought
out the point that architecture is a subjective thing, a shared understanding of a system's
design by the expert developers on a project. Commonly this shared understanding is in
the form of the major components of the system and how they interact. It's also about
decisions, in that it's the decisions that developers wish they could get right early on
because they're perceived as hard to change. The subjectivity comes in here as well
because, if you find that something is easier to change than you once thought, then it's no
longer architectural. In the end architecture boils down to the important stuff—whatever that
is.

In this book I present my perception of the major parts of an enterprise application and of the
decisions I wish I could get right early on. The architectural pattern I like the most is that of
layers, which I describe more in Chapter 1. This book is thus about how you decompose an
enterprise application into layers and how these layers work together. Most nontrivial
enterprise applications use a layered architecture of some form, but in some situations
other approaches, such as pipes and filters, are valuable. I don't go into those situations,
focusing instead on the context of a layered architecture because it's the most widely
useful.

Some of the patterns in this book can reasonably be called architectural, in that they represent
significant decisions about these parts; others are more about design and help you to
realize that architecture. I don't make any strong attempt to separate the two, since what is
architectural or not is so subjective.

4

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch01.html#ch01

17.02.2024 VEA - Vývoj Enterprise Aplikací 5

● Enterprise software, also known as enterprise
application software (EAS), is purpose-designed
computer software used to satisfy the needs of an
organization rather than individual users. Such
organizations can vary from businesses, schools,
interest-based user groups[1] and clubs, retailers, or
governments.[2] Enterprise software is an integral part
of a (computer based) Information System, and as such
includes web site software production.

Enterprise application characteristic

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application

enterprise software a software suite with common business
applications, tools for modeling how the entire organization
works, and development tools for building applications
unique to the organizationintegration, and
enterprise forms automation.

5

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Organization
https://en.wikipedia.org/wiki/Enterprise_software#cite_note-1
https://en.wikipedia.org/wiki/Enterprise_software#cite_note-2
https://en.wikipedia.org/wiki/Information_System
https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

17.02.2024 VEA - Vývoj Enterprise Aplikací 6

● Persistent data
● A lot of data
● Access data concurrently
● A lot of user interface screens
● Integrate with other enterprise applications
● Conceptual dissonance
● complex business "illogic“

Enterprise application characteristic

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically business-oriented tools such as online shopping and online payment
processing, interactive product catalogue, automated billing systems, security, enterprise content management,
IT service management, customer relationship management, enterprise resource planning, business intelligence,
project management, collaboration, human resource management, manufacturing, enterprise application

enterprise software a software suite with common business applications, tools for modeling how the entire organization
works, and development tools for building applications unique to the organizationintegration, and
enterprise forms automation.

Enterprise Applications
Lots of people write computer software, and we call all of it software development. However, there are distinct kinds of

software out there, each of which has its own challenges and complexities. This comes out when I talk with some of my
friends in the telecom field. In some ways enterprise applications are much easier than telecoms software—we don't
have very hard multithreading problems, and we don't have hardware and software integration. But in other ways it's
much tougher. Enterprise applications often have complex data—and lots of it—to work on, together with business
rules that fail all tests of logical reasoning. Although some techniques and patterns are relevant for all kinds of software,
many are relevant for only one particular branch.

In my career I've concentrated on enterprise applications, so my patterns here are all about that. (Other terms for
enterprise applications include "information systems" or, for those with a long memory, "data processing.") But what do
I mean by the term "enterprise application"? I can't give a precise definition, but I can give some indication of my
meaning.

I'll start with examples. Enterprise applications include payroll, patient records, shipping tracking, cost analysis, credit
scoring, insurance, supply chain, accounting, customer service, and foreign exchange trading. Enterprise applications
don't include automobile fuel injection, word processors, elevator controllers, chemical plant controllers, telephone
switches, operating systems, compilers, and games.

Enterprise applications usually involve persistent data. The data is persistent because it needs to be around between
multiple runs of the program—indeed, it usually needs to persist for several years. Also during this time there will be
many changes in the programs that use it. It will often outlast the hardware that originally created much of it, and
outlast operating systems and compilers. During that time there'll be many changes to the structure of the data in order
to store new pieces of information without disturbing the old pieces. Even if there's a fundamental change and the
company installs a completely new application to handle a job, the data has to be migrated to the new application.

There's usually a lot of data—a moderate system will have over 1 GB of data organized in tens of millions of records—so
much that managing it is a major part of the system. Older systems used indexed file structures such as IBM's VSAM
and ISAM. Modern systems usually use databases, mostly relational databases. The design and feeding of these
databases has turned into a subprofession of its own.

Usually many people access data concurrently. For many systems this may be less than a hundred people, but for Web-
based systems that talk over the Internet this goes up by orders of magnitude. With so many people there are definite
issues in ensuring that all of them can access the system properly. But even without that many people, there are still
problems in making sure that two people don't access the same data at the same time in a way that causes errors.
Transaction manager tools handle some of this burden, but often it's impossible to hide this from application
developers.

With so much data, there's usually a lot of user interface screens to handle it. It's not unusual to have hundreds of distinct
screens. Users of enterprise applications vary from occasional to regular, and normally they will have little technical
expertise. Thus, the data has to be presented lots of different ways for different purposes. Systems often have a lot of
batch processing, which is easy to forget when focusing on use cases that stress user interaction.

Enterprise applications rarely live on an island. Usually they need to integrate with other enterprise applications scattered
around the enterprise. The various systems are built at different times with different technologies, and even the
collaboration mechanisms will be different: COBOL data files, CORBA, messaging systems. Every so often the
enterprise will try to integrate its different systems using a common communication technology. Of course, it hardly
ever finishes the job, so there are several different unified integration schemes in place at once. This gets even worse
as businesses seek to integrate with their business partners as well.

Even if a company unifies the technology for integration, they run into problems with differences in business process and
conceptual dissonance with the data. One division of the company may think a customer is someone with whom it has
a current agreement; another division also counts those that had a contract but don't any longer; another counts
product sales but not service sales. That may sound easy to sort out, but when you have hundreds of records in which
every field can have a subtly different meaning, the sheer size of the problem becomes a challenge—even if the only
person who knows what the field really means is still with the company. (And, of course, all of this changes without
warning.) As a result, data has to be constantly read, munged, and written in all sorts of different syntactic and
semantic formats.

Then there's the matter of what comes under the term "business logic." I find this a curious term because there are few
things that are less logical than business logic. When you build an operating system you strive to keep the whole thing
logical. But business rules are just given to you, and without major political effort there's nothing you can do to change
them. You have to deal with a haphazard array of strange conditions that often interact with each other in surprising
ways. Of course, they got that way for a reason: Some salesman negotiated to have a certain yearly payment two days
later than usual because that fit with his customer's accounting cycle and thus won a couple of million dollars in
business. A few thousand of these one-off special cases is what leads to the complex business "illogic" that makes
business software so difficult. In this situation you have to organize the business logic as effectively as you can,
because the only certain thing is that the logic will change over time.

For some people the term "enterprise application" implies a large system. However, it's important to remember that not all
enterprise applications are large, even though they can provide a lot of value to the enterprise. Many people assume
that, since small systems aren't large, they aren't worth bothering with, and to some degree there's merit here. If a
small system fails, it usually makes less noise than a big system. Still, I think such thinking tends to shortchange the
cumulative effect of many small projects. If you can do things that improve small projects, then that cumulative effect
can be very significant on an enterprise, particularly since small projects often have disproportionate value. Indeed, one
of the best things you can do is turn a large project into a small one by simplifying its architecture and process.

6

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

17.02.2024 VEA - Vývoj Enterprise Aplikací 7

● An enterprise application usually means an application
that:
– Serves a large number of users at once
– Works with large amounts of data in a database
– Communicates with other systems
– Is robust and secure

Enterprise application characteristic

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application integration, and
enterprise forms automation.

7

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

17.02.2024 VEA - Vývoj Enterprise Aplikací 8

● Enterprise applications include payroll, patient records,
shipping tracking, cost analysis, credit scoring,
insurance, supply chain, accounting, customer service,
and foreign exchange trading.

● Enterprise applications don't include automobile fuel
injection, word processors, elevator controllers,
chemical plant controllers, telephone switches,
operating systems, compilers, and games.

Enterprise application characteristic

https://en.wikipedia.org/wiki/Enterprise_software

Services provided by enterprise software are typically
business-oriented tools such as online shopping and
online payment processing, interactive product catalogue,
automated billing systems, security,
enterprise content management, IT service management,
customer relationship management,
enterprise resource planning, business intelligence,
project management, collaboration,
human resource management, manufacturing,
enterprise application integration, and
enterprise forms automation.

8

https://en.wikipedia.org/wiki/Online_payment
https://en.wikipedia.org/wiki/Enterprise_content_management
https://en.wikipedia.org/wiki/IT_service_management
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Collaboration
https://en.wikipedia.org/wiki/Human_resource_management
https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Enterprise_forms_automation

17.02.2024 VEA - Vývoj Enterprise Aplikací 9

● B2C (business to customer) online retailer
● system that automates the processing of leasing agreements
● simple expense-tracking system for a small company

● can't come up with a single architecture that will be right for all three
● Choosing an architecture means that you have to understand the particular

problems of your system and choose an appropriate design based on that
understanding

● don't give a single solution for your enterprise needs
● many of the patterns are about choices and alternatives
● You can't build enterprise software without thinking

Kinds of Enterprise Application

Kinds of Enterprise Application
When we discuss how to design enterprise applications, and what patterns to use, it's important to

realize that enterprise applications are all different and that different problems lead to different
ways of doing things. I have a set of alarm bells that go off when people say, "Always do this." For
me much of the challenge (and interest) in design is in knowing about alternatives and judging the
trade-offs of using one alternative over another. There is a large space of alternatives to choose
from, but here I'll pick three points on this very big plane.

Consider a B2C (business to customer) online retailer: People browse and—with luck and a shopping
cart—buy. For such a system we need to be able to handle a very high volume of users, so our
solution needs to be not only reasonably efficient in terms of resources used but also scalable so
that you can increase the load by adding more hardware. The domain logic for such an application
can be pretty straightforward: order capturing, some relatively simple pricing and shipping
calculations, and shipment notification. We want anyone to be able access the system easily, so
that implies a pretty generic Web presentation that can be used with the widest possible range of
browsers. Data source includes a database for holding orders and perhaps some communication
with an inventory system to help with availability and delivery information.

Contrast this with a system that automates the processing of leasing agreements. In some ways this
is a much simpler system than the B2C retailer's because there are many fewer users—no more
than a hundred or so at one time. Where it's more complicated is in the business logic. Calculating
monthly bills on a lease, handling events such as early returns and late payments, and validating
data as a lease is booked are all complicated tasks, since much of the leasing industry's
competition comes in the form of little variations over deals done in the past. A complex business
domain such as this is challenging because the rules are so arbitrary.

Such a system also has more complexity in the user interface (UI). At the least this means a much
more involved HTML interface with more, and more complex, screens. Often these systems have
UI demands that lead users to want a more sophisticated presentation than a HTML front end
allows, so a more conventional rich-client interface is needed. A more complex user interaction
also leads to more complicated transaction behavior: Booking a lease may take an hour or two,
during which time the user is in a logical transaction. We also see a complex database schema
with perhaps two hundred tables and connections to packages for asset valuation and pricing.

A third example point is a simple expense-tracking system for a small company. Such a system has
few users and simple logic and can easily be made accessible across the company with an HTML
presentation. The only data source is a few tables in a database. As simple as it is, a system like
this is not devoid of a challenge. You have to build it very quickly and you have to bear in mind
that it may grow as people want to calculate reimbursement checks, feed them into the payroll
system, understand tax implications, provide reports for the CFO, tie into airline reservation Web
services, and so on. Trying to use the architecture for either of the other two example systems will
slow down the development of this one. If a system has business benefits (as all enterprise
applications should), delaying those benefits costs money. However, you don't want to make
decisions now that will hamper future growth. But if you add flexibility now and get it wrong, the
complexity added for flexibility's sake may actually make it harder to evolve in the future and may
delay deployment and thus delay the benefit. Although such systems may be small, most
enterprises have a lot of them so the cumulative effect of an inappropriate architecture can be
significant.

Each of these three enterprise application examples has difficulties, and they are different difficulties.
As a result you can't come up with a single architecture that will be right for all three. Choosing an
architecture means that you have to understand the particular problems of your system and
choose an appropriate design based on that understanding. That's why in this book I don't give a
single solution for your enterprise needs. Instead, many of the patterns are about choices and
alternatives. Even when you choose a particular pattern, you'll have to modify it to meet your
demands. You can't build enterprise software without thinking, and all any book can do is give you
more information to base your decisions on.

If this applies to patterns, it also applies to tools. Although it obviously makes sense to pick as small a
set of tools as you can to develop applications, you also have to recognize that different tools are
best for different purposes. Beware of using a tool that is really suited for a different kind of
application—it may hinder more than help.

9

17.02.2024 VEA - Vývoj Enterprise Aplikací 10

● Response time

● Responsiveness

● Latency

● Throughput

● performance is either throughput or response time—whichever matters more to you

● Load

● Load sensitivity - degradation

● Efficiency

● The capacity of a system

● Scalability
– Vertical scalability, or scaling up

– Horizontal scalability, or scaling out

Thinking About Performance

Thinking About Performance
Many architectural decisions are about performance. For most performance issues I prefer to get a system up and running, instrument it, and then use a disciplined optimization

process based on measurement. However, some architectural decisions affect performance in a way that's difficult to fix with later optimization. And even when it is easy to
fix, people involved in the project worry about these decisions early.

It's always difficult to talk about performance in a book such as this. The reason that it's so difficult is that any advice about performance should not be treated as fact until it's
measured on your configuration. Too often I've seen designs used or rejected because of performance considerations, which turn out to be bogus once somebody actually
does some measurements on the real setup used for the application.

I give a few guidelines in this book, including minimizing remote calls, which has been good performance advice for quite a while. Even so, you should verify every tip by
measuring on your application. Similarly there are several occasions where code examples in this book sacrifice performance for understandability. Again it's up to you to
apply the optimizations for your environment. Whenever you do a performance optimization, however, you must measure both before and after, otherwise, you may just be
making your code harder to read.

There's an important corollary to this: A significant change in configuration may invalidate any facts about performance. Thus, if you upgrade to a new version of your virtual
machine, hardware, database, or almost anything else, you must redo your performance optimizations and make sure they're still helping. In many cases a new
configuration can change things. Indeed, you may find that an optimization you did in the past to improve performance actually hurts performance in the new environment.

Another problem with talking about performance is the fact that many terms are used in an inconsistent way. The most noted victim of this is "scalability," which is regularly used
to mean half a dozen different things. Here are the terms I use.

Response time is the amount of time it takes for the system to process a request from the outside. This may be a UI action, such as pressing a button, or a server API call.
Responsiveness is about how quickly the system acknowledges a request as opposed to processing it. This is important in many systems because users may become frustrated

if a system has low responsiveness, even if its response time is good. If your system waits during the whole request, then your responsiveness and response time are the
same. However, if you indicate that you've received the request before you complete, then your responsiveness is better. Providing a progress bar during a file copy
improves the responsiveness of your user interface, even though it doesn't improve response time.

Latency is the minimum time required to get any form of response, even if the work to be done is nonexistent. It's usually the big issue in remote systems. If I ask a program to
do nothing, but to tell me when it's done doing nothing, then I should get an almost instantaneous response if the program runs on my laptop. However, if the program runs
on a remote computer, I may get a few seconds just because of the time taken for the request and response to make their way across the wire. As an application
developer, I can usually do nothing to improve latency. Latency is also the reason why you should minimize remote calls.

Throughput is how much stuff you can do in a given amount of time. If you're timing the copying of a file, throughput might be measured in bytes per second. For enterprise
applications a typical measure is transactions per second (tps), but the problem is that this depends on the complexity of your transaction. For your particular system you
should pick a common set of transactions.

In this terminology performance is either throughput or response time—whichever matters more to you. It can sometimes be difficult to talk about performance when a technique
improves throughput but decreases response time, so it's best to use the more precise term. From a user's perspective responsiveness may be more important than
response time, so improving responsiveness at a cost of response time or throughput will increase performance.

Load is a statement of how much stress a system is under, which might be measured in how many users are currently connected to it. The load is usually a context for some
other measurement, such as a response time. Thus, you may say that the response time for some request is 0.5 seconds with 10 users and 2 seconds with 20 users.

Load sensitivity is an expression of how the response time varies with the load. Let's say that system A has a response time of 0.5 seconds for 10 through 20 users and system
B has a response time of 0.2 seconds for 10 users that rises to 2 seconds for 20 users. In this case system A has a lower load sensitivity than system B. We might also use
the term degradation to say that system B degrades more than system A.

Efficiency is performance divided by resources. A system that gets 30 tps on two CPUs is more efficient than a system that gets 40 tps on four identical CPUs.
The capacity of a system is an indication of maximum effective throughput or load. This might be an absolute maximum or a point at which the performance dips below an

acceptable threshold.
Scalability is a measure of how adding resources (usually hardware) affects performance. A scalable system is one that allows you to add hardware and get a commensurate

performance improvement, such as doubling how many servers you have to double your throughput. Vertical scalability, or scaling up, means adding more power to a
single server, such as more memory. Horizontal scalability, or scaling out, means adding more servers.

The problem here is that design decisions don't affect all of these performance factors equally. Say we have two software systems running on a server: Swordfish's capacity is
20 tps while Camel's capacity is 40 tps. Which has better performance? Which is more scalable? We can't answer the scalability question from this data, and we can only
say that Camel is more efficient on a single server. If we add another server, we notice that swordfish now handles 35 tps and camel handles 50 tps. Camel's capacity is
still better, but Swordfish looks like it may scale out better. If we continue adding servers we'll discover that Swordfish gets 15 tps per extra server and Camel gets 10.
Given this data we can say that Swordfish has better horizontal scalability, even though Camel is more efficient for less than five servers.

When building enterprise systems, it often makes sense to build for hardware scalability rather than capacity or even efficiency. Scalability gives you the option of better
performance if you need it. Scalability can also be easier to do. Often designers do complicated things that improve the capacity on a particular hardware platform when it
might actually be cheaper to buy more hardware. If Camel has a greater cost than Swordfish, and that greater cost is equivalent to a couple of servers, then Swordfish
ends up being cheaper even if you only need 40 tps. It's fashionable to complain about having to rely on better hardware to make our software run properly, and I join this
choir whenever I have to upgrade my laptop just to handle the latest version of Word. But newer hardware is often cheaper than making software run on less powerful
systems. Similarly, adding more servers is often cheaper than adding more programmers—providing that a system is scalable.

[Team LiB]

10

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 11

● benefits
– You can understand a single layer as a coherent whole without knowing much about

the other layers.
– You can substitute layers with alternative implementations of the same basic services
– You minimize dependencies between layers.
– Layers make good places for standardization.
– Once you have a layer built, you can use it for many higher-level services.

● downsides
– Layers encapsulate some, but not all, things well. As a result you sometimes get

cascading changes.
– Extra layers can harm performance.

● But the hardest part of a layered architecture is deciding what layers to have
and what the responsibility of each layer should be.

Layering

Chapter 1. Layering
Layering is one of the most common techniques that software designers use to break apart a

complicated software system. You see it in machine architectures, where layers descend from a
programming language with operating system calls into device drivers and CPU instruction sets,
and into logic gates inside chips. Networking has FTP layered on top of TCP, which is on top of IP,
which is on top of ethernet.

When thinking of a system in terms of layers, you imagine the principal subsystems in the software
arranged in some form of layer cake, where each layer rests on a lower layer. In this scheme the
higher layer uses various services defined by the lower layer, but the lower layer is unaware of the
higher layer. Furthermore, each layer usually hides its lower layers from the layers above, so layer
4 uses the services of layer 3, which uses the services of layer 2, but layer 4 is unaware of layer 2.
(Not all layering architectures are opaque like this, but most are—or rather most are mostly
opaque.

Breaking down a system into layers has a number of important benefits.
You can understand a single layer as a coherent whole without knowing much about the other layers.

You can understand how to build an FTP service on top of TCP without knowing the details of how
ethernet works.

You can substitute layers with alternative implementations of the same basic services. An FTP
service can run without change over ethernet, PPP, or whatever a cable company uses.

You minimize dependencies between layers. If the cable company changes its physical transmission
system, providing they make IP work, we don't have to alter our FTP service.

Layers make good places for standardization. TCP and IP are standards because they define how
their layers should operate.

Once you have a layer built, you can use it for many higher-level services. Thus, TCP/IP is used by
FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level protocols would have to write
their own lower-level protocols.

Layering is an important technique, but there are downsides.
Layers encapsulate some, but not all, things well. As a result you sometimes get cascading changes.

The classic example of this in a layered enterprise application is adding a field that needs to
display on the UI, must be in the database, and thus must be added to every layer in between.

Extra layers can harm performance. At every layer things typically need to be transformed from one
representation to another. However, the encapsulation of an underlying function often gives you
efficiency gains that more than compensate. A layer that controls transactions can be optimized
and will then make everything faster.

But the hardest part of a layered architecture is deciding what layers to have and what the
responsibility of each layer should be.

11

17.02.2024 VEA - Vývoj Enterprise Aplikací 12

● tier as implying a physical separation

● layer to stress that you don't have to run the layers on
different machines

Layer vs. Tier

When people discuss layering, there's often some confusion
over the terms layer and tier. Often the two are used as
synonyms, but most people see tier as implying a physical
separation. Client–server systems are often described as
two-tier systems, and the separation is physical: The client is
a desktop and the server is a server. I use layer to stress
that you don't have to run the layers on different machines. A
distinct layer of domain logic often runs on either a desktop
or the database server. In this situation you have two nodes
but three distinct layers. With a local database I can run all
three layers on a single laptop, but there will still be three
distinct layers.

12

17.02.2024 VEA - Vývoj Enterprise Aplikací 13

● Presentation
– Provision of services, display of information (e.g., in Windows

or HTML, handling of user request (mouse clicks, keyboard
hits), HTTP requests, command-line invocations, batch API)

● Domain
– Logic that is the real point of the system

● Data Source
– Communication with databases, messaging systems,

transaction managers, other packages

Layers

[Team LiB]
The Three Principal Layers

For this book I'm centering my discussion around an architecture of three primary layers: presentation, domain, and data source. (I'm following the names used in [Brown et al.]).
Table 1.1 summarizes these layers.

Presentation logic is about how to handle the interaction between the user and the software. This can be as simple as a command-line or text-based menu system, but these
days it's more likely to be a rich-client graphics UI or an HTML-based browser UI. (In this book I use rich client to mean a Windows/Swing/fat-client UI, as opposed to an
HTML browser.) The primary responsibilities of the presentation layer are to display information to the user and to interpret commands from the user into actions upon the
domain and data source.

Table 1.1. Three Principal Layers
Layer
Responsibilities
Presentation
Provision of services, display of information (e.g., in Windows or HTML, handling of user request (mouse clicks, keyboard hits), HTTP requests, command-line invocations, batch

API)
Domain
Logic that is the real point of the system
Data Source
Communication with databases, messaging systems, transaction managers, other packages
Data source logic is about communicating with other systems that carry out tasks on behalf of the application. These can be transaction monitors, other applications, messaging

systems, and so forth. For most enterprise applications the biggest piece of data source logic is a database that is primarily responsible for storing persistent data.
The remaining piece is the domain logic, also referred to as business logic. This is the work that this application needs to do for the domain you're working with. It involves

calculations based on inputs and stored data, validation of any data that comes in from the presentation, and figuring out exactly what data source logic to dispatch,
depending on commands received from the presentation.

Sometimes the layers are arranged so that the domain layer completely hides the data source from the presentation. More often, however, the presentation accesses the data
store directly. While this is less pure, it tends to work better in practice. The presentation may interpret a command from the user, use the data source to pull the relevant
data out of the database, and then let the domain logic manipulate that data before presenting it on the glass.

A single application can often have multiple packages of each of these three subject areas. An application designed to be manipulated not only by end users through a rich-client
interface but also through a command line would have two presentations: one for the rich-client interface and one for the command line. Multiple data source components
may be present for different databases, but would be particularly for communication with existing packages. Even the domain may be broken into distinct areas relatively
separate from each other. Certain data source packages may only be used by certain domain packages.

So far I've talked about a user. This naturally raises the question of what happens when there is no a human being driving the software. This could be something new and
fashionable like a Web service or something mundane and useful like a batch process. In the latter case the user is the client program. At this point it becomes apparent
that there is a lot of similarity between the presentation and data source layers in that they both are about connection to the outside world. This is the logic behind Alistair
Cockburn's Hexagonal Architecture pattern [wiki], which visualizes any system as a core surrounded by interfaces to external systems. In Hexagonal Architecture
everything external is fundamentally an outside interface, and thus it's a symmetrical view rather than my asymmetric layering scheme.

I find this asymmetry useful, however, because I think there is a good distinction to be made between an interface that you provide as a service to others and your use of
someone else's service. Driving down to the core, this is the real distinction I make between presentation and data source. Presentation is an external interface for a
service your system offers to someone else, whether it be a complex human or a simple remote program. Data source is the interface to things that are providing a service
to you. I find it beneficial to think about these differently because the difference in clients alters the way you think about the service.

Although we can identify the three common responsibility layers of presentation, domain, and data source for every enterprise application, how you separate them depends on
how complex the application is. A simple script to pull data from a database and display it in a Web page may all be one procedure. I would still endeavor to separate the
three layers, but in that case I might do it only by placing the behavior of each layer in separate subroutines. As the system gets more complex, I would break the three
layers into separate classes. As complexity increased I would divide the classes into separate packages. My general advice is to choose the most appropriate form of
separation for your problem but make sure you do some kind of separation—at least at the subroutine level.

Together with the separation, there's also a steady rule about dependencies: The domain and data source should never be dependent on the presentation. That is, there should
be no subroutine call from the domain or data source code into the presentation code. This rule makes it easier to substitute different presentations on the same foundation
and makes it easier to modify the presentation without serious ramifications deeper down. The relationship between the domain and the data source is more complex and
depends upon the architectural patterns used for the data source.

One of the hardest parts of working with domain logic seems to be that people often find it difficult to recognize what is domain logic and what is other forms of logic. An informal
test I like is to imagine adding a radically different layer to an application, such as a command-line interface to a Web application. If there's any functionality you have to
duplicate in order to do this, that's a sign of where domain logic has leaked into the presentation. Similarly, do you have to duplicate logic to replace a relational database
with an XML file?

A good example of this is a system I was told about that contained a list of products in which all the products that sold over 10 percent more than they did the previous month
were colored in red. To do this the developers placed logic in the presentation layer that compared this month's sales to last month's sales and if the difference was more
than 10 percent, they set the color to red.

The trouble is that that's putting domain logic into the presentation. To properly separate the layers you need a method in the domain layer to indicate if a product has improving
sales. This method does the comparison between the two months and returns a Boolean value. The presentation layer then simply calls this Boolean method and, if true,
highlights the product in red. That way the process is broken into its two parts: deciding whether there is something highlightable and choosing how to highlight.

I'm uneasy with being overly dogmatic about this. When reviewing this book, Alan Knight commented that he was "torn between whether just putting that into the UI is the first
step on a slippery slope to hell or a perfectly reasonable thing to do that only a dogmatic purist would object to." The reason we are uneasy is because it's both!

[Team LiB]

13

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib09
#ch01table01
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib40
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

 JAT - Java Technology 14

Example of „Good“ Architecture

14

17.02.2024 VEA - Vývoj Enterprise Aplikací 15

● Multi-tier architecture
● Java EE API

– Servlets
– Java Server Faces
– Java Server Pages
– Persistence API
– …

● Runtime environment

Java EE Platform

The Java EE platform is built on top of the Java SE platform.
The Java EE platform provides:

- Huge API with support for internet communication, HTTP
connectivity, Web development, data persistency, …

- Runtime environment often called JavaEE container that
provide server side runtime environment often included as
part of web server.

We discuss this platform later in that course.

15

17.02.2024 VEA - Vývoj Enterprise Aplikací 16

Java EE Platform

The Java EE platform is built on top of the Java SE platform.
The Java EE platform provides:

- Huge API with support for internet communication, HTTP
connectivity, Web development, data persistency, …

- Runtime environment often called JavaEE container that
provide server side runtime environment often included as
part of web server.

We discuss this platform later in that course.

16

17.02.2024 VEA - Vývoj Enterprise Aplikací 17

Java EE Platform

The Java EE platform is built on top of the Java SE platform.
The Java EE platform provides:

- Huge API with support for internet communication, HTTP
connectivity, Web development, data persistency, …

- Runtime environment often called JavaEE container that
provide server side runtime environment often included as
part of web server.

We discuss this platform later in that course.

17

17.02.2024 VEA - Vývoj Enterprise Aplikací 18

Java EE – Web application

Web Applications
In the Java 2 platform, web components provide the dynamic extension capabilities for a

web
server. Web components are either Java servlets, JSP pages, or web service endpoints.

The
interaction between a web client and a web application is illustrated in Figure 3–1. The

client
sends an HTTP request to the web server. A web server that implements Java Servlet and
JavaServer Pages technology converts the request into an HTTPServletRequest object.

This
object is delivered to a web component, which can interact with JavaBeans components

or a
database to generate dynamic content. The web component can then generate an
HTTPServletResponse or it can pass the request to another web component. Eventually a

web
component generates a HTTPServletResponse object. The web server converts this

object to an
HTTP response and returns it to the client.
Servlets are Java programming language classes that dynamically process requests and

construct
responses. JSP pages are text-based documents that execute as servlets but allow a

more natural
approach to creating static content. Although servlets and JSP pages can be used
interchangeably, each has its own strengths. Servlets are best suited for service-oriented
applications (web service endpoints are implemented as servlets) and the control

functions of a
presentation-oriented application, such as dispatching requests and handling nontextual

data.
JSP pages are more appropriate for generating text-based markup such as HTML,

Scalable
Vector Graphics (SVG), WirelessMarkup Language (WML), and XML.
Since the introduction of Java Servlet and JSP technology, additional Java technologies

and
frameworks for building interactive web applications have been developed. Figure 3–2
illustrates these technologies and their relationships.

18

17.02.2024 VEA - Vývoj Enterprise Aplikací 19

Java EE – Technology for web services

Notice that Java Servlet technology is the foundation of all the web application
technologies, so

you should familiarize yourself with the material in Chapter 4, “Java Servlet Technology,”
even

if you do not intend to write servlets. Each technology adds a level of abstraction that
makes

web application prototyping and development faster and the web applications
themselves more

maintainable, scalable, and robust.
Web components are supported by the services of a runtime platform called a web

container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. It also gives web components access to APIs such as naming,
transactions, and email.
Certain aspects of web application behavior can be configured when the application is

installed,
or deployed, to the web container. The configuration information is maintained in a text

file in
XML format called a web application deployment descriptor (DD). ADDmust conform to

the
schema described in the Java Servlet Specification.
This chapter gives a brief overview of the activities involved in developing web

applications.
First it summarizes the web application life cycle. Then it describes how to package and

deploy
very simple web applications on the Application Server. It moves on to configuring web
applications and discusses how to specify the most commonly used configuration

parameters. It
then introduces an example, Duke’s Bookstore, which illustrates all the Java EE web-tier
technologies, and describes how to set up the shared components of this example.

Finally it
discusses how to access databases from web applications and set up the database

resources
needed to run Duke’s Bookstore.

19

17.02.2024 VEA - Vývoj Enterprise Aplikací 20

Servlet
is a Java class that is used to extend the capabilities of

a server that hosts applications accessed using the
request-response model.

● Servlet technology is capable of handling any request,
not just HTTP

● HTTP requests are the most common

Java Servlet

As soon as the web began to be used for delivering services, service providers
recognized the

need for dynamic content. Applets, one of the earliest attempts toward this goal, focused
on

using the client platform to deliver dynamic user experiences. At the same time,
developers also

investigated using the server platform for this purpose. Initially, Common Gateway
Interface

(CGI) scripts were the main technology used to generate dynamic content. Although
widely

used, CGI scripting technology has a number of shortcomings, including platform
dependence

and lack of scalability. To address these limitations, Java Servlet technology was created
as a

portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of

servers
that host applications accessed by means of a request-response programming model.

Although
servlets can respond to any type of request, they are commonly used to extend the

applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-

specific
servlet classes.
The javax.servlet and javax.servlet.http packages provide interfaces and classes for

writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle

methods.
When implementing a generic service, you can use or extend the GenericServlet class

provided
with the Java Servlet API. TheHttpServlet class provides methods, such as doGet and

doPost,
for handling HTTP-specific services.
This chapter focuses on writing servlets that generate responses to HTTP requests.

20

17.02.2024 JAT - Java Technologie 23

HTTPServlet - example
@WebServlet(description = "desc", urlPatterns = {"/MyServlet"})
public class MyFirstServlet extends HttpServlet {
 public MyFirstServlet() {
 super();
 }
 public String getServletInfo() {

return “My first servlet";
}
@Override
protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
doPost(request, response);
}
@Override
protected void doPost(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
PrintWriter pw = response.getWriter();
pw.println("<html><body>Hello world!</body></html>");
pw.close();
}

}

This example of source code for servlet generate web page with simple text “Hello world!”.

Servlet responses only on HTTP requests with HTTP methods GET and POST, because only
methods doPost() and doGet() are overridden. Because we don’t need different
response on method POST and GET the method doGet() simply call method doPost().

Method doPost() just generates HTML code with simple text “Hello world!”

23

17.02.2024 VEA - Vývoj Enterprise Aplikací 35

● Name
● The intent and the sketch
● Describes a motivating problem
● How It Works
● When to Use
● Further Reading
● Examples

Patterns

The Structure of the Patterns
Every author has to choose his pattern form. Some base their forms on a classic patterns book such as [Alexander et al.], [

Gang of Four], or [POSA]. Others make up their own. I've long wrestled with what makes the best form. On the one hand I don't
want something as small as the GOF form; on the other hand I need to have sections that support a reference book. So this is
what I've used for this book.

The first item is the name of the pattern. Pattern names are crucial, because part of the purpose of patterns is to create a vocabulary
that allows designers to communicate more effectively. Thus, if I tell you my Web server is built around a Front Controller (344) and
a Transform View (361) and you know these patterns, you have a very clear idea of my web server's architecture.

Next are two items that go together: the intent and the sketch. The intent sums up the pattern in a sentence or two; the sketch is a
visual representation of the pattern, often but not always a UML diagram. The idea is to create a brief reminder of what the pattern
is about so you can quickly recall it. If you already "have the pattern," meaning that you know the solution even if you don't know
the name, then the intent and the sketch should be all you need to know what the pattern is.

The next section describes a motivating problem for the pattern. This may not be the only problem that the pattern solves, but it's one
that I think best motivates the pattern.

How It Works describes the solution. In here I put a discussion of implementation issues and variations that I've come across. The
discussion is as independent as possible of any particular platform—where there are platform-specific sections I've indented them
so you can see them and easily skip over them. Where useful I've put in UML diagrams to help explain them.

When to Use It describes when the pattern should be used. Here I talk about the trade-offs that make you select this solution
compared to others. Many of the patterns in this book are alternatives; such Page Controller (333) and Front Controller (344). Few
patterns are always the right choice, so whenever I find a pattern I always ask myself, "When would I not use this?" That question
often leads me to alternative patterns.

The Further Reading section points you to other discussions of this pattern. This isn't a comprehensive bibliography. I've limited my
references to pieces that I think are important in helping you understand the pattern, so I've eliminated any discussion that I don't
think adds much to what I've written and of course I've eliminated discussions of patterns I haven't read. I also haven't mentioned
items that I think are going to be hard to find, or unstable Web links that I fear may disappear by the time you read this book.

I like to add one or more examples. Each one is a simple example of the pattern in use, illustrated with some code in Java or C#. I
chose those languages because they seem to be languages that the largest number of professional programmers can read. It's
absolutely essential to understand that the example is not the pattern. When you use the pattern, it won't look exactly like this
example so don't treat it as some kind of glorified macro. I've deliberately kept the example as simple as possible so you can see
the pattern in as clear a form as I can imagine. All sorts of issues are ignored that will become important when you use it, but these
will be particular to your own environment. This is why you always have to tweak the pattern.

One of the consequences of this is that I've worked hard to keep each example as simple as I can, while still illustrating its core
message. Thus, I've often chosen an example that's simple and explicit, rather than one that demonstrates how a pattern works
with the many wrinkles required in a production system. It's a tricky balance between simple and simplistic, but it's also true that
too many realistic yet peripheral issues can make it harder to understand the key points of a pattern.

This is also why I've gone for simple independent examples instead of a connected running examples. Independent examples are
easier to understand in isolation, but give less guidance on how you put them together. A connected example shows how things fit
together, but it's hard to understand any one pattern without understanding all the others involved in the example. While in theory
it's possible to produce examples that are connected yet understandable independently, doing so is very hard—or at least too hard
for me—so I chose the independent route.

The code in the examples is written with a focus on making the ideas understandable. As a result several things fall aside—in
particular, error handling, which I don't pay much attention to since I haven't developed any patterns in this area yet. They are
there purely to illustrate the pattern. They are not intended to show how to model any particular business problem.

For these reasons the code isn't downloadable from my Web site. Each code example in this book is surrounded with too much
scaffolding to simplify the basic ideas so they're worth anything in a production setting.

Not all the sections appear in all the patterns. If I couldn't think of a good example or motivation text, I left it out.

35

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib01
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib34
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3

17.02.2024 VEA - Vývoj Enterprise Aplikací 36

● Why patterns
● Patterns and libraries
● Patterns and experts
● Overuse

Patterns

http://martinfowler.com/ieeeSoftware/patterns.pdf

36

17.02.2024 VEA - Vývoj Enterprise Aplikací 37

Intercepting Filter

Context

The presentation-tier request handling mechanism receives many different types of requests, which
require varied types of processing. Some requests are simply forwarded to the appropriate handler
component, while other requests must be modified, audited, or uncompressed before being further
processed.

Problem

Preprocessing and post-processing of a client Web request and response are required.

When a request enters a Web application, it often must pass several entrance tests prior to the main
processing stage. For example,

 Has the client been authenticated?
 Does the client have a valid session?
 Is the client's IP address from a trusted network?
 Does the request path violate any constraints?
 What encoding does the client use to send the data?
 Do we support the browser type of the client?

Some of these checks are tests, resulting in a yes or no answer that determines whether processing will
continue. Other checks manipulate the incoming data stream into a form suitable for processing.

The classic solution consists of a series of conditional checks, with any failed check aborting the
request. Nested if/else statements are a standard strategy, but this solution leads to code fragility
and a copy-and-paste style of programming, because the flow of the filtering and the action of the
filters is compiled into the application.

The key to solving this problem in a flexible and unobtrusive manner is to have a simple mechanism for
adding and removing processing components, in which each component completes a specific
filtering action.

Forces

 Common processing, such as checking the data-encoding scheme or logging information about each
request, completes per request.

 Centralization of common logic is desired.
 Services should be easy to add or remove unobtrusively without affecting existing components, so

that they can be used in a variety of combinations, such as
 Logging and authentication
 Debugging and transformation of output for a specific client
 Uncompressing and converting encoding scheme of input

Solution

Create pluggable filters to process common services in a standard manner without requiring changes to
core request processing code. The filters intercept incoming requests and outgoing responses,
allowing preprocessing and post-processing. We are able to add and remove these filters
unobtrusively, without requiring changes to our existing code.

We are able, in effect, to decorate our main processing with a variety of common services, such as
security, logging, debugging, and so forth. These filters are components that are independent of the
main application code, and they may be added or removed declaratively. For example, a deployment
configuration file may be modified to set up a chain of filters. The same configuration file might
include a mapping of specific URLs to this filter chain. When a client requests a resource that
matches this configured URL mapping, the filters in the chain are each processed in order before the
requested target resource is invoked.

17.02.2024 VEA - Vývoj Enterprise Aplikací 38

Intercepting Filter

17.02.2024 VEA - Vývoj Enterprise Aplikací 39

Intercepting Filter

17.02.2024 VEA - Vývoj Enterprise Aplikací 40

Servlet - Filters

Filter 1 Filter 3Filter 2 ServletClientClient

RequestRequest

ResponseResponse

Request filtering is another useful mechanism in web development. Java EE provides
possibility of filter definition and mapping to URL pattern.

When client send request, web container build filter chain (ordered set of filters)
according to requested URL. Request have to pass through all filters in the filter chain
then is processed by servlet and have to go back through filter chain in reverse order.

40

17.02.2024 VEA - Vývoj Enterprise Aplikací 41

● Filter can change request before and response after
servlet processing.

● Each filter have to implements interface
javax.servlet.Filter
– Filter method doFilter() is most important, because this

method performs filtering.
● Interface javax.servlet.FilterChain is a parameter of

method Filter.doFilter() and each filter should call
method FilterChain.doFilter() to pass control to next
filter in chain.

Servlet - Filters

41

17.02.2024 VEA - Vývoj Enterprise Aplikací 42

@WebFilter(filterName="/MyFilter", urlPatterns={"",""})
public class MyFilter implements Filter {

public MyFilter() {}
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {

MyWrappedHttpResponse wrapper = new
MyWrappedHttpResponse((HttpServletResponse)
response);

chain.doFilter(request, wrapper);

response.getWriter().write(wrapper.toString()
.toUpperCase());

}}

Servlet – Filter Example

Source code implements simple filter example. Shown filter just convert all text from
response to upper case.

Implemented class contains annotation that can substitute configuration from “web.xml”
file.

Method doFilter() just create response wrapper, call method FilterChain.doFilter() to pass
control to next filter in the chain. When control is returned from method
FilterChain.doFilter(), all other filters and servlet already process request and our filter
can change text to upper case.

42

17.02.2024 JAT - Java Technologie 43

Servlet - Filters

Filter 1 Filter 3MyFilter Servlet

ClientClient

RequestRequest

ResponseResponse
O

ut
 s

tr
ea

m
O

ut
 s

tr
ea

m

Out s
tre

am

Out s
tre

am

O
ut

 s
tre

am

O
ut

 s
tre

am

O
ut stream

O
ut stream

Out stream

Out stream

O
ut stream

O
ut stream

O
ut

 s
tr

ea
m

O
ut

 s
tr

ea
m

O
ut

 s
tr

ea
m

O
ut

 s
tr

ea
m

ResponseResponse
Dat
a

If filter want process data for client from servlet or other filter it need response wrapper.
The animation describes filtering process if filter doesn’t create response wrapper.
When request is passed to filtering process a response object is already created and

contains output stream. Response output stream is connected directly to client and
data passed to the output stream are immediately sent to client (web browser).

Servlet generate response data and pass the data to output stream.
Our filter “MyFilter” cannot convert already sent data to upper case.

43

17.02.2024 JAT - Java Technologie 44

Servlet - Filters

Filter 1 Filter 3MyFilter Servlet

ClientClient

RequestRequest

ResponseResponse

ResponseResponse

O
ut

 s
tr

ea
m

O
ut

 s
tr

ea
m

HttpServlet
Respons
Wrapper

HttpServlet
Respons
Wrapper

Out s
tre

am

Out s
tre

am BufferBuffer

O
ut

 s
tre

am

O
ut

 s
tre

am

O
ut stream

O
ut stream

O
ut

 s
tre

am

O
ut

 s
tre

am

Dat
a

DATA

This animation describes filtering process if our filter create a response wrapper.
A response wrapper implements interface HttpServletResponse and the default

implementation of wrapper (class HttpServletResponseWrapper) just forward all
methods call to the original response object.

Implementation of the response wrapper in our example just creates a data buffer and
redirect output stream to the data buffer. Servlet generates data and pass them to the
output stream. The output stream sent data to the buffer and our filter “MyFilter” can
read data from the buffer and change all character to upper case.

44

17.02.2024 VEA - Vývoj Enterprise Aplikací 45

public class MyWrappedHttpResponse extends
HttpServletResponseWrapper {

 private CharArrayWriter buffer;
 public MyWrappedHttpResponse(

HttpServletResponse response) {
 super(response);
 buffer = new CharArrayWriter();
 }
 public String toString() {
 return buffer.toString();
 }
 public PrintWriter getWriter() {
 return new PrintWriter(buffer);
 }
}

Servlet – Filter – ResponseWrapper

Implementation of response wrapper from our example inherits from default response
wrapper HttpServletResponseWrapper.

Our class add private field “buffer” of type CharArrayWriter, initialize the filed in
constructor and override two methods getWriter() and toString().

Method getWriter() return output stream connected to buffer.
Method toString() return content of buffer as string.

45

17.02.2024 VEA - Vývoj Enterprise Aplikací 46

@WebFilter(filterName="/MyFilter", urlPatterns={"",""})
public class MyFilter implements Filter {

public MyFilter() {}
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {

MyWrappedHttpResponse wrapper = new
MyWrappedHttpResponse((HttpServletResponse)
response);

chain.doFilter(request, wrapper);

response.getWriter().write(wrapper.toString()
.toUpperCase());

}
}

Servlet – Filter Example

Source code implements simple filter example. Shown filter just convert all text from
response to upper case.

Implemented class contains annotation that can substitute configuration from “web.xml”
file.

Method doFilter() just create response wrapper, call method FilterChain.doFilter() to pass
control to next filter in the chain. When control is returned from method
FilterChain.doFilter(), all other filters and servlet already process request and our filter
can change text to upper case.

46

17.02.2024 VEA - Vývoj Enterprise Aplikací 47

 <filter>
 <display-name>MyFilter</display-name>
 <filter-name>MyFilter</filter-name>
 <filter-class>MyFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>MyFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>

Servlet – Filter Mapping

Filters are connected to the filter chain based on filter mapping. The filter mapping is
defined in configuration file “web.xml” or can be specified by annotations in filter
class.

The filter mapping contains URL pattern. If the URL pattern match with requested URL,
the filter is added to the filter chain.

All URL pattern strings have to match excatly with requested URL except these:
Pattern contains characters “/*” at end of the pattern string. Requested URL match even

if contains suffix string.
Pattern contains characters “*.” at the beginning of the pattern string. Requested URL

match if ends with specified extension.

47

17.02.202
4

VEA - Vývoj Enterprise Aplikací 48

Web presentation layer

17.02.2024 VEA - Vývoj Enterprise Aplikací 49

● separation of presentation from
model

● the presentation depends on
the model but the model
doesn't depend on the
presentation

● separation of view and
controller, is less important

● The model and the view are
obvious, but where's the
controller? The common idea is
that it sits between the model
and the view

Model View Controller

[Team LiB]
Model View Controller

Splits user interface interaction into three distinct roles
Model View Controller (MVC) is one of the most quoted (and most misquoted) patterns around. It started as a framework developed by Trygve

Reenskaug for the Smalltalk platform in the late 1970s. Since then it has played an influential role in most UI frameworks and in the thinking about
UI design.

How It Works
MVC considers three roles. The model is an object that represents some information about the domain. It's a nonvisual object containing all the data

and behavior other than that used for the UI. In its most pure OO form the model is an object within a Domain Model (116). You might also think of
a Transaction Script (110) as the model providing that it contains no UI machinery. Such a definition stretches the notion of model, but fits the role
breakdown of MVC.

The view represents the display of the model in the UI. Thus, if our model is a customer object our view might be a frame full of UI widgets or an HTML
page rendered with information from the model. The view is only about display of information; any changes to the information are handled by the
third member of the MVC trinity: the controller. The controller takes user input, manipulates the model, and causes the view to update appropriately.
In this way UI is a combination of the view and the controller.

As I think about MVC I see two principal separations: separating the presentation from the model and separating the controller from the view.
Of these the separation of presentation from model is one of the most fundamental heuristics of good software design. This separation is important for

several reasons.
Fundamentally presentation and view are about different concerns. When you're developing a view you're thinking about the mechanisms of UI and how

to lay out a good user interface. When you're working with a model you are thinking about business policies, perhaps database interactions.
Certainly you will use different very different libraries when working with one or the other. Often people prefer one area to another and they people
specialize in one side of the line.

Depending on context, users want to see the same basic model information in different ways. Separating presentation and view allows you to develop
multiple presentations—indeed, entirely different interfaces—and yet use the same model code. Most noticeably this could be providing the same
model with a rich client, a Web browser, a remote API, and a command-line interface. Even within a single Web interface you might have different
customer pages at different points in an application.

Nonvisual objects are usually easier to test than visual ones. Separating presentation and model allows you to test all the domain logic easily without
resorting to things like awkward GUI scripting tools.

A key point in this separation is the direction of the dependencies: the presentation depends on the model but the model doesn't depend on the
presentation. People programming in the model should be entirely unaware of what presentation is being used, which both simplifies their task and
makes it easier to add new presentations later on. It also means that presentation changes can be made freely without altering the model.

This principle introduces a common issue. With a rich-client interface of multiple windows it's likely that there will be several presentations of a model on
a screen at once. If a user makes a change to the model from one presentation, the others need to change as well. To do this without creating a
dependency you usually need an implementation of the Observer pattern [Gang of Four], such as event propagation or a listener. The presentation
acts as the observer of the model: whenever the model changes it sends out an event and the presentations refresh the information.

The second division, the separation of view and controller, is less important. Indeed, the irony is that almost every version of Smalltalk didn't actually
make a view/controller separation. The classic example of why you'd want to separate them is to support editable and noneditable behavior, which
you can do with one view and two controllers for the two cases, where the controllers are strategies [Gang of Four] for the view. In practice most
systems have only one controller per view, however, so this separation is usually not done. It has come back into vogue with Web interfaces where
it becomes useful for separating the controller and view again.

The fact that most GUI frameworks combine view and controller has led to many misquotations of MVC. The model and the view are obvious, but
where's the controller? The common idea is that it sits between the model and the view, as in the Application Controller (379)—it doesn't help that
the word "controller" is used in both contexts. Whatever the merits of a Application Controller (379), it's a very different beast from an MVC
controller.

For the purposes of this set of patterns these principles are really all you need to know. If you want to dig deeper into MVC the best available reference
is [POSA].

When to Use It
As I said, the value of MVC lies in its two separations. Of these the separation of presentation and model is one of the most important design principles

in software, and the only time you shouldn't follow it is in very simple systems where the model has no real behavior in it anyway. As soon as you
get some nonvisual logic you should apply the separation. Unfortunately, a lot of UI frameworks make it difficult, and those that don't are often
taught without a separation.

The separation of view and controller is less important, so I'd only recommend doing it when it is really helpful. For rich-client systems, that ends up
being hardly ever, although it's common in Web front ends where the controller is separated out. Most of the patterns on Web design here are
based on that principle.

[Team LiB]

49

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib34
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 50

● Desktop application
● Java AWT GUI, Java

SWING GUI

Model View Controller

[Team LiB]
Model View Controller

Splits user interface interaction into three distinct roles
Model View Controller (MVC) is one of the most quoted (and most misquoted) patterns around. It started as a framework developed by Trygve

Reenskaug for the Smalltalk platform in the late 1970s. Since then it has played an influential role in most UI frameworks and in the thinking about
UI design.

How It Works
MVC considers three roles. The model is an object that represents some information about the domain. It's a nonvisual object containing all the data

and behavior other than that used for the UI. In its most pure OO form the model is an object within a Domain Model (116). You might also think of
a Transaction Script (110) as the model providing that it contains no UI machinery. Such a definition stretches the notion of model, but fits the role
breakdown of MVC.

The view represents the display of the model in the UI. Thus, if our model is a customer object our view might be a frame full of UI widgets or an HTML
page rendered with information from the model. The view is only about display of information; any changes to the information are handled by the
third member of the MVC trinity: the controller. The controller takes user input, manipulates the model, and causes the view to update appropriately.
In this way UI is a combination of the view and the controller.

As I think about MVC I see two principal separations: separating the presentation from the model and separating the controller from the view.
Of these the separation of presentation from model is one of the most fundamental heuristics of good software design. This separation is important for

several reasons.
Fundamentally presentation and view are about different concerns. When you're developing a view you're thinking about the mechanisms of UI and how

to lay out a good user interface. When you're working with a model you are thinking about business policies, perhaps database interactions.
Certainly you will use different very different libraries when working with one or the other. Often people prefer one area to another and they people
specialize in one side of the line.

Depending on context, users want to see the same basic model information in different ways. Separating presentation and view allows you to develop
multiple presentations—indeed, entirely different interfaces—and yet use the same model code. Most noticeably this could be providing the same
model with a rich client, a Web browser, a remote API, and a command-line interface. Even within a single Web interface you might have different
customer pages at different points in an application.

Nonvisual objects are usually easier to test than visual ones. Separating presentation and model allows you to test all the domain logic easily without
resorting to things like awkward GUI scripting tools.

A key point in this separation is the direction of the dependencies: the presentation depends on the model but the model doesn't depend on the
presentation. People programming in the model should be entirely unaware of what presentation is being used, which both simplifies their task and
makes it easier to add new presentations later on. It also means that presentation changes can be made freely without altering the model.

This principle introduces a common issue. With a rich-client interface of multiple windows it's likely that there will be several presentations of a model on
a screen at once. If a user makes a change to the model from one presentation, the others need to change as well. To do this without creating a
dependency you usually need an implementation of the Observer pattern [Gang of Four], such as event propagation or a listener. The presentation
acts as the observer of the model: whenever the model changes it sends out an event and the presentations refresh the information.

The second division, the separation of view and controller, is less important. Indeed, the irony is that almost every version of Smalltalk didn't actually
make a view/controller separation. The classic example of why you'd want to separate them is to support editable and noneditable behavior, which
you can do with one view and two controllers for the two cases, where the controllers are strategies [Gang of Four] for the view. In practice most
systems have only one controller per view, however, so this separation is usually not done. It has come back into vogue with Web interfaces where
it becomes useful for separating the controller and view again.

The fact that most GUI frameworks combine view and controller has led to many misquotations of MVC. The model and the view are obvious, but
where's the controller? The common idea is that it sits between the model and the view, as in the Application Controller (379)—it doesn't help that
the word "controller" is used in both contexts. Whatever the merits of a Application Controller (379), it's a very different beast from an MVC
controller.

For the purposes of this set of patterns these principles are really all you need to know. If you want to dig deeper into MVC the best available reference
is [POSA].

When to Use It
As I said, the value of MVC lies in its two separations. Of these the separation of presentation and model is one of the most important design principles

in software, and the only time you shouldn't follow it is in very simple systems where the model has no real behavior in it anyway. As soon as you
get some nonvisual logic you should apply the separation. Unfortunately, a lot of UI frameworks make it difficult, and those that don't are often
taught without a separation.

The separation of view and controller is less important, so I'd only recommend doing it when it is really helpful. For rich-client systems, that ends up
being hardly ever, although it's common in Web front ends where the controller is separated out. Most of the patterns on Web design here are
based on that principle.

[Team LiB]

50

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib34
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 51

Model View Controller - Architectonical style

[Team LiB]
Model View Controller

Splits user interface interaction into three distinct roles
Model View Controller (MVC) is one of the most quoted (and most misquoted) patterns around. It started as a framework developed by Trygve

Reenskaug for the Smalltalk platform in the late 1970s. Since then it has played an influential role in most UI frameworks and in the thinking about
UI design.

How It Works
MVC considers three roles. The model is an object that represents some information about the domain. It's a nonvisual object containing all the data

and behavior other than that used for the UI. In its most pure OO form the model is an object within a Domain Model (116). You might also think of
a Transaction Script (110) as the model providing that it contains no UI machinery. Such a definition stretches the notion of model, but fits the role
breakdown of MVC.

The view represents the display of the model in the UI. Thus, if our model is a customer object our view might be a frame full of UI widgets or an HTML
page rendered with information from the model. The view is only about display of information; any changes to the information are handled by the
third member of the MVC trinity: the controller. The controller takes user input, manipulates the model, and causes the view to update appropriately.
In this way UI is a combination of the view and the controller.

As I think about MVC I see two principal separations: separating the presentation from the model and separating the controller from the view.
Of these the separation of presentation from model is one of the most fundamental heuristics of good software design. This separation is important for

several reasons.
Fundamentally presentation and view are about different concerns. When you're developing a view you're thinking about the mechanisms of UI and how

to lay out a good user interface. When you're working with a model you are thinking about business policies, perhaps database interactions.
Certainly you will use different very different libraries when working with one or the other. Often people prefer one area to another and they people
specialize in one side of the line.

Depending on context, users want to see the same basic model information in different ways. Separating presentation and view allows you to develop
multiple presentations—indeed, entirely different interfaces—and yet use the same model code. Most noticeably this could be providing the same
model with a rich client, a Web browser, a remote API, and a command-line interface. Even within a single Web interface you might have different
customer pages at different points in an application.

Nonvisual objects are usually easier to test than visual ones. Separating presentation and model allows you to test all the domain logic easily without
resorting to things like awkward GUI scripting tools.

A key point in this separation is the direction of the dependencies: the presentation depends on the model but the model doesn't depend on the
presentation. People programming in the model should be entirely unaware of what presentation is being used, which both simplifies their task and
makes it easier to add new presentations later on. It also means that presentation changes can be made freely without altering the model.

This principle introduces a common issue. With a rich-client interface of multiple windows it's likely that there will be several presentations of a model on
a screen at once. If a user makes a change to the model from one presentation, the others need to change as well. To do this without creating a
dependency you usually need an implementation of the Observer pattern [Gang of Four], such as event propagation or a listener. The presentation
acts as the observer of the model: whenever the model changes it sends out an event and the presentations refresh the information.

The second division, the separation of view and controller, is less important. Indeed, the irony is that almost every version of Smalltalk didn't actually
make a view/controller separation. The classic example of why you'd want to separate them is to support editable and noneditable behavior, which
you can do with one view and two controllers for the two cases, where the controllers are strategies [Gang of Four] for the view. In practice most
systems have only one controller per view, however, so this separation is usually not done. It has come back into vogue with Web interfaces where
it becomes useful for separating the controller and view again.

The fact that most GUI frameworks combine view and controller has led to many misquotations of MVC. The model and the view are obvious, but
where's the controller? The common idea is that it sits between the model and the view, as in the Application Controller (379)—it doesn't help that
the word "controller" is used in both contexts. Whatever the merits of a Application Controller (379), it's a very different beast from an MVC
controller.

For the purposes of this set of patterns these principles are really all you need to know. If you want to dig deeper into MVC the best available reference
is [POSA].

When to Use It
As I said, the value of MVC lies in its two separations. Of these the separation of presentation and model is one of the most important design principles

in software, and the only time you shouldn't follow it is in very simple systems where the model has no real behavior in it anyway. As soon as you
get some nonvisual logic you should apply the separation. Unfortunately, a lot of UI frameworks make it difficult, and those that don't are often
taught without a separation.

The separation of view and controller is less important, so I'd only recommend doing it when it is really helpful. For rich-client systems, that ends up
being hardly ever, although it's common in Web front ends where the controller is separated out. Most of the patterns on Web design here are
based on that principle.

[Team LiB]

51

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec7.html#ch14lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib34
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 52

● An object that handles a request for a specific page or action on
a Web site.

● As a result, Page Controller has one input controller for each
logical page of the Web site. That controller may be the page
itself, as it often is in server page environments, or it may be a
separate object that corresponds to that page.

Page Controller

17.02.2024 VEA - Vývoj Enterprise Aplikací 53

● The Front Controller consolidates all request handling by
channeling requests through a single handler object.
This object can carry out common behavior, which can
be modified at runtime with decorators. The handler
then dispatches to command objects for behavior
particular to a request.

Front Controller

[Team LiB]
Front Controller

A controller that handles all requests for a Web site.
In a complex Web site there are many similar things you need to do when handling a request. These things include security, internationalization, and providing particular views for certain users. If the input

controller behavior is scattered across multiple objects, much of this behavior can end up duplicated. Also, it's difficult to change behavior at runtime.
The Front Controller consolidates all request handling by channeling requests through a single handler object. This object can carry out common behavior, which can be modified at runtime with

decorators. The handler then dispatches to command objects for behavior particular to a request.
How It Works
A Front Controller handles all calls for a Web site, and is usually structured in two parts: a Web handler and a command hierarchy. The Web handler is the object that actually receives post or get requests

from the Web server. It pulls just enough information from the URL and the request to decide what kind of action to initiate and then delegates to a command to carry out the action (see Figure 14.2
).

Figure 14.2. How the Front Controller works.
The Web handler is almost always implemented as a class rather than as a server page, as it doesn't produce any response. The commands are also classes rather than server pages and in fact don't

need any knowledge of the Web environment, although they're often passed the HTTP information. The Web handler itself is usually a fairly simple program that does nothing other than decide
which command to run.

The Web handler can decide which command to run either statically or dynamically. The static version involves parsing the URL and using conditional logic; the dynamic version usually involves taking a
standard piece of the URL and using dynamic instantiation to create a command class.

The static case has the advantage of explicit logic, compile time error checking on the dispatch, and lots of flexibility in the look of your URLs. The dynamic case allows you to add new commands without
changing the Web handler.

With dynamic invocation you can put the name of the command class into the URL or you can use a properties file that binds URLs to command class names. The properties file is another file to edit, but
it does make it easier to change your class names without a lot of searching through your Web pages.

A particularly useful pattern to use in conjunction with Front Controller is Intercepting Filter, described in [Alur et al.]. This is essentially a decorator that wraps the handler of the front controller allowing
you to build a filter chain (or pipeline of filters) to handle issues such as authentication, logging, and locale identification. Using filters allows you to dynamically set up the filters to use at
configuration time.

Rob Mee showed me an interesting variation of Front Controller using a two stage Web handler separated into a degenerate Web handler and a dispatcher. The degenerate Web handler pulls the basic
data out of the http parameters and hands it to the dispatcher in such a way that the dispatcher is completely independent of the Web server framework. This makes testing easier because test
code can drive the dispatcher directly without having to run in a Web server.

Remember that both the handler and the commands are part of the controller. As a result the commands can (and should) choose which view to use for the response. The only responsibility of the
handler is in choosing which command to execute. Once that's done, it plays no further part in that request.

When to Use It
The Front Controller is a more complicated design than its obvious counterpart, Page Controller (333). It therefore needs a few advantages to be worth the effort.
Only one Front Controller has to be configured into the Web server; the Web handler does the rest of the dispatching. This simplifies the configuration of the Web server, which is an advantage if the Web

server is awkward to configure. With dynamic commands you can add new commands without changing anything. They also ease porting since you only have to register the handler in a Web-
server-specific way.

Because you create new command objects with each request, you don't have to worry about making the command classes thread-safe. In this way you avoid the headaches of multi-threaded
programming; however, you do have to make sure that you don't share any other objects, such as the model objects.

A commonly stated advantage of a Front Controller is that it allows you to factor out code that's otherwise duplicated in Page Controller (333). To be fair, however, you can also do much of this with a
superclass Page Controller (333).

There's just one controller, so you can easily enhance its behavior at runtime with decorators [Gang of Four]. You can have decorators for authentication, character encoding, internationalization, and so
forth, and add them using a configuration file or even while the server is running. ([Alur et al.] describe this approach in detail under the name Intercepting Filter.)

Further Reading
[Alur et al.] give a detailed description of how to implement Front Controller in Java. They also describe Intercepting Filter, which goes very well with Front Controller.
A number of Java Web frameworks use this pattern. An excellent example appears in [Struts].
Example: Simple Display (Java)
Here's a simple case of using Front Controller for the original and innovative task of displaying information about a recording artist. We'll use dynamic commands with a URL of the form

http://localhost:8080/isa/music?name=barelyWorks&command=Artist. The command parameter tells the Web handler which command to use.
Figure 14.3. The classes that implement Front Controller.
We'll begin with the handler, which I've implemented as a servlet.
class FrontServlet... public void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException, ServletException { FrontCommand command = getCommand(request);

command.init(getServletContext(), request, response); command.process(); } private FrontCommand getCommand(HttpServletRequest request) { try { return (FrontCommand)
getCommandClass(request).newInstance(); } catch (Exception e) { throw new ApplicationException(e); } } private Class getCommandClass(HttpServletRequest request) { Class result; final String
commandClassName = "frontController." + (String) request.getParameter("command") + "Command"; try { result = Class.forName(commandClassName); } catch (ClassNotFoundException e)
{ result = UnknownCommand.class; } return result; } The logic is straightforward. The handler tries to instantiate a class named by concatenating the command name and "Command." Once it has
the new command it initializes it with the necessary information from the HTTP server. I've passed in what I need for this simple example. You may well need more, such as the HTTP session. If
you can't find a command, I've used the Special Case (496) pattern and returned an unknown command. As is often the case, Special Case (496) allows you to avoid a lot of extra error checking.

Commands share a fair bit of data and behavior. They all need to be initialized with information from the Web server.
class FrontCommand... protected ServletContext context; protected HttpServletRequest request; protected HttpServletResponse response; public void init(ServletContext context, HttpServletRequest

request, HttpServletResponse response) { this.context = context; this.request = request; this.response = response; } They can also provide common behavior, such as a forward method, and define
an abstract process command for the actual commands to override.

class FrontCommand... abstract public void process()throws ServletException, IOException ; protected void forward(String target) throws ServletException, IOException { RequestDispatcher dispatcher =
context.getRequestDispatcher(target); dispatcher.forward(request, response); } The command object is very simple, at least in this case. It just implements the process method, which involves
invoking the appropriate behavior on the model objects, putting the information needed for the view into the request, and forwarding to a Template View (350).

class ArtistCommand... public void process() throws ServletException, IOException { Artist artist = Artist.findNamed(request.getParameter("name")); request.setAttribute("helper", new ArtistHelper(artist));
forward("/artist.jsp"); } The unknown command just brings up a boring error page.

class UnknownCommand... public void process() throws ServletException, IOException { forward("/unknown.jsp"); }
[Team LiB]

53

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
#ch14fig02
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib38
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec8.html#ch18lev1sec8
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec8.html#ch18lev1sec8
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 54

● Renders information into HTML by embedding markers
in an HTML page.

Template View

[Team LiB]
Template View

Renders information into HTML by embedding markers in an HTML page.
Writing a program that spits out HTML is often more difficult than you might imagine. Although programming languages are better at creating text than they used to be (some of us remember character handling in Fortran and standard Pascal), creating and concatenating string constructs is still painful. If there isn't

much to do, it isn't too bad, but a whole HTML page is a lot of text manipulation.
With static HTML pages—those that don't change from request to request—you can use nice WYSIWG editors. Even those of us who like raw text editors find it easier to just type in the text and tags rather than fiddle with string concatenation in a programming language.
Of course the issue is with dynamic Web pages—those that take the results of something like database queries and embed them into the HTML. The page looks different with each result, and as a result regular HTML editors aren't up to the job.
The best way to work is to compose the dynamic Web page as you do a static page but put in markers that can be resolved into calls to gather dynamic information. Since the static part of the page acts as a template for the particular response, I call this a Template View.
How It Works
The basic idea of Template View is to embed markers into a static HTML page when it's written. When the page is used to service a request, the markers are replaced by the results of some computation, such as a database query. This way the page can be laid out in the usual manner, often with WYSIWYG

editors, often by people who aren't programmers. The markers then communicate with real programs to put in the results.
A lot of tools use Template View. As a result this pattern isn't about how to build one yourself, but about how to use one effectively and what the alternative is.
Embedding the Markers
There are a number of ways markers can be placed in the HTML. One is to use HTML-like tags. This works well with WYSIWYG editors because they realize that anything between the angled brackets (<>) is special and so either ignore it or treat it differently. If the tags follow the rules for well-formed XML you

can also use XML tools on the resulting document (providing your HTML is XHMTL, of course).
Another way to do this is to use special text markers in the body text. WYSIWYG editors treat that as regular text, still ignoring it but probably doing annoying things to it like spell checking. The advantage is that the syntax can be easier than the clunky syntax of HTML/XML.
Many environments provide the set of tags you use but more and more platforms now give you the ability to define your own tags and markers so you can design them to fit in with your particular needs.
One of the most popular forms of Template View is a server page such as ASP, JSP, or PHP. These actually go a step further than the basic form of a Template View in that they allow you to embed arbitrary programming logic, referred to as scriptlets, into the page. In my view, however, this feature is actually a big

problem and you're better off limiting yourself to basic Template View behavior when you use server page technology.
The most obvious disadvantage of putting a lot of scriptlets into a page is that it eliminates the possibility of nonprogrammers editing the page. This is particularly important when you're using graphic designers for the page design. However, the biggest problems of embedding scriptlets into the page come from the

fact that a page is poor module for a program. Even with an object-oriented language the page construct loses you most of the structural features that make it possible to do a modular design either in OO or in procedural style.
Even worse, putting a lot of scriptlets into the page makes it too easy to mingle the different layers of an enterprise application. When domain logic starts turning up on server pages it becomes far too difficult to structure it well and far too easy to duplicate it across different server pages. All in all, the worst code

I've seen in the last few years has been server page code.
Helper Object
The key to avoiding scriptlets is to provide a regular object as a helper to each page. This helper has all the real programming logic. The page only has calls into it, which simplifies the page and makes it a more pure Template View. The resulting simplicity allows nonprogrammers to edit the page and programmers

to concentrate on the helper. Depending on the actual tool you're using, you can often reduce all the templates in a page to HTML/XML tags, which keeps the page more consistent and more amenable to tool support.
This sounds like a simple and commendable principle, but as ever quite a few dirty issues make things more complicated. The simplest markers are those that get some information from the rest of the system and put in the correct place on the page. They are easily translated into calls to the helper that result in

text, (or something that's trivially turned into text), and the engine places the text on the page.
Conditional Display
A more knotty issue is conditional page behavior. The simplest case is the situation where something is displayed only if a condition is true. That might be some kind of conditional tag along the lines of <IF condition = "$pricedrop > 0.1"> ...show some stuff </IF>. The trouble with this is that when you start having

conditional tags like this, you start going down the path of turning the templates into a programming language in and of themselves. This leads you into all the same problems you face when you embed scriptlets in the page. If you need a full programming language, you might as well use scriptlets, but
you know what I think of that idea!

As a result, I see purely conditional tags as a bad smell, something you should try to avoid. You can't always avoid them, but you should try to come up with something more focused than a general purpose <IF> tag.
If you're displaying some text conditionally, one option is to move the condition into the helper. The page will then always insert the result of the call into helper. It's just that if the condition isn't true the helper will send back an empty string, but this way the helper holds all the logic. This approach works best if

there's no markup for the returned text or it's enough to return empty markup that gets ignored by the browser.
This doesn't work if, say, you want to highlight good-selling items in a list by putting their names in bold. In such a situation you always need the names displayed but sometimes you want the special markup. One way to get it is to have the helper generate the markup. This keeps all the logic out of the page, at the

cost of moving the choice of highlighting mechanism away from the page designer and giving it to the programming code.
In order to keep the choice of HTML in the hands of the page design, you need some form of conditional tag. However it's important to look beyond a simple <IF>. A good route to go is a focused tag, so rather than a tag that looks like this:
<IF expression = "isHighSelling()"></IF> <property name = "price"/> <IF expression = "isHighSelling()"></IF> you have one like
<highlight condition = "isHighSelling" style = "bold"> <property name = "price"/> </highlight> In either case it's important that the condition be done based on a single Boolean property of the helper. Putting any more complex expression into the page is actually putting the logic into the page itself.
Another example would be putting information on a page that depends on the locale on which the system is running. Consider some text that should only be shown in the United States or Canada, which, rather than
<IF expression = "locale = 'US' || 'CA'"> ...special text </IF> Would be something like
<locale includes = "US, CA"> ...special text </locale> Iteration
Iterating over a collection presents similar issues. If you want a table where each line corresponds to a line item on an order, you need a construct that allows easy display of information for each line. Here it's hard to avoid a general iteration over a collection tag, but it usually works simply enough to fit in quite

well.
Of course the kinds of tag you have to work with are often limited by the environment you're in. Some environments give you a fixed set of templates, in which case you may be more limited than you would like in following these kinds of guidelines. In other environments, however, you may have more choice in the

tags to use; many of them even allow you to define your own tag libraries.
When to Process
The name Template View brings out the fact that the primary function of this pattern is to play the view in Model View Controller (330). For many systems the Template View should only play the view. In simpler systems it may be reasonable for it to play the controller, and possibly even the model, although I would

strive to separate model processing as much as possible. Where Template View is taking on responsibilities beyond the view, it's important to ensure that these responsibilities are handled by the helper, not by the page. Controller and model responsibilities involve program logic, which program logic
everywhere, should sit in the helper.

Any template system needs extra processing by the Web server. This can either be done by compiling the page after it's created, compiling the page or on its first request, or by interpreting the page on each request. Obviously the latter isn't a good idea if the interpretation takes a while to do.
One thing to watch with Template View is exceptions. If an exception works its way up to the Web container, you may find yourself with a half-handled page that provides some decidedly odd output to the calling browser instead of a redirect. You need to look into how your Web server handles exceptions; if it does

something strange, catch all exceptions yourself in the helper class (yet another reason to disdain scriptlets.)
Using Scripts
Although server pages are one of the most common forms of Template View these days, you can write scripts in a Template View style. I've seen a fair bit of Perl done this way. Most noticeably demonstrated by perl's CGI.pm, the trick is to avoid concatenating strings by having function calls that output the

appropriate tags to the response. This way you can write the script in your programming language and avoid the mess of interspersing print strings with programming logic.
When to Use It
For implementing the view in Model View Controller (330) the main choice is between Template View and Transform View (361). The strength of Template View is that it allows you to compose the content of the page by looking at the page structure. This seems to be easier for most people to do and to learn. In

particular it nicely supports the idea of a graphic designer laying out a page with a programmer working on the helper.
Template View has two significant weaknesses. First, the common implementations make it too easy to put complicated logic in the page, thus making it hard to maintain, particularly by nonprogrammers. You need good discipline to keep the page simple and display oriented, putting logic in the helper. The second

weakness is that Template View is harder to test than Transform View (361). Most implementations of Template View are designed to work within a Web server and are very difficult or impossible to test otherwise. Transform View (361) implementations are much easier to hook into a testing harness and
test without a running Web server.

In thinking about a view you also need to consider Two Step View (365). Depending on your template scheme you may be able to implement this pattern using specialized tags. However, you may find it easier to implement it based on a Transform View (361). If you're going to need Two Step View (365) you need
to take that into account in your choice.

Example: Using a JSP as a View with a Separate Controller (Java)
When using a JSP as a view only, it's always be invoked from a controller rather than directly from the servlet container. Thus, it's important to pass to the JSP any information it will need to figure out what to display. A good way to do this is to have the controller create a helper object and pass it to the JSP using

the HTTP request. We'll show this with the simple display example from Page Controller (333). The Web-handling method for the servlet looks like this:
class ArtistController... public void doGet(HttpServletRequest request, HttpServletResponse response) throws IOException, ServletException { Artist artist = Artist.findNamed(request.getParameter("name")); if (artist == null) forward("/MissingArtistError.jsp", request, response); else { request.setAttribute("helper",

new ArtistHelper(artist)); forward("/artist.jsp", request, response); } } As far as the Template View is concerned the important behavior is creating the helper and placing it in the request. The server page can now reach the helper with the useBean tag.
<jsp:useBean id="helper" type="actionController.ArtistHelper" scope="request"/> With the helper in place we can use it to access the information we need to display. The model information the helper needs was passed to it when it was created.
class ArtistHelper... private Artist artist; public ArtistHelper(Artist artist) { this.artist = artist; } We can use the helper to get appropriate information from the model. In the simplest case we provide a method to get some simple data, such as the artist's name.
class ArtistHelper... public String getName() { return artist.getName(); } Then we access this information by a Java expression.
 <%=helper.getName()%> or a property
<jsp:getProperty name="helper" property="name"/> The choice between properties or expressions depends on who is editing the JSP. Programmers find expressions easy to read and more compact, but HTML editors may not be able to handle them. Nonprogrammers will probably prefer tags, since they

fits in the general form of HTML and leave less room for confusing errors.
Using a helper is one way to remove awkward scriptlet code. If you want to show a list of albums for an artist, you need to run a loop, which you can do with a scriptlet in the server page.
 <% for (Iterator it = helper.getAlbums().iterator(); it.hasNext();) { Album album = (Album) it.next();%> <%=album.getTitle()%> <% } %> Frankly, this mix of Java and HTML is really horrible to read. An alternative is to move the for loop to the helper.
class ArtistHelper... public String getAlbumList() { StringBuffer result = new StringBuffer(); result.append(""); for (Iterator it = getAlbums().iterator(); it.hasNext();) { Album album = (Album) it.next(); result.append(""); result.append(album.getTitle()); result.append(""); } result.append(""); return

result.toString(); } public List getAlbums() { return artist.getAlbums(); } I find this easier to follow because the amount of HTML is quite small. It also allows you to use a property to get the list. Many people don't like putting HTML code in helpers. While I prefer not to, given the choice between this and
scriptlets I'd choose HTML in helpers any day or night.

The best route to go is a specialized tag for iteration.
<tag:forEach host = "helper" collection = "albums" id = "each"> <jsp:getProperty name="each" property="title"/> </tag:forEach> This is a much nicer alternative as it keeps scriptlets out of the JSP and HTML out of the helper.
Example: ASP.NET Server Page (C#)
This example continues the one I started in Page Controller (333) (page 340). To remind you, it shows the scores made by batsmen in a single innings of a cricket match. For those who think that cricket is a small noisy insect, I'll pass over the long rhapsodies about the world's most immortal sport and boil it all

down to the fact that the page displays three essential pieces of information:
An ID number to reference the match
Which team's scores are shown and which innings the scores are for
A table showing each batsman's name, score, and run rate (the number of balls he faced divided by the runs he scored)
If you don't understand what these statistics mean, don't worry about it. Cricket is full of statistics—perhaps its greatest contribution to humanity is providing odd statistics for eccentric papers.
The Page Controller (333) discussion covered how a Web request is handled. To sum up, the object that acts as both the controller and the view is the aspx ASP.NET page. To keep the controller code out of a scriptlet, you define a separate code behind class.
<%@ Page language="c#" Codebehind="bat.aspx.cs" AutoEventWireup="false" trace="False" Inherits="batsmen.BattingPage" %> The page can access the methods and properties of the code behind class directly. Furthermore, the code behind can define a Page_Load method to handle the request. In this case

I've defined the Page_Load as a template method [Gang of Four] on a Layer Supertype (475).
class CricketPage... protected void Page_Load(object sender, System.EventArgs e) { db = new OleDbConnection(DB.ConnectionString); if (hasMissingParameters()) errorTransfer (missingParameterMessage); DataSet ds = getData(); if (hasNoData (ds)) errorTransfer ("No data matches your request");

applyDomainLogic (ds); DataBind(); prepareUI(ds); } For the purposes of Template View I can ignore all but the last couple of lines of the page load. The call to DataBind allows various page variables to be properly bound to their underlying data sources. That will do for the simpler cases, but for more
complicated cases the last line calls a method in the particular page's code behind to prepare any objects for its use.

The match ID number, team, and innings are single values for the page, all of which came into the page as parameters in the HTTP request. I can provide these values by using properties on the code behind class.
class BattingPage... protected String team { get {return Request.Params["team"];} } protected String match { get {return Request.Params["match"];} } protected String innings { get {return Request.Params["innings"];} } protected String ordinalInnings{ get {return (innings == "1") ? "1st" : "2nd";} } With the properties

defined, I can use them in the text of the page.
<P> Match id: <asp:label id="matchLabel" Text="<%# match %>" runat="server" font-bold="True"> </asp:label> </P> <P> <asp:label id=teamLabel Text="<%# team %>" runat="server" font-bold="True"> </asp:label> <asp:Label id=inningsLabel Text="<%# ordinalInnings %>" runat="server">

</asp:Label> innings</P> <P> The table is a little more complicated, but actually works easily in practice because of the graphical design facilities in Visual Studio. Visual Studio provides a data grid control that can be bound to a single table from a data set. I can do this binding in the prepareUI
method that's called by the Page_Load method.

class BattingPage... override protected void prepareUI(DataSet ds) { DataGrid1.DataSource = ds; DataGrid1.DataBind(); } The batting class is a Table Module (125) that provides domain logic for the batting table in the database. Its data property is the data from that table enriched by domain logic from
Table Module (125). Here the enrichment is the run rate, which is calculated rather than stored in the database.

With the ASP.NET data grid you can select which table columns you wish to display in the Web page, together with information about the table's appearance. In this case we can select name, runs, and rate columns.
<asp:DataGrid id="DataGrid1" runat="server" Width="480px" Height="171px" BorderColor="#336666" BorderStyle="Double" BorderWidth="3px" BackColor="White" CellPadding="4" GridLines="Horizontal" AutoGenerateColumns="False"> <SelectedItemStyle Font-Bold="True" ForeColor="White"

BackColor="#339966"></ SelectedItemStyle> <ItemStyle ForeColor="#333333" BackColor="White"></ItemStyle> <HeaderStyle Font-Bold="True" ForeColor="White" BackColor="#336666"></HeaderStyle> <FooterStyle ForeColor="#333333" BackColor="White"></FooterStyle> <Columns>
<asp:BoundColumn DataField="name" HeaderText="Batsman"> <HeaderStyle Width="70px"></HeaderStyle> </asp:BoundColumn> <asp:BoundColumn DataField="runs" HeaderText="Runs"> <HeaderStyle Width="30px"></HeaderStyle> </asp:BoundColumn> <asp:BoundColumn
DataField="rateString" HeaderText="Rate"> <HeaderStyle Width="30px"></HeaderStyle> </asp:BoundColumn> </Columns> <PagerStyle HorizontalAlign="Center" ForeColor="White" BackColor="#336666" Mode="NumericPages"></PagerStyle> </asp:DataGrid></P> The HTML for this data grid looks
intimidating, but in Visual Studio you don't manipulate it directly but through property sheets in the development environment, as you do for much of the rest of the page.

This ability to have Web form controls on the Web page that understand the ADO.NET abstractions of data sets and data tables is the strength, and limitation, of this scheme. The strength is that you transfer information through data sets, thanks to the kind of tools that Visual Studio provides. The limitation is that
it only works seamlessly when you use patterns such as Table Module (125). If you have very complex domain logic, then a Domain Model (116) becomes helpful; to take advantage of the tools, the Domain Model (116) needs to create its own data set.

[Team LiB]

54

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec1.html#ch14lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec1.html#ch14lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec6.html#ch14lev1sec6
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec5.html#ch14lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec6.html#ch14lev1sec6
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec2.html#ch14lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec3.html#ch09lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec3.html#ch09lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec3.html#ch09lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 55

● A view that processes domain data element by element
and transforms it into HTML.

● The key difference between Transform View and
Template View (350) is the way in which the view is
organized. A Template View (350) is organized around
the output. A Transform View is organized around
separate transforms for each kind of input element.

Transform View

[Team LiB]
Transform View

A view that processes domain data element by element and transforms it into HTML.
When you issue requests for data to the domain and data source layers, you get back all the data you need to satisfy them, but without the formatting you need to make a proper

Web page. The role of the view in Model View Controller (330) is to render this data into a Web page. Using Transform View means thinking of this as a transformation
where you have the model's data as input and its HTML as output.

How It Works
The basic notion of Transform View is writing a program that looks at domain-oriented data and converts it to HTML. The program walks the structure of the domain data and, as

it recognizes each form of domain data, it writes out the particular piece of HTML for it. If you think about this in an imperative way, you might have a method called
renderCustomer that takes a customer object and renders it into HTML. If the customer contains a lot of orders, this method loops over the orders calling renderOrder.

The key difference between Transform View and Template View (350) is the way in which the view is organized. A Template View (350) is organized around the output. A
Transform View is organized around separate transforms for each kind of input element. The transform is controlled by something like a simple loop that looks at each input
element, finds the appropriate transform for that element, and then calls the transform on it. A typical Transform View's rules can be arranged in any order without affecting
the resulting output.

You can write a Transform View in any language; at the moment, however, the dominant choice is XSLT. The interesting thing about this is that XSLT is a functional programming
language, similar to Lisp, Haskell, and other languages that never quite made it into the IS mainstream. As such it has a different kind of structure to it. For example, rather
than explicitly calling routines, XSLT recognizes elements in the domain data and then invokes the appropriate rendering transformations.

To carry out an XSLT transform we need to begin with some XML data. The simplest way this can happen is if the natural return type of the domain logic is either XML or
something automatically transformable to it—for example, a .NET. Failing that, we need to produce the XML ourselves, perhaps by populating a Data Transfer Object (401)
that can serialize itself into XML. That way the data can be assembled using a convenient API. In simpler cases a Transaction Script (110) can return XML directly.

The XML that's fed into the transform don't have to be a string, unless a string form is needed to cross a communication line. It's usually quicker and easier to produce a DOM
and hand that to the transform.

Once we have the XML we pass it to an XSLT engine, which is becoming increasingly available commercially. The logic for the transform is captured in an XSLT style sheet,
which we also pass to the transformer. The transformer then applies the stylesheet to the input XML to yield the output HTML, which we can write directly to the HTTP
response.

When to Use It
The choice between a Transform View and a Template View (350) mostly comes down to which environment the team working on the view software prefers. The presence of

tools is a key factor here. There are more and more HTML editors that you can use to write Template Views (350). Tools for XSLT are, at least so far, much less
sophisticated. Also, XSLT can be an awkward language to master because of its functional programming style coupled with its awkward XML syntax.

One of the strengths of XSLT is its portability to almost any Web platform. You can use the same XSLT to transform XML created from J2EE or .NET, which can help in putting a
common HTML view on data from different sources.

XSLT is also often easier if you're building a view on an XML document. Other environments usually require you to transform such a document into an object or to indulge in
walking the XML DOM, which can be complicated. XSLT fits naturally in an XML world.

Transform View avoids two of the biggest problems with Template View (350). It's easier to keep the transform focused only on rendering HTML, thus avoiding having too much
other logic in the view. It's also easy to run the Transform View and capture the output for testing. This makes it easier to test the view and you don't need a Web server to
run the tests.

Transform View transforms directly from domain-oriented XML into HTML. If you need to change the overall appearance of a Web site, this can force you to change multiple
transform programs. Using common transforms, such as with XSLT includes, helps reduce this problem. Indeed it's much easier to call common transformations using
Transform View than it is using Template View (350). If you need to make global changes easily or support multiple appearances for the same data, you might consider
Two Step View (365), which uses a two-stage process.

Example: Simple Transform (Java)
Setting up a simple transform involves preparing Java code for invoking the right style sheet to form the response. It also involves preparing the style sheet to format the

response. Most of the response to a page is pretty generic, so it makes sense to use Front Controller (344). I'll describe only the command here, and you should look at
Front Controller (344) to see how the command object fits in with the rest of the request-response handling.

All the command object does is invoke the methods on the model to obtain an XML input document, and then pass that XML document through the XML processor.
class AlbumCommand... public void process() { try { Album album = Album.findNamed(request.getParameter("name")); Assert.notNull(album); PrintWriter out =

response.getWriter(); XsltProcessor processor = new SingleStepXsltProcessor("album.xsl"); out.print(processor.getTransformation(album.toXmlDocument())); } catch
(Exception e) { throw new ApplicationException(e); } } The XML document may look something like this:

<album> <title>Stormcock</title> <artist>Roy Harper</artist> <trackList> <track><title>Hors d'Oeuvres</title><time>8:37</time></track> <track><title>The Same Old
Rock</title><time>12:24</time></track> <track><title>One Man Rock and Roll Band</title><time>7:23</time></track> <track><title>Me and My
Woman</title><time>13:01</time></track> </trackList> </album> The translation of the XML document is done by an XSLT program. Each template matches a particular
part of the XML and produces the appropriate HTML output for the page. In this case I've kept the formatting to a excessively simple level to show just the essentials. The
following template clauses match the basic elements of the XML file.

<xsl:template match="album"> <HTML><BODY bgcolor="white"> <xsl:apply-templates/> </BODY></HTML> </xsl:template> <xsl:template match="album/title"> <h1><xsl:apply-
templates/></h1> </xsl:template> <xsl:template match="artist"> <P>Artist: <xsl:apply-templates/></P> </xsl:template> These template matches handle the table,
which here has alternating rows highlighted in different colors. This is a good example of something that isn't possible with cascading style sheets but is reasonable with
XML.

<xsl:template match="trackList"> <table><xsl:apply-templates/></table> </xsl:template> <xsl:template match="track"> <xsl:variable name="bgcolor"> <xsl:choose> <xsl:when
test="(position() mod 2) = 1">linen</xsl:when> <xsl:otherwise>white</xsl:otherwise> </xsl:choose> </xsl:variable> <tr bgcolor="{$bgcolor}"><xsl:apply-templates/></tr>
</xsl:template> <xsl:template match="track/title"> <td><xsl:apply-templates/></td> </xsl:template> <xsl:template match="track/time"> <td><xsl:apply-templates/></td>
</xsl:template>

[Team LiB]

55

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec1.html#ch14lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch15lev1sec2.html#ch15lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec4.html#ch14lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec6.html#ch14lev1sec6
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch14lev1sec3.html#ch14lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 56

spring

17.02.2024 VEA - Vývoj Enterprise Aplikací 57

● Thymeleaf is a modern server-side Java template engine
for both web and standalone environments.

● Thymeleaf's main goal is to bring elegant natural
templates to your development workflow — HTML that
can be correctly displayed in browsers and also work as
static prototypes, allowing for stronger collaboration in
development teams.

● With modules for Spring Framework, a host of integrations
with your favourite tools, and the ability to plug in your
own functionality, Thymeleaf is ideal for modern-day
HTML5 JVM web development — although there is much
more it can do.

Thymeleaf

57

17.02.2024 VEA - Vývoj Enterprise Aplikací 58

<table>
 <thead>
 <tr>
 <th th:text="#{msgs.headers.name}">Name</th>
 <th th:text="#{msgs.headers.price}">Price</th>
 </tr>
 </thead>
 <tbody>
<tr th:each="prod: ${allProducts}">
<td th:text="${prod.name}">Oranges</td>
<td th:text="${#numbers.formatDecimal(prod.price, 1,
2)}">0.99</td>
</tr>
 </tbody>
</table>

Thymeleaf

58

17.02.2024 VEA - Vývoj Enterprise Aplikací 77

● EE Technolgy
● Formatter
● Formatting date
● Allowing Duplicate Form Submissions – bad
● Localization

Presentation layer – main tasks

17.02.202
4

VEA - Vývoj Enterprise Aplikací 78

Domain layer

17.02.2024 VEA - Vývoj Enterprise Aplikací 79

● A single instance that
handles the business logic
for all rows in a database
table or view.

● A Table Module organizes
domain logic with one
class per table in the
database, and a single
instance of a class
contains the various
procedures that will act
on the data.

Table Module

[Team LiB]
Table Module

A single instance that handles the business logic for all rows in a database table or view.
One of the key messages of object orientation is bundling the data with the behavior that uses it. The traditional object-oriented approach is based on objects with identity, along the lines of Domain Model (116). Thus, if we have an Employee

class, any instance of it corresponds to a particular employee. This scheme works well because once we have a reference to an employee, we can execute operations, follow relationships, and gather data on him.
One of the problems with Domain Model (116) is the interface with relational databases. In many ways this approach treats the relational database like a crazy aunt who's shut up in an attic and whom nobody wants to talk about. As a result you

often need considerable programmatic gymnastics to pull data in and out of the database, transforming between two different representations of the data.
A Table Module organizes domain logic with one class per table in the database, and a single instance of a class contains the various procedures that will act on the data. The primary distinction with Domain Model (116) is that, if you have many

orders, a Domain Model (116) will have one order object per order while a Table Module will have one object to handle all orders.
How It Works
The strength of Table Module is that it allows you to package the data and behavior together and at the same time play to the strengths of a relational database. On the surface Table Module looks much like a regular object. The key difference is

that it has no notion of an identity for the objects it's working with. Thus, if you want to obtain the address of an employee, you use a method like anEmployeeModule.getAddress(long employeeID). Every time you want to do something to
a particular employee you have to pass in some kind of identity reference. Often this will be the primary key used in the database.

Usually you use Table Module with a backing data structure that's table oriented. The tabular data is normally the result of a SQL call and is held in a Record Set (508) that mimics a SQL table. The Table Module gives you an explicit method-
based interface that acts on that data. Grouping the behavior with the table gives you many of the benefits of encapsulation in that the behavior is close to the data it will work on.

Often you'll need behavior from multiple Table Modules in order to do some useful work. Many times you see multiple Table Modules operating on the same Record Set (508) (Figure 9.4).
Figure 9.4. Several Table Modules can collaborate with a single Record Set (508).
The most obvious example of Table Module is the use of one for each table in the database. However, if you have interesting queries and views in the database you can have Table Modules for them as well.
The Table Module may be an instance or it may be a collection of static methods. The advantage of an instance is that it allows you to initialize the Table Module with an existing record set, perhaps the result of a query. You can then use the

instance to manipulate the rows in the record set. Instances also make it possible to use inheritance, so we can write a rush contract module that contains additional behavior to the regular contract.
The Table Module may include queries as factory methods. The alternative is a Table Data Gateway (144), but the disadvantage of this is having an extra Table Data Gateway (144) class and mechanism in the design. The advantage is that you

can use a single Table Module on data from different data sources, since you use a different Table Data Gateway (144) for each data source.
When you use a Table Data Gateway (144) the application first uses the Table Data Gateway (144) to assemble data in a Record Set (508). You then create a Table Module with the Record Set (508) as an argument. If you need behavior from

multiple Table Modules, you can create them with the same Record Set (508). The Table Module can then do business logic on the Record Set (508) and pass the modified Record Set (508) to the presentation for display and editing
using the table-aware widgets. The widgets can't tell if the record sets came directly from the relational database or if a Table Module manipulated the data on the way out. After modification in the GUI, the data set goes back to the Table
Module for validation before it's saved to the database. One of the benefits of this style is that you can test the Table Module by creating a Record Set (508) in memory without going to the database.

Figure 9.5. Typical interactions for the layers around a Table Module.
The word "table" in the pattern name suggests that you have one Table Module per table in the database. While this is true to the first approximation, it isn't completely true. It's also useful to have a Table Module for commonly used views or

other queries. Indeed, the structure of the Table Module doesn't really depend on the structure of tables in the database but more on the virtual tables perceived by the application, including views and queries.
When to Use It
Table Module is very much based on table-oriented data, so obviously using it makes sense when you're accessing tabular data using Record Set (508). It also puts that data structure very much in the center of the code, so you also want the

way you access the data structure to be fairly straightforward.
However, Table Module doesn't give you the full power of objects in organizing complex logic. You can't have direct instance-to-instance relationships, and polymorphism doesn't work well. So, for handling complicated domain logic, a

Domain Model (116) is a better choice. Essentially you have to trade off Domain Model (116)'s ability to handle complex logic against Table Module's easier integration with the underlying table-oriented data structures.
If the objects in a Domain Model (116) and the database tables are relatively similar, it may be better to use a Domain Model (116) that uses Active Record (160). Table Module works better than a combination of Domain Model (116) and

Active Record (160) when other parts of the application are based on a common table-oriented data structure. That's why you don't see Table Module very much in the Java environment, although that may change as row sets become
more widely used.

The most well-known situation in which I've come across this pattern is in Microsoft COM designs. In COM (and .NET) the Record Set (508) is the primary repository of data in an application. Record sets can be passed to the UI, where data-
aware widgets display information. Microsoft's ADO libraries give you a good mechanism to access the relational data as record sets. In this situation Table Module allows you to fit business logic into the application in a well-organized
manner, without losing the way the various elements work on the tabular data.

Example: Revenue Recognition with a Table Module (C#)
Time to revisit the revenue recognition example (page 112) I used in the other domain modeling patterns, this time with a Table Module. To recap, our mission is to recognize revenue on orders when the rules vary depending on the product type.

In this example we have different rules for word processors, spreadsheets, and databases.
Table Module is based on a data schema of some kind, usually a relational data model (although in the future we may well see an XML model used in a similar way). In this case I'll use the relational schema from Figure 9.6.
Figure 9.6. Database schema for revenue recognition.
The classes that manipulate this data are in pretty much the same form; there's one Table Module class for each table. In the .NET architecture a data set object provides an in-memory representation of a database structure. It thus makes

sense to create classes that operate on this data set. Each Table Module class has a data member of a data table, which is the .NET system class corresponding to a table within the data set. This ability to read a table is common to all
Table Modules and so can appear in a Layer Supertype (475).

class TableModule... protected DataTable table; protected TableModule(DataSet ds, String tableName) { table = ds.Tables[tableName]; } The subclass constructor calls the superclass constructor with the correct table name.
class Contract... public Contract (DataSet ds) : base (ds, "Contracts") {} This allows you to create a new Table Module just by passing in a data set to Table Module's constructor
contract = new Contract(dataset); which keeps the code that creates the data set away from the Table Modules, following the guidelines of ADO.NET.
A useful feature is the C# indexer, which gets to a particular row in the data table given the primary key.
class Contract... public DataRow this [long key] { get { String filter = String.Format("ID = {0}", key); return table.Select(filter)[0]; } } The first piece of functionality calculates the revenue recognition for a contract, updating the revenue recognition

tables accordingly. The amount recognized depends on the kind of product we have. Since this behavior mainly uses data from the contract table, I decided to add the method to the contract class.
class Contract... public void CalculateRecognitions (long contractID) { DataRow contractRow = this[contractID]; Decimal amount = (Decimal)contractRow["amount"]; RevenueRecognition rr = new RevenueRecognition (table.DataSet); Product

prod = new Product(table.DataSet); long prodID = GetProductId(contractID); if (prod.GetProductType(prodID) == ProductType.WP) { rr.Insert(contractID, amount, (DateTime) GetWhenSigned(contractID)); }else if
(prod.GetProductType(prodID) == ProductType.SS) { Decimal[] allocation = allocate(amount,3); rr.Insert(contractID, allocation[0], (DateTime) GetWhenSigned(contractID)); rr.Insert(contractID, allocation[1], (DateTime)
GetWhenSigned(contractID). AddDays(60)); rr.Insert(contractID, allocation[2], (DateTime) GetWhenSigned(contractID). AddDays(90)); }else if (prod.GetProductType(prodID) == ProductType.DB) { Decimal[] allocation =
allocate(amount,3); rr.Insert(contractID, allocation[0], (DateTime) GetWhenSigned(contractID)); rr.Insert(contractID, allocation[1], (DateTime) GetWhenSigned(contractID). AddDays(30)); rr.Insert(contractID, allocation[2], (DateTime)
GetWhenSigned(contractID). AddDays(60)); }else throw new Exception("invalid product id"); } private Decimal[] allocate(Decimal amount, int by) { Decimal lowResult = amount / by; lowResult = Decimal.Round(lowResult,2); Decimal
highResult = lowResult + 0.01m; Decimal[] results = new Decimal[by]; int remainder = (int) amount % by; for (int i = 0; i < remainder; i++) results[i] = highResult; for (int i = remainder; i < by; i++) results[i] = lowResult; return results; }
Usually I would use Money (488) here, but for variety's sake I'll show this using a decimal. I use an allocation method similar to the one I use for Money (488).

To carry this out, we need some behavior that's defined on the other classes. The product needs to be able to tell us which type it is. We can do this with an enum for the product type and a lookup method.
public enum ProductType {WP, SS, DB}; class Product... public ProductType GetProductType (long id) { String typeCode = (String) this[id]["type"]; return (ProductType) Enum.Parse(typeof(ProductType), typeCode); } GetProductType

encapsulates the data in the data table. There's an argument for doing this for all columns of data, as opposed to accessing them directly as I did with the amount on the contract. While encapsulation is generally a Good Thing, I don't
use it here because it doesn't fit with the assumption of the environment that different parts of the system access the data set directly. There's no encapsulation when the data set moves over to the UI, so column access functions only
make sense when there's some additional functionality to be done, such as converting a string to a product type.

This is also a good time to mention that, although I'm using an untyped data set here because these are more common on different platforms, there's a strong argument (page 509) for using .NET's strongly typed data set.
The other additional behavior is inserting a new revenue recognition record.
class RevenueRecognition... public long Insert (long contractID, Decimal amount, DateTime date) { DataRow newRow = table.NewRow(); long id = GetNextID(); newRow["ID"] = id; newRow["contractID"] = contractID; newRow["amount"] =

amount; newRow["date"]= String.Format("{0:s}", date); table.Rows.Add(newRow); return id; } Again, the point of this method is less to encapsulate the data row and more to have a method instead of several lines of code that are
repeated.

The second piece of functionality is to sum up all the revenue recognized on a contract by a given date. Since this uses the revenue recognition table it makes sense to define the method there.
class RevenueRecognition... public Decimal RecognizedRevenue (long contractID, DateTime asOf) { String filter = String.Format("ContractID = {0}AND date <= #{1:d}#", contractID, asOf); DataRow[] rows = table.Select(filter); Decimal result =

0m; foreach (DataRow row in rows) { result += (Decimal)row["amount"]; } return result; } This fragment takes advantage of the really nice feature of ADO.NET that allows you to define a where clause and then select a subset of the data
table to manipulate. Indeed, you can go further and use an aggregate function.

class RevenueRecognition... public Decimal RecognizedRevenue2 (long contractID, DateTime asOf) { String filter = String.Format("ContractID = {0}AND date <= #{1:d}#", contractID, asOf); String computeExpression = "sum(amount)"; Object
sum = table.Compute(computeExpression, filter); return (sum is System.DBNull) ? 0 : (Decimal) sum; }

[Team LiB]

79

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
#ch09fig04
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec11.html#ch18lev1sec11
#ch09fig06
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec7.html#ch18lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec7.html#ch18lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 80

● System transaction vs. Business transaction

Using commands for Transaction Script.

Transaction Script

[Team LiB]
Transaction Script

Organizes business logic by procedures where each procedure handles a single request from the presentation.
Most business applications can be thought of as a series of transactions. A transaction may view some information as organized in a particular way, another will make changes to it. Each interaction between a client system and a server system

contains a certain amount of logic. In some cases this can be as simple as displaying information in the database. In others it may involve many steps of validations and calculations.
A Transaction Script organizes all this logic primarily as a single procedure, making calls directly to the database or through a thin database wrapper. Each transaction will have its own Transaction Script, although common subtasks can be

broken into subprocedures.
How It Works
With Transaction Script the domain logic is primarily organized by the transactions that you carry out with the system. If your need is to book a hotel room, the logic to check room availability, calculate rates, and update the database is found

inside the Book Hotel Room procedure.
For simple cases there isn't much to say about how you organize this. Of course, as with any other program you should structure the code into modules in a way that makes sense. Unless the transaction is particularly complicated, that won't be

much of a challenge. One of the benefits of this approach is that you don't need to worry about what other transactions are doing. Your task is to get the input, interrogate the database, munge, and save your results to the database.
Where you put the Transaction Script will depend on how you organize your layers. It may be in a server page, a CGI script, or a distributed session object. My preference is to separate Transaction Scripts as much as you can. At the very least

put them in distinct subroutines; better still, put them in classes separate from those that handle presentation and data source. In addition, don't have any calls from the Transaction Scripts to any presentation logic; that will make it easier
to modify the code and test the Transaction Scripts.

You can organize your Transaction Scripts into classes in two ways. The most common is to have several Transaction Scripts in a single class, where each class defines a subject area of related Transaction Scripts. This is straightforward and
the best bet for most cases. The other way is to have each Transaction Script in its own class (Figure 9.1), using the Command pattern [Gang of Four]. In this case you define a supertype for your commands that specifies some execute
method in which Transaction Script logic fits. The advantage of this is that it allows you to manipulate instances of scripts as objects at runtime, although I've rarely seen a need to do this with the kinds of systems that use Transaction
Scripts to organize domain logic. Of course, you can ignore classes completely in many languages and just use global functions. However, you'll often find that instantiating a new object helps with threading issues as it makes it easier to
isolate data.

Figure 9.1. Using commands for Transaction Script.
I use the term Transaction Script because most of the time you'll have one Transaction Script for each database transaction. This isn't a 100 percent rule, but it's true to the first approximation.
When to Use It
The glory of Transaction Script is its simplicity. Organizing logic this way is natural for applications with only a small amount of logic, and it involves very little overhead either in performance or in understanding.
As the business logic gets more complicated, however, it gets progressively harder to keep it in a well-designed state. One particular problem to watch for is its duplication between transactions. Since the whole point is to handle one transaction,

any common code tends to be duplicated.
Careful factoring can alleviate many of these problems, but more complex business domains need to build a Domain Model (116). A Domain Model (116) will give you many more options in structuring the code, increasing readability and

decreasing duplication.
It's hard to quantify the cutover level, especially when you're more familiar with one pattern than the other. You can refactor a Transaction Script design to a Domain Model (116) design, but it's a harder change than it otherwise needs to be.

Therefore, an early shot is often the best way to move forward.
However much of an object bigot you become, don't rule out Transaction Script. There are a lot of simple problems out there, and a simple solution will get you up and running much faster.
The Revenue Recognition Problem
For this pattern, and others that talk about domain logic, I'm going to use the same problem as an illustration. To avoid typing the problem statement several times, I'm just putting it in here.
Revenue recognition is a common problem in business systems. It's all about when you can actually count the money you receive on your books. If I sell you a cup of coffee, it's a simple matter: I give you the coffee, I take your money, and I

count the money to the books that nanosecond. For many things it gets complicated, however. Say you pay me a retainer to be available that year. Even if you pay me some ridiculous fee today, I may not be able to put it on my books
right away because the service is to be performed over the course of a year. One approach might be to count only one-twelfth of that fee for each month in the year, since you might pull out of the contract after a month when you realize
that writing has atrophied my programming skills.

The rules for revenue recognition are many, various, and volatile. Some are set by regulation, some by professional standards, and some by company policy. Revenue tracking ends up being quite a complex problem.
I don't fancy delving into the complexity right now, so instead we'll imagine a company that sells three kinds of products: word processors, databases, and spreadsheets. According to the rules, when you sign a contract for a word processor you

can book all the revenue right away. If it's a spreadsheet, you can book one-third today, one-third in sixty days, and one-third in ninety days. If it's a database, you can book one-third today, one-third in thirty days, and one-third in sixty
days. There's no basis for these rules other than my own fevered imagination. I'm told that the real rules are equally rational.

Figure 9.2. A conceptual model for simplified revenue recognition. Each contract has multiple revenue recognitions that indicate when the various parts of the revenue should be recognized.
Example: Revenue Recognition (Java)
This example uses two transaction scripts: one to calculate the revenue recognitions for a contract and one to tell how much revenue on a contract has been recognized by a certain date. The database structure has three tables: one for the

products, one for the contracts, and one for the revenue recognitions.
CREATE TABLE products (ID int primary key, name varchar, type varchar) CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date) CREATE TABLE revenueRecognitions (contract int, amount decimal,

recognizedOn date, PRIMARY KEY (contract, recognizedOn)) The first script calculates the amount of recognition due by a particular day. I can do this in two stages: In the first I select the appropriate rows in the revenue recognitions
table; in the second I sum up the amounts.

Many Transaction Script designs have scripts that operate directly on the database, putting SQL code in the procedure. Here I'm using a simple Table Data Gateway (144) to wrap the SQL queries. Since this example is so simple, I'm using a
single gateway rather than one for each table. I can define an appropriate find method on the gateway.

class Gateway... public ResultSet findRecognitionsFor(long contractID, MfDate asof) throws SQLException{ PreparedStatement stmt = db.prepareStatement(findRecognitionsStatement); stmt = db.prepareStatement(findRecognitionsStatement);
stmt.setLong(1, contractID); stmt.setDate(2, asof.toSqlDate()); ResultSet result = stmt.executeQuery(); return result; } private static final String findRecognitionsStatement = "SELECT amount " + "FROM revenueRecognitions " +
"WHERE contract = ? AND recognizedOn <= ?"; private Connection db; I then use the script to sum up based on the result set passed back from the gateway.

class RecognitionService... public Money recognizedRevenue(long contractNumber, MfDate asOf) { Money result = Money.dollars(0); try { ResultSet rs = db.findRecognitionsFor(contractNumber, asOf); while (rs.next()) { result =
result.add(Money.dollars(rs.getBigDecimal("amount"))); } return result; }catch (SQLException e) {throw new ApplicationException (e); } } When the calculation is as simple as this, you can replace the in-memory script with a call to a SQL
statement that uses an aggregate function to sum the amounts.

For calculating the revenue recognitions on an existing contract, I use a similar split. The script on the service carries out the business logic.
class RecognitionService... public void calculateRevenueRecognitions(long contractNumber) { try { ResultSet contracts = db.findContract(contractNumber); contracts.next(); Money totalRevenue =

Money.dollars(contracts.getBigDecimal("revenue")); MfDate recognitionDate = new MfDate(contracts.getDate("dateSigned")); String type = contracts.getString("type"); if (type.equals("S")){ Money[] allocation = totalRevenue.allocate(3);
db.insertRecognition (contractNumber, allocation[0], recognitionDate); db.insertRecognition (contractNumber, allocation[1], recognitionDate.addDays(60)); db.insertRecognition (contractNumber, allocation[2],
recognitionDate.addDays(90)); }else if (type.equals("W")){ db.insertRecognition(contractNumber, totalRevenue, recognitionDate); }else if (type.equals("D")) { Money[] allocation = totalRevenue.allocate(3); db.insertRecognition
(contractNumber, allocation[0], recognitionDate); db.insertRecognition (contractNumber, allocation[1], recognitionDate.addDays(30)); db.insertRecognition (contractNumber, allocation[2], recognitionDate.addDays(60)); } }catch
(SQLException e) {throw new ApplicationException (e); } } Notice that I'm using Money (488) to carry out the allocation. When splitting an amount three ways it's very easy to lose a penny.

The Table Data Gateway (144) provides support on the SQL. First there's a finder for a contract.
class Gateway... public ResultSet findContract (long contractID) throws SQLException{ PreparedStatement stmt = db.prepareStatement(findContractStatement); stmt.setLong(1, contractID); ResultSet result = stmt.executeQuery(); return

result; } private static final String findContractStatement = "SELECT * " + "FROM contracts c, products p " + "WHERE ID = ? AND c.product = p.ID"; And secondly there's a wrapper for the insert.
class Gateway... public void insertRecognition (long contractID, Money amount, MfDate asof) throws SQLException { PreparedStatement stmt = db.prepareStatement(insertRecognitionStatement); stmt.setLong(1, contractID);

stmt.setBigDecimal(2, amount.amount()); stmt.setDate(3, asof.toSqlDate()); stmt.executeUpdate(); } private static final String insertRecognitionStatement = "INSERT INTO revenueRecognitions VALUES (?, ?, ?)"; In a Java system the
recognition service might be a regular class or a session bean.

As you compare this to the example in Domain Model (116), unless your mind is as twisted as mine, you'll probably be thinking that this is much simpler. The harder thing to imagine is what happens as the rules get more complicated. Typical
revenue recognition rules get very involved, varying not just by product but also by date (if the contract was signed before April 15 this rule applies …). It's difficult to keep a coherent design with Transaction Script once things get that
complicated, which is why object bigots like me prefer using a Domain Model (116) in these circumstances.

[Team LiB]

80

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
#ch09fig01
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec7.html#ch18lev1sec7
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 81

● An object model of the
domain that incorporates
both behavior and data.

Domain Model

● An OO domain model will often
look similar to a database model,
yet it will still have a lot of
differences. A Domain Model
mingles data and process, has
multivalued attributes and a
complex web of associations, and
uses inheritance.

[Team LiB]
Domain Model

An object model of the domain that incorporates both behavior and data.
At its worst business logic can be very complex. Rules and logic describe many different cases and slants of behavior, and it's this complexity that objects were designed to work with. A Domain Model creates a web of interconnected objects, where each object represents some meaningful individual, whether as

large as a corporation or as small as a single line on an order form.
How It Works
Putting a Domain Model in an application involves inserting a whole layer of objects that model the business area you're working in. You'll find objects that mimic the data in the business and objects that capture the rules the business uses. Mostly the data and process are combined to cluster the processes close

to the data they work with.
An OO domain model will often look similar to a database model, yet it will still have a lot of differences. A Domain Model mingles data and process, has multivalued attributes and a complex web of associations, and uses inheritance.
As a result I see two styles of Domain Model in the field. A simple Domain Model looks very much like the database design with mostly one domain object for each database table. A rich Domain Model can look different from the database design, with inheritance, strategies, and other [Gang of Four] patterns, and

complex webs of small interconnected objects. A rich Domain Model is better for more complex logic, but is harder to map to the database. A simple Domain Model can use Active Record (160), whereas a rich Domain Model requires Data Mapper (165).
Since the behavior of the business is subject to a lot of change, it's important to be able to modify, build, and test this layer easily. As a result you'll want the minimum of coupling from the Domain Model to other layers in the system. You'll notice that a guiding force of many layering patterns is to keep as few

dependencies as possible between the domain model and other parts of the system.
With a Domain Model there are a number of different scopes you might use. The simplest case is a single-user application where the whole object graph is read from a file and put into memory. A desktop application may work this way, but it's less common for a multitiered IS application simply because there are

too many objects. Putting every object into memory consumes too much memory and takes too long. The beauty of object-oriented databases is that they give the impression of doing this while moving objects between memory and disk.
Without an OO database you have to do this yourself. Usually a session will involve pulling in an object graph of all the objects involved in it. This will certainly not be all objects and usually not all the classes. Thus, if you're looking at a set of contracts you might pull in only the products referenced by contracts

within your working set. If you're just performing calculations on contracts and revenue recognition objects, you may not pull in any product objects at all. Exactly what you pull into memory is governed by your database mapping objects.
If you need the same object graph between calls to the server, you have to save the server state somewhere, which is the subject of the section on saving server state (page 81).
A common concern with domain logic is bloated domain objects. As you build a screen to manipulate orders you'll notice that some of the order behavior is only needed only for it. If you put these responsibilities on the order, the risk is that the Order class will become too big because it's full of responsibilities that

are only used in a single use case. This concern leads people to consider whether some responsibility is general, in which case it should sit in the order class, or specific, in which case it should sit in some usage-specific class, which might be a Transaction Script (110) or perhaps the presentation itself.
The problem with separating usage-specific behavior is that it can lead to duplication. Behavior that's separated from the order is harder to find, so people tend to not see it and duplicate it instead. Duplication can quickly lead to more complexity and inconsistency, but I've found that bloating occurs much less

frequently than predicted. If it does occur, it's relatively easy to see and not difficult to fix. My advice is not to separate usage-specific behavior. Put it all in the object that's the natural fit. Fix the bloating when, and if, it becomes a problem.
Java Implementation
There's always a lot of heat generated when people talk about developing a Domain Model in J2EE. Many of the teaching materials and introductory J2EE books suggest that you use entity beans to develop a domain model, but there are some serious problems with this approach, at least with the current (2.0)

specification.
Entity beans are most useful when you use Container Managed Persistence (CMP). Indeed, I would say there's little point in using entity beans without CMP. However, CMP is a limited form of object-relational mapping, and it can't support many of the patterns that you need in a rich Domain Model.
Entity beans can't be re-entrant. That is, if you call out from one entity bean into another object, that other object (or any object it calls) can't call back into the first entity bean. A rich Domain Model often uses re-entrancy, so this is a handicap. It's made worse by the fact that it's hard to spot re-entrant behavior. As a

result, some people say that one entity bean should never call another. While this avoids re-entrancy, it very much cripples the advantages using a Domain Model.
A Domain Model should use fine-grained objects with fine-grained interfaces. Entity beans may be remotable (prior to version 2.0 they had to be). If you have remote objects with fine-grained interfaces you get terrible performance. You can avoid this problem quite easily by only using local interfaces for your entity

beans in a Domain Model.
To run with entity beans you need a container and a database connected. This will increase build times and also increase the time to do test runs since the tests have to execute against a database. Entity beans are also tricky to debug.
The alternative is to use normal Java objects, although this often causes a surprised reaction—it's amazing how many people think that you can't run regular Java objects in an EJB container. I've come to the conclusion that people forget about regular Java objects because they haven't got a fancy name. That's

why, while preparing for a talk in 2000, Rebecca Parsons, Josh Mackenzie, and I gave them one: POJOs (plain old Java objects). A POJO domain model is easy to put together, is quick to build, can run and test outside an EJB container, and is independent of EJB (maybe that's why EJB vendors don't
encourage you to use them).

My view on the whole is that using entity beans as a Domain Model works if you have pretty modest domain logic. If so, you can build a Domain Model that has a simple relationship with the database: where there's mostly one entity bean class per database table. If you have a richer domain logic with inheritance,
strategies, and other more sophisticated patterns, you're better off with a POJO domain model and Data Mapper (165), using a commercial tool or with a homegrown layer.

The biggest frustration for me with the use of EJB is that I find a rich Domain Model complicated enough to deal with, and I want to keep as independent as possible from the details of the implementation environment. EJB forces itself into your thinking about the Domain Model, which means that I have to worry
about both the domain and the EJB environment.

When to Use It
If the how for a Domain Model is difficult because it's such a big subject, the when is hard because of both the vagueness and the simplicity of the advice. It all comes down to the complexity of the behavior in your system. If you have complicated and everchanging business rules involving validation, calculations,

and derivations, chances are that you'll want an object model to handle them. On the other hand, if you have simple not-null checks and a couple of sums to calculate, a Transaction Script (110) is a better bet.
One factor that comes into this is comfortable used the development team is with domain objects. Learning how to design and use a Domain Model is a significant exercise—one that has led to many articles on the "paradigm shift" of objects use. It certainly takes practice and coaching to get used to a Domain

Model, but once used to it I've found that few people want to go back to a Transaction Script (110) for any but the simplest problems.
If you're using Domain Model, my first choice for database interaction is Data Mapper (165). This will help keep your Domain Model independent from the database and is the best approach to handle cases where the Domain Model and database schema diverge.
When you use Domain Model you may want to consider Service Layer (133) to give your Domain Model a more distinct API.
Further Reading
Almost any book on OO design will talk about Domain Models, since most of what people refer to as OO development is centered around their use.
If you're looking for an introductory book on OO design, my current favorite is [Larman]. For examples of Domain Model take a look at [Fowler AP]. [Hay] also gives good examples in a relational context. To build a good Domain Model you should have an understanding of conceptual thinking about objects. For

this I've always liked [Martin and Odell]. For an understanding of the patterns you'll see in a rich Domain Model, or any other OO system, you must read [Gang of Four].
Eric Evans is currently writing a book [Evans] on building Domain Models. As I write this I've seen only an early manuscript, but it looks very promising.
Example: Revenue Recognition (Java)
One of the biggest frustrations of describing a Domain Model is the fact that any example I show is necessarily simple so you can understand it; yet that simplicity hides the Domain Model's strength. You only appreciate these strengths when you have a really complicated domain.
But even if the example can't do justice to why you would want a Domain Model, at least it will give you a sense of what one can look like. Therefore, I'm using the same example (page 112) that I used for Transaction Script (110), a little matter of revenue recognition.
An immediate thing to notice is that every class, in this small example (Figure 9.3) contains both behavior and data. Even the humble Revenue Recognition class contains a simple method to find out if that object's value is recognizable on a certain date.
class RevenueRecognition... private Money amount; private MfDate date; public RevenueRecognition(Money amount, MfDate date) { this.amount = amount; this.date = date; } public Money getAmount() { return amount; } boolean isRecognizableBy(MfDate asOf) { return asOf.after(date) || asOf.equals(date); }

Figure 9.3. Class diagram of the example classes for a Domain Model.
Calculating how much revenue is recognized on a particular date involves both the contract and revenue recognition classes.
class Contract... private List revenueRecognitions = new ArrayList(); public Money recognizedRevenue(MfDate asOf) { Money result = Money.dollars(0); Iterator it = revenueRecognitions.iterator(); while (it.hasNext()) { RevenueRecognition r = (RevenueRecognition) it.next(); if (r.isRecognizableBy(asOf)) result =

result.add(r.getAmount()); } return result; } A common thing you find in domain models is how multiple classes interact to do even the simplest tasks. This is what often leads to the complaint that with OO programs you spend a lot of time hunting around from class to class trying to find them. There's a lot
of merit to this complaint. The value comes as the decision on whether something is recognizable by a certain date gets more complex and as other objects need to know. Containing the behavior on the object that needs to know avoids duplication and reduces coupling between the different objects.

Looking at calculating and creating these revenue recognition objects further demonstrates the notion of lots of little objects. In this case the calculation and creation begin with the customer and are handed off via the product to a strategy hierarchy. The strategy pattern [Gang of Four] is a well-known OO pattern
that allows you combine a group of operations in a small class hierarchy. Each instance of product is connected to a single instance of recognition strategy, which determines which algorithm is used to calculate revenue recognition. In this case we have two subclasses of recognition strategy for the two
different cases. The structure of the code looks like this:

class Contract... private Product product; private Money revenue; private MfDate whenSigned; private Long id; public Contract(Product product, Money revenue, MfDate whenSigned) { this.product = product; this.revenue = revenue; this.whenSigned = whenSigned; } class Product... private String name; private
RecognitionStrategy recognitionStrategy; public Product(String name, RecognitionStrategy recognitionStrategy) { this.name = name; this.recognitionStrategy = recognitionStrategy; } public static Product newWordProcessor(String name) { return new Product(name, new
CompleteRecognitionStrategy()); } public static Product newSpreadsheet(String name) { return new Product(name, new ThreeWayRecognitionStrategy(60, 90)); } public static Product newDatabase(String name) { return new Product(name, new ThreeWayRecognitionStrategy(30, 60)); } class
RecognitionStrategy... abstract void calculateRevenueRecognitions(Contract contract); class CompleteRecognitionStrategy... void calculateRevenueRecognitions(Contract contract) { contract.addRevenueRecognition(new RevenueRecognition(contract.getRevenue(), contract.getWhenSigned())); } class
ThreeWayRecognitionStrategy... private int firstRecognitionOffset; private int secondRecognitionOffset; public ThreeWayRecognitionStrategy(int firstRecognitionOffset, int secondRecognitionOffset) { this.firstRecognitionOffset = firstRecognitionOffset; this.secondRecognitionOffset =
secondRecognitionOffset; } void calculateRevenueRecognitions(Contract contract) { Money[] allocation = contract.getRevenue().allocate(3); contract.addRevenueRecognition(new RevenueRecognition (allocation[0], contract.getWhenSigned())); contract.addRevenueRecognition(new
RevenueRecognition (allocation[1], contract.getWhenSigned().addDays(firstRecognitionOffset))); contract.addRevenueRecognition(new RevenueRecognition (allocation[2], contract.getWhenSigned().addDays(secondRecognitionOffset))); } The great value of the strategies is that they provide well-
contained plug points to extend the application. Adding a new revenue recognition algorithm involves creating a new subclass and overriding the calculateRevenueRecognitions method. This makes it easy to extend the algorithmic behavior of the application.

When you create products, you hook them up with the appropriate strategy objects. I'm doing this in my test code.
class Tester... private Product word = Product.newWordProcessor("Thinking Word"); private Product calc = Product.newSpreadsheet("Thinking Calc"); private Product db = Product.newDatabase("Thinking DB"); Once everything is set up, calculating the recognitions requires no knowledge of the strategy

subclasses.
class Contract... public void calculateRecognitions() { product.calculateRevenueRecognitions(this); } class Product... void calculateRevenueRecognitions(Contract contract) { recognitionStrategy.calculateRevenueRecognitions(contract); } The OO habit of successive forwarding from object to object moves the

behavior to the object most qualified to handle it, but it also resolves much of the conditional behavior. You'll notice that there are no conditionals in this calculation. You set up the decision path when you create the products with the appropriate strategy. Once everything is wired together like this, the
algorithms just follow the path. Domain models work very well when you have similar conditionals because the similar conditionals can be factored out into the object structure itself. This moves complexity out of the algorithms and into the relationships between objects. The more similar the logic, the
more you find the same network of relationships used by different parts of the system. Any algorithm that's dependent on the type of recognition calculation can follow this particular network of objects.

Notice in this example that I've shown nothing about how the objects are retrieved from, and written to, the database. This is for a couple of reasons. First, mapping a Domain Model to a database is always somewhat hard, so I'm chickening out and not providing an example. Second, in many ways the whole point
of a Domain Model is to hide the database, both from upper layers and from people working the Domain Model itself. Thus, hiding it here reflects what it's like to actually program in this environment.

[Team LiB]

81

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch02lev1sec2.html#ch02lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib26
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib17
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib21
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib29
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib15
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
#ch09fig03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_biblio.html#bib20
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 82

spring

17.02.2024 VEA - Vývoj Enterprise Aplikací 83

Spring – Request processing

17.02.2024 VEA - Vývoj Enterprise Aplikací 84

● Inversion of control (IoC)
● Dependency injection

Dependency injection is a specific type of IoC
Inversion of Control is a key part of what makes a framework
different to a library.

Inversion of Control – IoC

Background

Inversion of control is not a new term in computer science. Martin Fowler traces the etymology of the phrase back to 1988,[5]
but it is closely related to the concept of program inversion described by Michael Jackson in his Jackson Structured
Programming methodology in the 1970s.[6] A bottom-up parser can be seen as an inversion of a top-down parser: in the
one case, the control lies with the parser, in the other case, it lies with the receiving application.

Dependency injection is a specific type of IoC.[4] A service locator such as the Java Naming and Directory Interface (JNDI) is
similar. In an article by Loek Bergman,[7] it is presented as an architectural principle.

In an article by Robert C. Martin,[8] the dependency inversion principle and abstraction by layering come together. His reason
to use the term "inversion" is in comparison with traditional software development methods. He describes the uncoupling
of services by the abstraction of layers when he is talking about dependency inversion. The principle is used to find out
where system borders are in the design of the abstraction layers.

Description

In traditional programming, the flow of the business logic is determined by objects that are statically bound to one another.
With inversion of control, the flow depends on the object graph that is built up during program execution. Such a dynamic
flow is made possible by object interactions that are defined through abstractions. This run-time binding is achieved by
mechanisms such as dependency injection or a service locator. In IoC, the code could also be linked statically during
compilation, but finding the code to execute by reading its description from external configuration instead of with a direct
reference in the code itself.

In dependency injection, a dependent object or module is coupled to the object it needs at run time. Which particular object will
satisfy the dependency during program execution typically cannot be known at compile time using static analysis. While
described in terms of object interaction here, the principle can apply to other programming methodologies besides object-
oriented programming.

In order for the running program to bind objects to one another, the objects must possess compatible interfaces. For example,
class A may delegate behavior to interface I which is implemented by class B; the program instantiates A and B, and then
injects B into A.

17.02.2024 VEA - Vývoj Enterprise Aplikací 85

Proxy Design Pattern
What problems can the Proxy design pattern solve?
● The access to an object should be controlled .
● Additional functionality should be provided when accessing an object.

When accessing sensitive objects, for example, it should be possible to check
that clients have the needed access rights.

17.02.2024 VEA - Vývoj Enterprise Aplikací 89

● The entry point of your application, this is where Spring
passes control to your code.

@Controller

@Controller
public class MyControler {

@RequestMapping(value="/")
public String hello(Model m){
m.addAttribute("person", new Person("David", 10));
return "edit";
}

17.02.2024 VEA - Vývoj Enterprise Aplikací 94

HandlerInterceptor

17.02.2024 VEA - Vývoj Enterprise Aplikací 104

Validation And Layers

17.02.2024 VEA - Vývoj Enterprise Aplikací 106

• Singleton - (Default) Scopes a single bean definition to a single object
instance per Spring IoC container.

• Prototype - Scopes a single bean definition to any number of object
instances.

• Request - Scopes a single bean definition to the lifecycle of a single HTTP
request; that is, each HTTP request has its own instance of a bean created off
the back of a single bean definition. Only valid in the context of a web-aware
Spring ApplicationContext.

• Session - Scopes a single bean definition to the lifecycle of an HTTP Session.
Only valid in the context of a web-aware Spring ApplicationContext.

• global session - Scopes a single bean definition to the lifecycle of a global
HTTP Session. Typically only valid when used in a portlet context. Only valid
in the context of a web-aware Spring ApplicationContext.

• Application - Scopes a single bean definition to the lifecycle of a
ServletContext. Only valid in the context of a web-aware Spring
ApplicationContext.

Spring - scope

17.02.2024 VEA - Vývoj Enterprise Aplikací 111

● In computing, aspect-oriented programming (AOP) is a patented[1]
programming paradigm that aims to increase modularity by
allowing the separation of cross-cutting concerns. It does so by
adding additional behavior to existing code (an advice) without
modifying the code itself, instead separately specifying which code
is modified via a "pointcut" specification, such as "log all function
calls when the function's name begins with 'set'". This allows
behaviors that are not central to the business logic (such as
logging) to be added to a program without cluttering the code core
to the functionality. AOP forms a basis for
aspect-oriented software development.

● Aspect, Pointcut, Join point, Advice

Aspect Oriented Programming

In computing, aspect-oriented programming (AOP) is a
patented[1] programming paradigm that aims to increase
modularity by allowing the separation of
cross-cutting concerns. It does so by adding additional
behavior to existing code (an advice) without modifying the
code itself, instead separately specifying which code is
modified via a "pointcut" specification, such as "log all
function calls when the function's name begins with 'set'".
This allows behaviors that are not central to the
business logic (such as logging) to be added to a program
without cluttering the code core to the functionality. AOP
forms a basis for aspect-oriented software development.

AOP includes programming methods and tools that support
the modularization of concerns at the level of the source
code, while "aspect-oriented software development" refers
to a whole engineering discipline.

Aspect-oriented programming entails breaking down
program logic into distinct parts (so-called concerns,
cohesive areas of functionality). Nearly all programming
paradigms support some level of grouping and
encapsulation of concerns into separate, independent
entities by providing abstractions (e.g., functions,
procedures, modules, classes, methods) that can be used
for implementing, abstracting and composing these
concerns. Some concerns "cut across" multiple
abstractions in a program, and defy these forms of
implementation. These concerns are called cross-cutting
concerns or horizontal concerns.

111

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Aspect-oriented_programming#cite_note-patent-1
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Modularity_(programming)
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Cross-cutting_concern
https://en.wikipedia.org/wiki/Advice_(programming)
https://en.wikipedia.org/wiki/Pointcut
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Aspect-oriented_software_development
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Aspect-oriented_programming#cite_note-patent-1
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Modularity_(programming)
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Cross-cutting_concern
https://en.wikipedia.org/wiki/Advice_(programming)
https://en.wikipedia.org/wiki/Pointcut
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Aspect-oriented_software_development
https://en.wikipedia.org/wiki/Encapsulation_(computer_science)

17.02.2024 VEA - Vývoj Enterprise Aplikací 114

• import org.aspectj.lang.annotation.Aspect;
• import org.aspectj.lang.annotation.Before;

• @Aspect
• @Component
• public class LoggingAspect {

• @Before("execution(*
vea2015.GreetingController.sayHello3(..))")

• public void logBefore(JoinPoint joinPoint){
• LogFactory.getLog(joinPoint.getTarget().getClass()).info("Befor

e " + joinPoint.getSignature());

• }
• }

Spring - AspectJ

17.02.2024 VEA - Vývoj Enterprise Aplikací 115

● @Before, @After, @AfterReturning, @AfterThrowing,
@Around - ProceedingJoinPoint

● execution(* com.xyz.myapp.service.*.*(..)) and
@annotation(com.xyz.myapp.service.Idempotent)

● execution, within, @annotation

Spring - AspectJ

17.02.2024 VEA - Vývoj Enterprise Aplikací 116

● execution(* set*(..))

● execution(public * *(..))

● execution(* com.xyz.service..*.*(..))

● within(com.xyz.service.*)

● within(com.xyz.service..*)

● args(java.io.Serializable)

● target(com.xyz.service.AccountService)

● @target(org.springframework.transaction.annotation.Transactional)

● @within(org.springframework.transaction.annotation.Transactional)

● @annotation(org.springframework.transaction.annotation.Transactional)

● @args(com.xyz.security.Classified)

● bean(tradeService)

● bean(*Service)

Spring - AspectJ

17.02.202
4

VEA - Vývoj Enterprise Aplikací 117

Data sources

17.02.2024 VEA - Vývoj Enterprise Aplikací 118

● An object that acts as a Gateway (466) to a database table.
One instance handles all the rows in the table.

● A Table Data Gateway holds all the SQL for accessing a
single table or view: selects, inserts, updates, and deletes.
Other code calls its methods for all interaction with the
database.

Table Data Gateway

17.02.2024 VEA - Vývoj Enterprise Aplikací 119

● An object that acts as a Gateway (466)
to a single record in a data source.
There is one instance per row.

● Embedding database access code in
in-memory objects can leave you with
a few disadvantages. For a start, if
your in-memory objects have
business logic of their own, adding
the database manipulation code
increases complexity.

● A Row Data Gateway gives you
objects that look exactly like the
record in your record structure but
can be accessed with the regular
mechanisms of your programming
language.

Row Data Gateway

[Team LiB]
Row Data Gateway

An object that acts as a Gateway (466) to a single record in a data source. There is one instance per row.
Embedding database access code in in-memory objects can leave you with a few disadvantages. For a start, if your in-memory objects have business logic of their own, adding the database manipulation

code increases complexity. Testing is awkward too since, if your in-memory objects are tied to a database, tests are slower to run because of all the database access. You may have to access
multiple databases with all those annoying little variations on their SQL.

A Row Data Gateway gives you objects that look exactly like the record in your record structure but can be accessed with the regular mechanisms of your programming language. All details of data
source access are hidden behind this interface.

How It Works
A Row Data Gateway acts as an object that exactly mimics a single record, such as one database row. In it each column in the database becomes one field. The Row Data Gateway will usually do any

type conversion from the data source types to the in-memory types, but this conversion is pretty simple. This pattern holds the data about a row so that a client can then access the Row Data
Gateway directly. The gateway acts as a good interface for each row of data. This approach works particularly well for Transaction Scripts (110).

With a Row Data Gateway you're faced with the questions of where to put the find operations that generate this pattern. You can use static find methods, but they preclude polymorphism should you want
to substitute different finder methods for different data sources. In this case it often makes sense to have separate finder objects so that each table in a relational database will have one finder class
and one gateway class for the results (Figure 10.2).

Figure 10.2. Interactions for a find with a row-based Row Data Gateway.
It's often hard to tell the difference between a Row Data Gateway and an Active Record (160). The crux of the matter is whether there's any domain logic present; if there is, you have an Active Record

(160). A Row Data Gateway should contain only database access logic and no domain logic.
As with any other form of tabular encapsulation, you can use a Row Data Gateway with a view or query as well as a table. Updates often turn out to be more complicated this way, as you have to update

the underlying tables. Also, if you have two Row Data Gateways that operate on the same underlying tables, you may find that the second Row Data Gateway you update undoes the changes on
the first. There's no general way to prevent this; developers just have to be aware of how virtual Row Data Gateways are formed. After all, the same thing can happen with updatable views. Of
course, you can choose not to provide update operations.

Row Data Gateways tend to be somewhat tedious to write, but they're a very good candidate for code generation based on a Metadata Mapping (306). This way all your database access code can be
automatically built for you during your automated build process.

When to Use It
The choice of Row Data Gateway often takes two steps: first whether to use a gateway at all and second whether to use Row Data Gateway or Table Data Gateway (144).
I use Row Data Gateway most often when I'm using a Transaction Script (110). In this case it nicely factors out the database access code and allows it to be reused easily by different Transaction Scripts

(110).
I don't use a Row Data Gateway when I'm using a Domain Model (116). If the mapping is simple, Active Record (160) does the same job without an additional layer of code. If the mapping is complex,

Data Mapper (165) works better, as it's better at decoupling the data structure from the domain objects because the domain objects don't need to know the layout of the database. Of course, you
can use the Row Data Gateway to shield the domain objects from the database structure. That's a good thing if you're changing the database structure when using Row Data Gateway and you
don't want to change the domain logic. However, doing this on a large scale leads you to three data representations: one in the business logic, one in the Row Data Gateway, and one in the
database—and that's one too many. For that reason I usually have Row Data Gateways that mirror the database structure.

Interestingly, I've seen Row Data Gateway used very nicely with Data Mapper (165). Although this seems like extra work, it can be effective iff the Row Data Gateways are automatically generated from
metadata while the Data Mappers (165) are done by hand.

If you use Transaction Script (110) with Row Data Gateway, you may notice that you have business logic that's repeated across multiple scripts; logic that would make sense in the Row Data Gateway.
Moving that logic will gradually turn your Row Data Gateway into an Active Record (160), which is often good as it reduces duplication in the business logic.

Example: A Person Record (Java)
Here's an example for Row Data Gateway. It's a simple person table.
create table people (ID int primary key, lastname varchar, firstname varchar, number_of_dependents int) PersonGateway is a gateway for the table. It starts with data fields and accessors.
class PersonGateway... private String lastName; private String firstName; private int numberOfDependents; public String getLastName() { return lastName; } public void setLastName(String lastName)

{ this.lastName = lastName; } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public int getNumberOfDependents()
{ return numberOfDependents; } public void setNumberOfDependents(int numberOfDependents) { this.numberOfDependents = numberOfDependents; } The gateway class itself can handle
updates and inserts.

class PersonGateway... private static final String updateStatementString = "UPDATE people " + " set lastname = ?, firstname = ?, number_of_dependents = ? " + " where id = ?"; public void update()
{ PreparedStatement updateStatement = null; try { updateStatement = DB.prepare(updateStatementString); updateStatement.setString(1, lastName); updateStatement.setString(2, firstName);
updateStatement.setInt(3, numberOfDependents); updateStatement.setInt(4, getID().intValue()); updateStatement.execute(); } catch (Exception e) { throw new ApplicationException(e); } finally
{DB.cleanUp(updateStatement); } } private static final String insertStatementString = "INSERT INTO people VALUES (?, ?, ?, ?)"; public Long insert() { PreparedStatement insertStatement = null; try
{ insertStatement = DB.prepare(insertStatementString); setID(findNextDatabaseId()); insertStatement.setInt(1, getID().intValue()); insertStatement.setString(2, lastName);
insertStatement.setString(3, firstName); insertStatement.setInt(4, numberOfDependents); insertStatement.execute(); Registry.addPerson(this); return getID(); } catch (SQLException e) { throw new
ApplicationException(e); } finally {DB.cleanUp(insertStatement); } } To pull people out of the database, we have a separate PersonFinder. This works with the gateway to create new gateway
objects.

class PersonFinder... private final static String findStatementString = "SELECT id, lastname, firstname, number_of_dependents " + " from people " + " WHERE id = ?"; public PersonGateway find(Long id)
{ PersonGateway result = (PersonGateway) Registry.getPerson(id); if (result != null) return result; PreparedStatement findStatement = null; ResultSet rs = null; try { findStatement =
DB.prepare(findStatementString); findStatement.setLong(1, id.longValue()); rs = findStatement.executeQuery(); rs.next(); result = PersonGateway.load(rs); return result; } catch (SQLException e)
{ throw new ApplicationException(e); } finally {DB.cleanUp(findStatement, rs); } } public PersonGateway find(long id) { return find(new Long(id)); } class PersonGateway... public static
PersonGateway load(ResultSet rs) throws SQLException { Long id = new Long(rs.getLong(1)); PersonGateway result = (PersonGateway) Registry.getPerson(id); if (result != null) return result;
String lastNameArg = rs.getString(2); String firstNameArg = rs.getString(3); int numDependentsArg = rs.getInt(4); result = new PersonGateway(id, lastNameArg, firstNameArg, numDependentsArg);
Registry.addPerson(result); return result; } To find more than one person according to some criteria we can provide a suitable finder method.

class PersonFinder... private static final String findResponsibleStatement = "SELECT id, lastname, firstname, number_of_dependents " + " from people " + " WHERE number_of_dependents > 0"; public
List findResponsibles() { List result = new ArrayList(); PreparedStatement stmt = null; ResultSet rs = null; try { stmt = DB.prepare(findResponsibleStatement); rs = stmt.executeQuery(); while
(rs.next()) { result.add(PersonGateway.load(rs)); } return result; } catch (SQLException e) { throw new ApplicationException(e); } finally {DB.cleanUp(stmt, rs); } } The finder uses a Registry (480) to
hold Identity Maps (195).

We can now use the gateways from a Transaction Script (110)
PersonFinder finder = new PersonFinder(); Iterator people = finder.findResponsibles().iterator(); StringBuffer result = new StringBuffer(); while (people.hasNext()) { PersonGateway each =

(PersonGateway) people.next(); result.append(each.getLastName()); result.append(" "); result.append(each.getFirstName()); result.append(" ");
result.append(String.valueOf(each.getNumberOfDependents())); result.append(" } return result.toString(); Example: A Data Holder for a Domain Object (Java)

I use Row Data Gateway mostly with Transaction Script (110). If we want to use the Row Data Gateway from a Domain Model (116), the domain objects need to get at the data from the gateway. Instead
of copying the data to the domain object we can use the Row Data Gateway as a data holder for the domain object.

class Person... private PersonGateway data; public Person(PersonGateway data) { this.data = data; } Accessors on the domain logic can then delegate to the gateway for the data.
class Person... public int getNumberOfDependents() { return data.getNumberOfDependents(); } The domain logic uses the getters to pull the data from the gateway.
class Person... public Money getExemption() { Money baseExemption = Money.dollars(1500); Money dependentExemption = Money.dollars(750); return

baseExemption.add(dependentExemption.multiply(this.getNumberOfDependents())); }
[Team LiB]

119

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec1.html#ch18lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
#ch10fig02
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch13lev1sec1.html#ch13lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec1.html#ch10lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec4.html#ch10lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec5.html#ch18lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec1.html#ch09lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 120

Active record
● An object that wraps a

row in a database table or
view, encapsulates the
database access, and adds
domain logic on that data.

● An object carries both data
and behavior. Much of this
data is persistent and
needs to be stored in a
database. Active Record
uses the most obvious
approach, putting data
access logic in the domain
object. This way all people
know how to read and
write their data to and
from the database.

17.02.2024 VEA - Vývoj Enterprise Aplikací 121

● Active Record is very similar to Row Data Gateway (152).
The principal difference is that a Row Data Gateway
(152) contains only database access while an Active
Record contains both data source and domain logic. Like
most boundaries in software, the line between the two
isn't terribly sharp, but it's useful.

Row Data Gateway vs. Active Record

17.02.2024 VEA - Vývoj Enterprise Aplikací 122

● A layer of Mappers that moves data between objects
and a database while keeping them independent of each
other and the mapper itself.

Data Mapper

[Team LiB]
Data Mapper

A layer of Mappers (473) that moves data between objects and a database while keeping them independent of each other and the mapper itself.
Objects and relational databases have different mechanisms for structuring data. Many parts of an object, such as collections and inheritance, aren't present in relational databases. When you build an object model with a lot of business logic it's valuable to use these mechanisms to better organize the data and the behavior that goes with it. Doing so leads to variant schemas; that is, the object schema

and the relational schema don't match up.
You still need to transfer data between the two schemas, and this data transfer becomes a complexity in its own right. If the in-memory objects know about the relational database structure, changes in one tend to ripple to the other.
The Data Mapper is a layer of software that separates the in-memory objects from the database. Its responsibility is to transfer data between the two and also to isolate them from each other. With Data Mapper the in-memory objects needn't know even that there's a database present; they need no SQL interface code, and certainly no knowledge of the database schema. (The database schema is

always ignorant of the objects that use it.) Since it's a form of Mapper (473), Data Mapper itself is even unknown to the domain layer.
How It Works
The separation between domain and data source is the main function of a Data Mapper, but there are plenty of details that have to be addressed to make this happen. There's also a lot of variety in how mapping layers are built. Many of the comments here are pretty broad, because I try to give a general overview of what you need to separate the cat from its skin.
We'll start with a very basic Data Mapper example. This is the simplest style of this layer that you can have and might not seem worth doing. With simple database mapping examples other patterns usually are simpler and thus better. If you are going to use Data Mapper at all you usually need more complicated cases. However, it's easier to explain the ideas if we start simple at a very basic level.
A simple case would have a Person and Person Mapper class. To load a person from the database, a client would call a find method on the mapper (Figure 10.3) The mapper uses an Identity Map (195) to see if the person is already loaded; if not, it loads it.
Figure 10.3. Retrieving data from a database.
Updates are shown in Figure 10.4. A client asks the mapper to save a domain object. The mapper pulls the data out of the domain object and shuttles it to the database.
Figure 10.4. Updating data.
The whole layer of Data Mapper can be substituted, either for testing purposes or to allow a single domain layer to work with different databases.
A simple Data Mapper would just map a database table to an equivalent in-memory class on a field-to-field basis. Of course, things aren't usually simple. Mappers need a variety of strategies to handle classes that turn into multiple fields, classes that have multiple tables, classes with inheritance, and the joys of connecting together objects once they've been sorted out. The various object-relational

mapping patterns in this book are all about that. It's usually easier to deploy these patterns with a Data Mapper than it is with the other organizing alternatives.
When it comes to inserts and updates, the database mapping layer needs to understand what objects have changed, which new ones have been created, and which ones have been destroyed. It also has to fit the whole workload into a transactional framework. The Unit of Work (184) pattern is a good way to organize this.
Figure 10.3 suggests that a single request to a find method results in a single SQL query. This isn't always true. Loading a typical order with multiple order lines may involve loading the order lines as well. The request from the client will usually lead to a graph of objects being loaded, with the mapper designer deciding exactly how much to pull back in one go. The point of this is to minimize database

queries, so the finders typically need to know a fair bit about how clients use the objects in order to make the best choices for pulling data back.
This example leads to cases where you load multiple classes of domain objects from a single query. If you want to load orders and order lines, it will usually be faster to do a single query that joins the orders and order line tables. You then use the result set to load both the order and the order line instances (page 243).
Since objects are very interconnected, you usually have to stop pulling the data back at some point. Otherwise, you're likely to pull back the entire database with a request. Again, mapping layers have techniques to deal with this while minimizing the impact on the in-memory objects, using Lazy Load (200). Hence, the in-memory objects can't be entirely ignorant of the mapping layer. They may need to

know about the finders and a few other mechanisms.
An application can have one Data Mapper or several. If you're hardcoding your mappers, it's best to use one for each domain class or root of a domain hierarchy. If you're using Metadata Mapping (306), you can get away with a single mapper class. In the latter case the limiting problem is your find methods. With a large application it can be too much to have a single mapper with lots of find methods, so

it makes sense to split these methods up by each domain class or head of the domain hierarchy. You get a lot of small finder classes, but it's easy for a developer to locate the finder she needs.
As with any database find behavior, the finders need to use an Identity Map (195) in order to maintain the identity of the objects read from the database. Either you can have a Registry (480) of Identity Maps (195), or you can have each finder hold an Identity Map (195) (providing there is only one finder per class per session).
Handling Finders
In order to work with an object, you have to load it from the database. Usually the presentation layer will initiate things by loading some initial objects. Then control moves into the domain layer, at which point the code will mainly move from object to object using associations between them. This will work effectively providing that the domain layer has all the objects it needs loaded into memory or that

you use Lazy Load (200) to load in additional objects when needed.
On occasion you may need the domain objects to invoke find methods on the Data Mapper. However, I've found that with a good Lazy Load (200) you can completely avoid this. For simpler applications, though, may not be worth trying to manage everything with associations and Lazy Load (200). Still, you don't want to add a dependency from your domain objects to your Data Mapper.
You can solve this dilemma by using Separated Interface (476). Put any find methods needed by the domain code into an interface class that you can place in the domain package.
Mapping Data to Domain Fields
Mappers need access to the fields in the domain objects. Often this can be a problem because you need public methods to support the mappers you don't want for domain logic. (I'm assuming that you won't commit the cardinal sin of making fields public.) There's no easy to answer to this. You could use a lower level of visibility by packaging the mappers closer to the domain objects, such as in the

same package in Java, but this confuses the bigger dependency picture because you don't want other parts of the system that know the domain objects to know about the mappers. You can use reflection, which can often bypass the visibility rules of the language. It's slower, but the slower speed may end up as just a rounding error compared to the time taken by the SQL call. Or you can
use public methods, but guard them with a status field so that they throw an exception if they're used outside the context of a database load. If so, name them in such a way that they're not mistaken for regular getters and setters.

Tied to this is the issue of when you create the object. In essence you have two options. One is to create the object with a rich constructor so that it's at least created with all its mandatory data. The other is to create an empty object and then populate it with the mandatory data. I usually prefer the former since it's nice to have a well-formed object from the start. This also means that, if you have an
immutable field, you can enforce it by not providing any method to change its value.

The problem with a rich constructor is that you have to be aware of cyclic references. If you have two objects that reference each other, each time you try to load one it will try to load the other, which will in turn try to load the first one, and so on, until you run out of stack space. Avoiding this requires special case code, often using Lazy Load (200). Writing this special case code is messy, so it's worth
trying to do without it. You can do this by creating an empty object. Use a no-arg constructor to create a blank object and insert that empty object immediately into the Identity Map (195). That way, if you have a cycle, the Identity Map (195) will return an object to stop the recursive loading.

Using an empty object like this means you may need some setters for values that are truly immutable when the object is loaded. A combination of a naming convention and perhaps some status-checking guards can fix this. You can also use reflection for data loading.
Metadata-Based Mappings
One of the decisions you need to make concerns storing the information about how fields in domain objects are mapped to columns in the database. The simplest, and often best, way to do this is with explicit code, which requires a mapper class for each domain object. The mapper does the mapping through assignments and has fields (usually constant strings) to store the SQL for database access.

An alternative is to use Metadata Mapping (306), which stores the metadata as data, either in a class or in a separate file. The great advantage of metadata is that all the variation in the mappers can be handled through data without the need for more source code, either by use of code generation or reflective programming.
When to Use It
The primary occasion for using Data Mapper is when you want the database schema and the object model to evolve independently. The most common case for this is with a Domain Model (116). Data Mapper's primary benefit is that when working on the domain model you can ignore the database, both in design and in the build and testing process. The domain objects have no idea what the database

structure is, because all the correspondence is done by the mappers.
This helps you in the code because you can understand and work with the domain objects without having to understand how they're stored in the database. You can modify the Domain Model (116) or the database without having to alter either. With complicated mappings, particularly those involving existing databases, this is very valuable.
The price, of course, is the extra layer that you don't get with Active Record (160), so the test for using these patterns is the complexity of the business logic. If you have fairly simple business logic, you probably won't need a Domain Model (116) or a Data Mapper. More complicated logic leads you to Domain Model (116) and therefore to Data Mapper.
I wouldn't choose Data Mapper without Domain Model (116), but can I use Domain Model (116) without Data Mapper? If the domain model is pretty simple, and the database is under the domain model developers' control, then it's reasonable for the domain objects to access the database directly with Active Record (160). Effectively this puts the mapper behavior discussed here into the domain objects

themselves. As things become more complicated, it's better to refactor the database behavior out into a separate layer.
Remember that you don't have to build a full-featured database-mapping layer. It's a complicated beast to build, and there are products available that do this for you. For most cases I recommend buying a database-mapping layer rather than building one yourself.
Example: A Simple Database Mapper (Java)
Here's an absurdly simple use of Data Mapper to give you a feel for the basic structure. Our example is a person with an isomorphic people table.
class Person... private String lastName; private String firstName; private int numberOfDependents; The database schema looks like this:
create table people (ID int primary key, lastname varchar, firstname varchar, number_of_dependents int) We'll use the simple case here, where the Person Mapper class also implements the finder and Identity Map (195). However, I've added an abstract mapper Layer Supertype (475) to indicate where I can pull out some common behavior. Loading involves checking that the object isn't already in the

Identity Map (195) and then pulling the data from the database.
The find behavior starts in the Person Mapper, which wraps calls to an abstract find method to find by ID.
class PersonMapper... protected String findStatement() { return "SELECT " + COLUMNS + " FROM people" + " WHERE id = ?"; } public static final String COLUMNS = " id, lastname, firstname, number_of_dependents "; public Person find(Long id) { return (Person) abstractFind(id); } public Person find(long id) { return find(new Long(id)); } class AbstractMapper... protected Map loadedMap = new

HashMap(); abstract protected String findStatement(); protected DomainObject abstractFind(Long id) { DomainObject result = (DomainObject) loadedMap.get(id); if (result != null) return result; PreparedStatement findStatement = null; try { findStatement = DB.prepare(findStatement()); findStatement.setLong(1, id.longValue()); ResultSet rs = findStatement.executeQuery(); rs.next(); result =
load(rs); return result; } catch (SQLException e) { throw new ApplicationException(e); } finally { DB.cleanUp(findStatement); } } The find method calls the load method, which is split between the abstract and person mappers. The abstract mapper checks the ID, pulling it from the data and registering the new object in the Identity Map (195).

class AbstractMapper... protected DomainObject load(ResultSet rs) throws SQLException { Long id = new Long(rs.getLong(1)); if (loadedMap.containsKey(id)) return (DomainObject) loadedMap.get(id); DomainObject result = doLoad(id, rs); loadedMap.put(id, result); return result; } abstract protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException; class PersonMapper... protected
DomainObject doLoad(Long id, ResultSet rs) throws SQLException { String lastNameArg = rs.getString(2); String firstNameArg = rs.getString(3); int numDependentsArg = rs.getInt(4); return new Person(id, lastNameArg, firstNameArg, numDependentsArg); } Notice that the Identity Map (195) is checked twice, once by abstractFind and once by load. There's a reason for this madness.

I need to check the map in the finder because, if the object is already there, I can save myself a trip to the database—I always want to save myself that long hike if I can. But I also need to check in the load because I may have queries that I can't be sure of resolving in the Identity Map (195). Say I want to find everyone whose last name matches some search pattern. I can't be sure that I have all such
people already loaded, so I have to go to the database and run a query.

class PersonMapper... private static String findLastNameStatement = "SELECT " + COLUMNS + " FROM people " + " WHERE UPPER(lastname) like UPPER(?)" + " ORDER BY lastname"; public List findByLastName(String name) { PreparedStatement stmt = null; ResultSet rs = null; try { stmt = DB.prepare(findLastNameStatement); stmt.setString(1, name); rs = stmt.executeQuery(); return loadAll(rs); }
catch (SQLException e) { throw new ApplicationException(e); } finally { DB.cleanUp(stmt, rs); } } class AbstractMapper... protected List loadAll(ResultSet rs) throws SQLException { List result = new ArrayList(); while (rs.next()) result.add(load(rs)); return result; } When I do this I may pull back some rows in the result set that correspond to people I've already loaded. I have to ensure that I
don't make a duplicate, so I have to check the Identity Map (195) again.

Writing a find method this way in each subclass that needs it involves some basic, but repetitive, coding, which I can eliminate by providing a general method.
class AbstractMapper... public List findMany(StatementSource source) { PreparedStatement stmt = null; ResultSet rs = null; try { stmt = DB.prepare(source.sql()); for (int i = 0; i < source.parameters().length; i++) stmt.setObject(i+1, source.parameters()[i]); rs = stmt.executeQuery(); return loadAll(rs); } catch (SQLException e) { throw new ApplicationException(e); } finally { DB.cleanUp(stmt, rs); } } For this

to work I need an interface that wraps both the SQL string and the loading of parameters into the prepared statement.
interface StatementSource... String sql(); Object[] parameters(); I can then use this facility by providing a suitable implementation as an inner class.
class PersonMapper... public List findByLastName2(String pattern) { return findMany(new FindByLastName(pattern)); } static class FindByLastName implements StatementSource { private String lastName; public FindByLastName(String lastName) { this.lastName = lastName; } public String sql() { return "SELECT " + COLUMNS + " FROM people " + " WHERE UPPER(lastname) like UPPER(?)" + "

ORDER BY lastname"; } public Object[] parameters() { Object[] result = {lastName}; return result; } } This kind of work can be done in other places where there's repetitive statement invocation code. On the whole I've made the examples here more straight to make them easier to follow. If you find yourself writing a lot of repetitive straight-ahead code you should consider doing something
similar.

With the update the JDBC code is specific to the subtype.
class PersonMapper... private static final String updateStatementString = "UPDATE people " + " SET lastname = ?, firstname = ?, number_of_dependents = ? " + " WHERE id = ?"; public void update(Person subject) { PreparedStatement updateStatement = null; try { updateStatement = DB.prepare(updateStatementString); updateStatement.setString(1, subject.getLastName());

updateStatement.setString(2, subject.getFirstName()); updateStatement.setInt(3, subject.getNumberOfDependents()); updateStatement.setInt(4, subject.getID().intValue()); updateStatement.execute(); } catch (Exception e) { throw new ApplicationException(e); } finally { DB.cleanUp(updateStatement); } } For the insert some code can be factored into the Layer Supertype (475)
class AbstractMapper... public Long insert(DomainObject subject) { PreparedStatement insertStatement = null; try { insertStatement = DB.prepare(insertStatement()); subject.setID(findNextDatabaseId()); insertStatement.setInt(1, subject.getID().intValue()); doInsert(subject, insertStatement); insertStatement.execute(); loadedMap.put(subject.getID(), subject); return subject.getID(); } catch (SQLException

e) { throw new ApplicationException(e); } finally { DB.cleanUp(insertStatement); } } abstract protected String insertStatement(); abstract protected void doInsert(DomainObject subject, PreparedStatement insertStatement) throws SQLException; class PersonMapper... protected String insertStatement() { return "INSERT INTO people VALUES (?, ?, ?, ?)"; } protected void
doInsert(DomainObject abstractSubject, PreparedStatement stmt) throws SQLException { Person subject = (Person) abstractSubject; stmt.setString(2, subject.getLastName()); stmt.setString(3, subject.getFirstName()); stmt.setInt(4, subject.getNumberOfDependents()); } Example: Separating the Finders (Java)

To allow domain objects to invoke finder behavior I can use Separated Interface (476) to separate the finder interfaces from the mappers (Figure 10.5). I can put these finder interfaces in a separate package that's visible to the domain layer, or, as in this case, I can put them in the domain layer itself.
Figure 10.5. Defining a finder interface in the domain package.
One of the most common finds is one that finds an object according to a particular surrogate ID. Much of this processing is quite generic, so it can be handled by a suitable Layer Supertype (475). All it needs is a Layer Supertype (475) for domain objects that know about IDs.
The interface for finding lies in the finder interface. It's usually best not made generic because you need to know what the return type is.
interface ArtistFinder... Artist find(Long id); Artist find(long id); The finder interface is best declared in the domain package with the finders held in a Registry (480). In this case I've made the mapper class implement the finder interface.
class ArtistMapper implements ArtistFinder... public Artist find(Long id) { return (Artist) abstractFind(id); } public Artist find(long id) { return find(new Long(id)); } The bulk of the find method is done by the mapper's Layer Supertype (475), which checks the Identity Map (195) to see if the object is already in memory. If not, it completes a prepared statement that's loaded in by the artist mapper and executes

it.
class AbstractMapper... abstract protected String findStatement(); protected Map loadedMap = new HashMap(); protected DomainObject abstractFind(Long id) { DomainObject result = (DomainObject) loadedMap.get(id); if (result != null) return result; PreparedStatement stmt = null; ResultSet rs = null; try { stmt = DB.prepare(findStatement()); stmt.setLong(1, id.longValue()); rs = stmt.executeQuery();

rs.next(); result = load(rs); return result; } catch (SQLException e) { throw new ApplicationException(e); } finally {cleanUp(stmt, rs); } } class ArtistMapper... protected String findStatement() { return "select " + COLUMN_LIST + " from artists art where ID = ?"; } public static String COLUMN_LIST = "art.ID, art.name"; The find part of the behavior is about getting either the existing object or a new
one. The load part is about putting the data from the database into a new object.

class AbstractMapper... protected DomainObject load(ResultSet rs) throws SQLException { Long id = new Long(rs.getLong("id")); if (loadedMap.containsKey(id)) return (DomainObject) loadedMap.get(id); DomainObject result = doLoad(id, rs); loadedMap.put(id, result); return result; } abstract protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException; class ArtistMapper... protected
DomainObject doLoad(Long id, ResultSet rs) throws SQLException { String name = rs.getString("name"); Artist result = new Artist(id, name); return result; } Notice that the load method also checks the Identity Map (195). Although redundant in this case, the load can be called by other finders that haven't already done this check. In this scheme all a subclass has to do is develop a doLoad
method to load the actual data needed, and return a suitable prepared statement from the findStatement method.

You can also do a find based on a query. Say we have a database of tracks and albums and we want a finder that will find all the tracks on a specified album. Again the interface declares the finders.
interface TrackFinder... Track find(Long id); Track find(long id); List findForAlbum(Long albumID); Since this is a specific find method for this class, it's implemented in a specific class, such as the track mapper class, rather than in a Layer Supertype (475). As with any finder, there are two methods to the implementation. One sets up the prepared statement; the other wraps the call to the prepared

statement and interprets the results.
class TrackMapper... public static final String findForAlbumStatement = "SELECT ID, seq, albumID, title " + "FROM tracks " + "WHERE albumID = ? ORDER BY seq"; public List findForAlbum(Long albumID) { PreparedStatement stmt = null; ResultSet rs = null; try { stmt = DB.prepare(findForAlbumStatement); stmt.setLong(1, albumID.longValue()); rs = stmt.executeQuery(); List result = new ArrayList();

while (rs.next()) result.add(load(rs)); return result; } catch (SQLException e) { throw new ApplicationException(e); } finally {cleanUp(stmt, rs); } } The finder calls a load method for each row in the result set. This method has the responsibility of creating the in-memory object and loading it with the data. As in the previous example, some of this can be handled in a Layer Supertype (475),
including checking the Identity Map (195) to see if something is already loaded.

Example: Creating an Empty Object (Java)
There are two basic approaches for loading an object. One is to create a fully valid object with a constructor, which is what I've done in the examples above. This results in the following loading code:
class AbstractMapper... protected DomainObject load(ResultSet rs) throws SQLException { Long id = new Long(rs.getLong(1)); if (loadedMap.containsKey(id)) return (DomainObject) loadedMap.get(id); DomainObject result = doLoad(id, rs); loadedMap.put(id, result); return result; } abstract protected DomainObject doLoad(Long id, ResultSet rs) throws SQLException; class PersonMapper... protected

DomainObject doLoad(Long id, ResultSet rs) throws SQLException { String lastNameArg = rs.getString(2); String firstNameArg = rs.getString(3); int numDependentsArg = rs.getInt(4); return new Person(id, lastNameArg, firstNameArg, numDependentsArg); } The alternative is to create an empty object and load it with the setters later.
class AbstractMapper... protected DomainObjectEL load(ResultSet rs) throws SQLException { Long id = new Long(rs.getLong(1)); if (loadedMap.containsKey(id)) return (DomainObjectEL) loadedMap.get(id); DomainObjectEL result = createDomainObject(); result.setID(id); loadedMap.put(id, result); doLoad (result, rs); return result; } abstract protected DomainObjectEL createDomainObject(); abstract

protected void doLoad(DomainObjectEL obj, ResultSet rs) throws SQLException; class PersonMapper... protected DomainObjectEL createDomainObject() { return new Person(); } protected void doLoad(DomainObjectEL obj, ResultSet rs) throws SQLException { Person person = (Person) obj; person.dbLoadLastName(rs.getString(2)); person.setFirstName(rs.getString(3));
person.setNumberOfDependents(rs.getInt(4)); } Notice that I'm using a different kind of domain object Layer Supertype (475) here, because I want to control the use of the setters. Let's say that I want the last name of a person to be an immutable field. In this case I don't want to change the value of the field once it's loaded, so I add a status field to the domain object.

class DomainObjectEL... private int state = LOADING; private static final int LOADING = 0; private static final int ACTIVE = 1; public void beActive() { state = ACTIVE; } I can then check the value of this during a load.
class Person... public void dbLoadLastName(String lastName) { assertStateIsLoading(); this.lastName = lastName; } class DomainObjectEL... void assertStateIsLoading() { Assert.isTrue(state == LOADING); } What I don't like about this is that we now have a method in the interface that most clients of the Person class can't use. This is an argument for the mapper using reflection to set the field, which

will completely bypass Java's protection mechanisms.
Is the status-based guard worth the trouble? I'm not entirely sure. On the one hand it will catch bugs caused by people calling update methods at the wrong time. On the other hand is the seriousness of the bugs worth the cost of the mechanism? At the moment I don't have a strong opinion either way.
[Team LiB]

122

mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec2.html#ch18lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec2.html#ch18lev1sec2
#ch10fig03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
#ch10fig04
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec1.html#ch11lev1sec1
#ch10fig03
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec3.html#ch11lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch13lev1sec1.html#ch13lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec5.html#ch18lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec3.html#ch11lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec3.html#ch11lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec3.html#ch11lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec4.html#ch18lev1sec4
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec3.html#ch11lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch13lev1sec1.html#ch13lev1sec1
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch09lev1sec2.html#ch09lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch10lev1sec3.html#ch10lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec4.html#ch18lev1sec4
#ch10fig05
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec5.html#ch18lev1sec5
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch11lev1sec2.html#ch11lev1sec2
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/0321127420_ch18lev1sec3.html#ch18lev1sec3
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html
mk:@MSITStore:D:/Home/jez04/Documents/%C5%A0kola/v%C3%BDuka/VEA/Fowler_2002-Patterns%20of%20Enterprise%20Application%20Architecture.chm::/NFO/lib.html

17.02.2024 VEA - Vývoj Enterprise Aplikací 123

● Datasource, JDBC,
● JDBC Support
● Datasource JPA
● JPA Mapping, QL
● Transaction

Data Layer

17.02.2024 VEA - Vývoj Enterprise Aplikací 143

Solution
● Use a DAO object to wrap all access to the repository. The DAO is

responsible for connecting to the repository and storing or retrieving
data.

● The DAO provides a simple and completely implementation-
independent storage interface.

DAO – Data Access Object

143

17.02.2024 VEA - Vývoj Enterprise Aplikací 144

DAO – Data Access Object

BusinessObject
The BusinessObject represents the data client. It is the object that requires access to the

data source to obtain and store data. A BusinessObject may be implemented as a
session bean, entity bean, or some other Java object, in addition to a servlet or helper
bean that accesses the data source.

DataAccessObject
The DataAccessObject is the primary object of this pattern. The DataAccessObject

abstracts the underlying data access implementation for the BusinessObject to enable
transparent access to the data source. The BusinessObject also delegates data load
and store operations to the DataAccessObject.

DataSource
This represents a data source implementation. A data source could be a database such

as an RDBMS, OODBMS, XML repository, flat file system, and so forth. A data source
can also be another system (legacy/mainframe), service (B2B service or credit card
bureau), or some kind of repository (LDAP).

TransferObject
This represents a Transfer Object used as a data carrier. The DataAccessObject may use a

Transfer Object to return data to the client. The DataAccessObject may also receive
the data from the client in a Transfer Object to update the data in the data source.

144

17.02.2024 VEA - Vývoj Enterprise Aplikací 145

Factory for DAO

BusinessObject
The BusinessObject represents the data client. It is the object that requires access to the

data source to obtain and store data. A BusinessObject may be implemented as a
session bean, entity bean, or some other Java object, in addition to a servlet or helper
bean that accesses the data source.

DataAccessObject
The DataAccessObject is the primary object of this pattern. The DataAccessObject

abstracts the underlying data access implementation for the BusinessObject to enable
transparent access to the data source. The BusinessObject also delegates data load
and store operations to the DataAccessObject.

DataSource
This represents a data source implementation. A data source could be a database such

as an RDBMS, OODBMS, XML repository, flat file system, and so forth. A data source
can also be another system (legacy/mainframe), service (B2B service or credit card
bureau), or some kind of repository (LDAP).

TransferObject
This represents a Transfer Object used as a data carrier. The DataAccessObject may use a

Transfer Object to return data to the client. The DataAccessObject may also receive
the data from the client in a Transfer Object to update the data in the data source.

145

17.02.2024 VEA - Vývoj Enterprise Aplikací 146

Factory for DAO

BusinessObject
The BusinessObject represents the data client. It is the object that requires access to the

data source to obtain and store data. A BusinessObject may be implemented as a
session bean, entity bean, or some other Java object, in addition to a servlet or helper
bean that accesses the data source.

DataAccessObject
The DataAccessObject is the primary object of this pattern. The DataAccessObject

abstracts the underlying data access implementation for the BusinessObject to enable
transparent access to the data source. The BusinessObject also delegates data load
and store operations to the DataAccessObject.

DataSource
This represents a data source implementation. A data source could be a database such

as an RDBMS, OODBMS, XML repository, flat file system, and so forth. A data source
can also be another system (legacy/mainframe), service (B2B service or credit card
bureau), or some kind of repository (LDAP).

TransferObject
This represents a Transfer Object used as a data carrier. The DataAccessObject may use a

Transfer Object to return data to the client. The DataAccessObject may also receive
the data from the client in a Transfer Object to update the data in the data source.

146

17.02.2024 VEA - Vývoj Enterprise Aplikací 147

Repository pattern
● Mediates between the domain and data mapping layers

using a collection-like interface for accessing domain
objects.

A system with a complex domain model often benefits from a
layer, such as the one provided by Data Mapper (165), that
isolates domain objects from details of the database access
code. In such systems it can be worthwhile to build another
layer of abstraction over the mapping layer where query
construction code is concentrated. This becomes more
important when there are a large number of domain classes
or heavy querying. In these cases particularly, adding this
layer helps minimize duplicate query logic.

A Repository mediates between the domain and data mapping
layers, acting like an in-memory domain object collection.
Client objects construct query specifications declaratively
and submit them to Repository for satisfaction. Objects can
be added to and removed from the Repository, as they can
from a simple collection of objects, and the mapping code
encapsulated by the Repository will carry out the appropriate
operations behind the scenes. Conceptually, a Repository
encapsulates the set of objects persisted in a data store and
the operations performed over them, providing a more
object-oriented view of the persistence layer. Repository
also supports the objective of achieving a clean separation
and one-way dependency between the domain and data
mapping layers.

17.02.2024 VEA - Vývoj Enterprise Aplikací 148

DAO vs. Repository

17.02.202
4

VEA - Vývoj Enterprise Aplikací 156

ORM - behavioral

17.02.2024 VEA - Vývoj Enterprise Aplikací 157

● Ensures that each object gets loaded only once by
keeping every loaded object in a map. Looks up objects
using the map when referring to them.

Identity Map

17.02.2024 VEA - Vývoj Enterprise Aplikací 158

● An object that doesn't
contain all of the data you
need but knows how to
get it.

Lazy Load

17.02.2024 VEA - Vývoj Enterprise Aplikací 159

Unit of Work
● Maintains a list of objects

affected by a business
transaction and coordinates
the writing out of changes
and the resolution of
concurrency problems.

17.02.2024 VEA - Vývoj Enterprise Aplikací 160

● Maintains a list of objects affected by a business
transaction and coordinates the writing out of changes and
the resolution of concurrency problems.

● When you're pulling data in and out of a database, it's
important to keep track of what you've changed;
otherwise, that data won't be written back into the
database. Similarly you have to insert new objects you
create and remove any objects you delete.

Design Patterns - Unit of Work

● You can change the database with each change to your object model, but this can lead to
lots of very small database calls, which ends up being very slow. Furthermore it requires
you to have a transaction open for the whole interaction, which is impractical if you have a
business transaction that spans multiple requests. The situation is even worse if you need
to keep track of the objects you've read so you can avoid inconsistent reads.

● A Unit of Work keeps track of everything you do during a business transaction that can
affect the database. When you're done, it figures out everything that needs to be done to
alter the database as a result of your work.

17.02.2024 VEA - Vývoj Enterprise Aplikací 161

● API for persistence using object-relational mapping
● Only interface implementation needs to be connected

JPA – Java Persistent API

Presentation
layer

Presentation
layer

Application
layer

Application
layer databasedatabase

Data
layer
Data
layer JP

A
JP

A

161

17.02.2024 VEA - Vývoj Enterprise Aplikací 162

● Entities - are lightweight objects from the persistent
domain. They typically represent a table in a database.
– Each single object corresponds to one record in the database.

● The persistent state of an entity is represented by
persistent class variables or persistent properties.
– The mapping between database (tables/columns) and

properties is determined by annotations

JPA - Entity

162

17.02.2024 VEA - Vývoj Enterprise Aplikací 163

● The class must be annotated with the annotation
javax.persistence.Entity

● The class must have a public or protected constructor
without parameters (it can have other constructors)

● Neither the class nor any method or class variable may
be declared as final

●

●

JPA – entity class

163

17.02.2024 VEA - Vývoj Enterprise Aplikací 164

● Entity classes can be children of entity and non-entity
classes. Non-entity classes can be children of entity
classes.

● Persistent class variables must be defined as private,
protected, or package-private. They should only be
accessed using set, get methods.

JPA – entity class

164

17.02.2024 VEA - Vývoj Enterprise Aplikací 173

JPA – multiplicity of references 1-1
@Entity
public class Order {
@OneToOne
private Transaction
cardTransaction;
…

@Entity
public class Transaction {
@OneToOne
private Order order;
…

173

17.02.2024 VEA - Vývoj Enterprise Aplikací 174

JPA – multiplicity of references 1-N
@Entity
public class Order {
@OneToMany(mappedBy="order")
private Set<OrderedProduct>
items;
…

@Entity
public class OrderedProduct {
@ManyToOne
private Order order;
…

174

17.02.2024 VEA - Vývoj Enterprise Aplikací 175

JPA – multiplicity of references M-N
@Entity
public class SimpleProduct
extends AbstractProduct {
@ManyToMany(mappedBy="simpleP
roduct")
private List<ProductSet>
productSets;
}

@Entity
public class ProductSet
extends @ManyToMany
private List<SimpleProduct>
simpleProduct;
private float setDiscount;
}

175

17.02.2024 VEA - Vývoj Enterprise Aplikací 177

● One table per class hierarchy
● One table per specific entity
● Join strategy

public enum InheritanceType {
SINGLE_TABLE,
JOINED,
TABLE_PER_CLASS

};
@Inheritance(strategy=JOINED)

JPA – inheritance mapping strategies

177

17.02.2024 VEA - Vývoj Enterprise Aplikací 178

One table per class hierarchy

@Inheritance(strategy=SINGLE_TABLE)

@DiscriminatorColumn(

String name

DiscriminatorType discriminatorType

String columnDefinition

String length)

public enum DiscriminatorType {

STRING,

CHAR,

INTEGER

};

@DiscriminatorValue

JPA – inheritance mapping strategies

178

17.02.2024 VEA - Vývoj Enterprise Aplikací 179

One table for a specific
entity
@Inheritance(strategy=TABL
E_PER_CLASS)

JPA – inheritance mapping strategies

179

17.02.2024 VEA - Vývoj Enterprise Aplikací 180

Join strategy
@Inheritance(strategy=JOIN
ED)

JPA – inheritance mapping strategies

180

17.02.2024 VEA - Vývoj Enterprise Aplikací 181

@MappedSuperclass
public class Person {
@Column(length=50)
private String name;
@Column(length=50)
private String surename;
@Column(length=50)
private String email;
@Column(length=50)
private String password;
}

JPA – MappedSuperclass
@Entity
public class Customer extends Person
{
@Id
@GeneratedValue(strategy=GenerationT
ype.IDENTITY)
private int id;
@OneToMany(mappedBy="customer")
private Set<Order> orders;

@Entity
public class Employee extends Person {
@Id
@Column(length=50)
private String login;
private float sallary;
@Column(length=50)
private String depsrtment;
}

Mapped Superclasses
Entities may inherit from superclasses that contain persistent state and mapping

information,
but are not entities. That is, the superclass is not decorated with the @Entity annotation,

and is
not mapped as an entity by the Java Persistence provider. These superclasses are most

often
used when you have state and mapping information common to multiple entity classes.
Mapped superclasses are specified by decorating the class with the
javax.persistence.MappedSuperclass annotation.
Mapped superclasses are not queryable, and can’t be used in EntityManager or Query
operations. You must use entity subclasses of the mapped superclass in EntityManager or
Query operations.Mapped superclasses can’t be targets of entity relationships.Mapped
superclasses can be abstract or concrete.
Mapped superclasses do not have any corresponding tables in the underlying datastore.

Entities
that inherit from the mapped superclass define the table mappings. For instance, in the

code
sample above the underlying tables would be FULLTIMEEMPLOYEE and

PARTTIMEEMPLOYEE, but
there is no EMPLOYEE table.

181

17.02.2024 VEA - Vývoj Enterprise Aplikací 185

JPA – the life cycle of an entity
● New
● Managed
● Detached
● Removed

@PersistenceContext

EntityManager em;

...

public LineItem createLineItem(Order
order, Product product, int quantity) {

LineItem li = new LineItem(order,
product, quantity);

order.getLineItems().add(li);

em.persist(li);

return li;

}

em.remove(order);

em.flush();

185

17.02.2024 VEA - Vývoj Enterprise Aplikací 192

JPA – cascade operations
● Applied to attributes/relationships with other entities

– ALL
– PERSIST
– MERGE
– REMOVE
– REFRESH
– DETACH

● Take with extreme caution!!!!!!
● Better replaced by using JPA Entity Graph

17.02.2024 VEA - Vývoj Enterprise Aplikací 195

Example
● SELECT DISTINCT p FROM Player AS p, IN (p.teams) AS t

WHERE t.league.sport = :sport

● Advantages
● Disadvantages

JPA – queries

195

17.02.2024 VEA - Vývoj Enterprise Aplikací 205

● consistent programming model

public interface PlatformTransactionManager {
public TransactionStatus getTransaction(
TransactionDefinition paramTransactionDefinition)
throws TransactionException;

public void commit(TransactionStatus paramTransactionStatus)
throws TransactionException;

public void rollback(TransactionStatus paramTransactionStatus)
throws TransactionException;
}

Spring - Transaction

17.02.2024 VEA - Vývoj Enterprise Aplikací 207

● Spring Framework provides both declarative and
programmatic transaction management

Spring - Transaction

17.02.2024 VEA - Vývoj Enterprise Aplikací 208

● Enum<Propagation> annotation parameter for @Transactional
● MANDATORY - Support a current transaction, throw an exception if none

exists.
● NESTED - Execute within a nested transaction if a current transaction exists.
● NEVER - Execute non-transactionally, throw an exception if a transaction

exists.
● NOT_SUPPORTED - Execute non-transactionally, suspend the current

transaction if one exists.
● REQUIRED - Support a current transaction, create a new one if none exists.
● REQUIRES_NEW - Create a new transaction, and suspend the current

transaction if one exists.
● SUPPORTS - Support a current transaction, execute non-transactionally if

none exists.

Spring - Transaction

17.02.2024 VEA - Vývoj Enterprise Aplikací 209

● Data mapper, Lazy load, Identity map
● Transaction - where

Discusion

17.02.2024 VEA - Vývoj Enterprise Aplikací 210

Security

17.02.2024 VEA - Vývoj Enterprise Aplikací 220

● Interface to the application accessible via a computer
network based on standard Internet technologies.

● In general: if an application is accessible over a network
using protocols such as HTTP, XML, SMTP, or Jabber, it is
a web service.

● The layer between the application program and the
client.

What are Web Services

220

17.02.2024 VEA - Vývoj Enterprise Aplikací 221

● The functionality of the service does not depend on the
language in which the client or server is implemented (Java,
C++, PHP, C#, ...).

● Example:
● server=WWW server, client=browser
● Nowadays we don't understand web services in this general

way, a web service is a set of concrete specifications (W3C).
● Available services: stock exchange, stock market, search

services (Google), maps, weather.
● Components of a distributed application?
●

●

What are Web Services

221

17.02.2024 VEA - Vývoj Enterprise Aplikací 222

● Group of protocols, http://www.w3.org/2002/ws/:
– Transport of messages – SOAP,

● http://www.w3.org/2000/xp/Group/.
– Description of service – WSDL,

● http://www.w3.org/2002/ws/desc/.
– Search of service – UDDI.

Web Services Architecture

222

17.02.2024 VEA - Vývoj Enterprise Aplikací 223

Web Services Architecture

Client using
web service
Client using
web service

UDDI
register

UDDI
register

SOAP
Communication throw XML messages

SOAP
Communication throw XML messages

Web ServiceWeb Service

WSDLWSDL

Description of service interface
Search of service Description of service interface

Reference to service description

223

17.02.2024 VEA - Vývoj Enterprise Aplikací 224

● XML-based web service description.

● IBM, Microsoft, today W3C.

● WSDL file with service interface definition is an XML
document, contains the definition:
– Method,
– Parameters.

Web Services Description Language (WSDL)

224

17.02.2024 VEA - Vývoj Enterprise Aplikací 226

<wsdl:definitions

targetNamespace=" http://tempur i.org / ">

<wsdl : types>

<s:schema elementFormDefault="qualified "

targetNamespace=" http://tempuri.org / ">

. . .

<s:element name="Query">

<s:complexType><s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="dbId" type="s:int" / >

<s:element minOccurs="0" maxOccurs="1"

name="query" type="s:string"/>

</s:sequence></s:complexType>

</s:element>

. . .

Example WSDL

226

17.02.2024 VEA - Vývoj Enterprise Aplikací 227

● Standard protocol for wrapping messages shared between
applications (envelope + set of rules for representing data in
XML).

● SOAP messages can be wrapped in various protocols, such as
HTTP. However, we can use it for RPC (Remote Procedure
Call).

● It consists of three parts:
– envelope - defines what the message contains and how to process it.
– A set of encoding rules - e.g. serializing primitive data types for RPC,

sending messages using HTTP.
– Conventions for representing remote procedure calls.

Simple Object Access Protocol (SOAP)

227

17.02.2024 VEA - Vývoj Enterprise Aplikací 228

● SOAP is based on XML.
● SOAP is relatively simple
● It does not address transactions and security.
● The message contains an Envelope element that

contains:
– header - information,
– body - meta-information.

Simple Object Access Protocol (SOAP)

228

17.02.2024 VEA - Vývoj Enterprise Aplikací 229

POST /AmphorAWS/AmphorAWS.asmx HTTP/1.1

Host : localhost

Content−Type: application/soap+xml;charset=utf−8

Content−Length: length

<?xml version="1.0" encoding="utf−8" ?>

<soap12:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"

xmlns:xsd="http://www.w3. org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/ soap−envelope">

Example SOAP 1.2, request 1/2

229

17.02.2024 VEA - Vývoj Enterprise Aplikací 230

<soap12:Body>
<Query xmlns="http://tempuri.org/">
<dbId>1</dbId>
<query>
doc(’books.xml’)/books/book[author/last=’Fernadez’]
</query>
</Query>

</soap12:Body>
</soap12:Envelope>

Example SOAP 1.2, request 2/2

230

17.02.2024 VEA - Vývoj Enterprise Aplikací 231

HTTP/1.1 200OK
Content−Type: application/soap+xml ; charset=utf−8
Content−Length: length

<?xml version="1.0" encoding="utf−8" ?>
<soap12:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://www.w3.org/2003/05/soap−envelope">

Example SOAP 1.2, response 1/2

231

17.02.2024 VEA - Vývoj Enterprise Aplikací 232

<soap12:Body>
<QueryResponse xmlns="http://tempuri.org/">

<QueryResult>string</QueryResult>
</QueryResponse>

</soap12:Body>
</soap12:Envelope>

Example SOAP 1.2, response 2/2

232

17.02.2024 VEA - Vývoj Enterprise Aplikací 233

● Register and search for web services.
● Offers a public database (registries). For example, the

two largest databases are maintained by IBM and
Microsoft.

● The UDDI registry contains four types of entities:
– business entities.
– business services.
– binding templates, e.g. description using WSDL.
– service types.

Universal Description, Discovery and Integration
(UDDI)

233

17.02.2024 VEA - Vývoj Enterprise Aplikací 234

● Standard JavaEE web application
● Definition of class:
@WebService(name="TestWS")
public class MyWebService {

@WebMethod
public String sayHallo(int nTimes){

String ret = "";
for(int i=0; i<nTimes; i++){

ret += "Ahoj ";
}
return ret;

}
}

Java web services

234

17.02.2024 VEA - Vývoj Enterprise Aplikací 237

● Use in normal JavaSE application:

public class WebServiceClient {
public static void main(String[] args){

MyWebService ws = new
MyWebServiceLocator().getMyWebServicePort();

String response = ws.sayHallo(5);
System.out.println("Web service response:" +

response);
}

}

Java WS – automatically generated client

Jboss server nesmí být spuštěn z eclipse ale z příkazové
řádky, aby nechyběla definice
-Djava.endorsed.dirs=/<JBOSS_HOME>/lib/endorsed

237

17.02.2024 VEA - Vývoj Enterprise Aplikací 238

● REST gives a coordinated set of constraints to the design
of components in a distributed hypermedia system that
can lead to a higher-performing and more maintainable
architecture.

● To the extent that systems conform to the constraints of
REST they can be called RESTful.

Representational State Transfer (REST)

https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/Software_architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 239

● Communicate over HTTP with the same HTTP verbs
(GET, POST, PUT, DELETE, etc.)

● REST interfaces with external systems using resources
identified by URI

● DELETE /people/tom
● Roy Thomas Fielding in his 2000 PhD dissertation

"Architectural Styles and the Design of Network-based
Software Architectures"

Representational State Transfer (REST)

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTP_verbs
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/URI
https://en.wikipedia.org/wiki/Roy_Fielding

17.02.2024 VEA - Vývoj Enterprise Aplikací 240

Architectural constraints
● Client–server
● Stateless
● Cacheable
● Layered system
● Code on demand (optional)
● Uniform interface

– Identification of resources
– Manipulation of resources through these representations
– Self-descriptive messages
– Hypermedia as the engine of application state (HATEOAS)

Representational State Transfer (REST)

Architectural constraints
The architectural properties of REST are realized by applying specific interaction constraints to components, connectors, and data elements.[4][6] One can characterise

applications conforming to the REST constraints described in this section as "RESTful".[2] If a service violates any of the required constraints, it cannot be considered
RESTful. Complying with these constraints, and thus conforming to the REST architectural style, enables any kind of distributed hypermedia system to have desirable
non-functional properties, such as performance, scalability, simplicity, modifiability, visibility, portability, and reliability.[4]

The formal REST constraints are:
Client–server
See also: Client–server model
A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not concerned with data storage, which remains internal to

each server, so that the portability of client code is improved. Servers are not concerned with the user interface or user state, so that servers can be simpler and more
scalable. Servers and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless
See also: Stateless protocol
The client–server communication is further constrained by no client context being stored on the server between requests. Each request from any client contains all the

information necessary to service the request, and session state is held in the client. The session state can be transferred by the server to another service such as a
database to maintain a persistent state for a period and allow authentication. The client begins sending requests when it is ready to make the transition to a new state.
While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the
next time the client chooses to initiate a new state-transition.[8]

Cacheable
See also: Web cache
As on the World Wide Web, clients and intermediaries can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to

prevent clients from reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server
interactions, further improving scalability and performance.

Layered system
See also: Layered system
A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by

enabling load balancing and by providing shared caches. They may also enforce security policies.
Code on demand (optional)
See also: Client-side scripting
Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as

Java applets and client-side scripts such as JavaScript. "Code on demand" is the only optional constraint of the REST architecture.
Uniform interface
The uniform interface constraint is fundamental to the design of any REST service.[4] The uniform interface simplifies and decouples the architecture, which enables each part to

evolve independently. The four constraints for this uniform interface are:
Identification of resources Individual resources are identified in requests, for example using URIs in web-based REST systems. The resources themselves are conceptually

separate from the representations that are returned to the client. For example, the server may send data from its database as HTML, XML or JSON, none of which are the
server's internal representation. Manipulation of resources through these representations When a client holds a representation of a resource, including any metadata
attached, it has enough information to modify or delete the resource. Self-descriptive messages Each message includes enough information to describe how to process the
message. For example, which parser to invoke may be specified by an Internet media type (previously known as a MIME type). Responses also explicitly indicate their
cacheability.[4] Hypermedia as the engine of application state (HATEOA

What Are RESTful Web Services?
RESTful web services are built to work best on the Web. Representational State Transfer (REST) is an architectural style that specifies constraints, such as the uniform

interface, that if applied to a web service induce desirable properties, such as performance, scalability, and modifiability, that enable services to work best on the Web. In
the REST architectural style, data and functionality are considered resources and are accessed using Uniform Resource Identifiers (URIs), typically links on the Web.
The resources are acted upon by using a set of simple, well-defined operations. The REST architectural style constrains an architecture to a client/server architecture and
is designed to use a stateless communication protocol, typically HTTP. In the REST architecture style, clients and servers exchange representations of resources by using
a standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight, and fast:
Resource identification through URI: A RESTful web service exposes a set of resources that identify the targets of the interaction with its clients. Resources are identified by

URIs, which provide a global addressing space for resource and service discovery. See The @Path Annotation and URI Path Templates for more information.
Uniform interface: Resources are manipulated using a fixed set of four create, read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource,

which can be then deleted by using DELETE. GET retrieves the current state of a resource in some representation. POST transfers a new state onto a resource. See
Responding to HTTP Methods and Requests for more information.

Self-descriptive messages: Resources are decoupled from their representation so that their content can be accessed in a variety of formats, such as HTML, XML, plain text,
PDF, JPEG, JSON, and others. Metadata about the resource is available and used, for example, to control caching, detect transmission errors, negotiate the appropriate
representation format, and perform authentication or access control. See Responding to HTTP Methods and Requests and
Using Entity Providers to Map HTTP Response and Request Entity Bodies for more information.

Stateful interactions through hyperlinks: Every interaction with a resource is stateless; that is, request messages are self-contained. Stateful interactions are based on the
concept of explicit state transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, and hidden form fields. State can be embedded in response
messages to point to valid future states of the interaction. See Using Entity Providers to Map HTTP Response and Request Entity Bodies and “Building URIs” in the JAX-
RS Overview document for more information.

240

https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-SOA_with_REST-6
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Richardson_2007-2
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-8
https://en.wikipedia.org/wiki/Web_cache
https://en.wikipedia.org/wiki/Layered_system
https://en.wikipedia.org/wiki/Client-side_scripting
https://en.wikipedia.org/wiki/Java_applet
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/Uniform_resource_identifier
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Internet_media_type
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-4
https://en.wikipedia.org/wiki/HATEOAS
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#ginpw
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipys
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipys
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipze
https://docs.oracle.com/javaee/6/tutorial/doc/gilik.html#gipze

17.02.2024 VEA - Vývoj Enterprise Aplikací 241

● Hypermedia Controls - The objective of hypermedia
controls is to advise the client of what can be done next
and to supply the URIs necessary to perform the next
action.

● Resource Naming - RESTful APIs are written for clients and
should have meaning for the clients of those APIs. When
choosing nouns to name the resources, you should be
familiar with the structure of the application’s data and
how your clients are likely to use them. There are no
defined rules as to how you should name your resources,
but there are conventions that, if followed, can help you
create a set of self-descriptive resource names that others
intuitively understand.

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 242

● Nouns Not Verbs - You must name the resources after nouns, not
verbs or actions. The purpose of the resource name is to represent
the resource. The HTTP method describes the action to be
performed.

● To represent a single user resource, you would use the noun users to
represent all users and the user’s ID to identify the specific user, like
so:

users/123456

● An example of a non REST and badly formed URI would be
users/123456/update ,

users/123456?action=update

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 243

● The nature of data is that it is hierarchical. So imagine
that you want to represent all the posts of the user with
ID 123456 . You would use the noun posts to represent
all posts and create the URI

users/123456/posts
● different ways - To represent all posts by a specified

user, you can use the URI
posts/users/123456

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 244

● Self Descriptive - As you have seen, the nouns chosen
should reflect the resource they represent. Combining
these representations with identifiers makes the URI
easy to interpret and intuitive to understand. If you read
a URI in combination with its HTTP method and it is not
immediately obvious what resource it represents, it has
failed as a RESTful URI.

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 245

● Plural Not Singular - Resource names should be plural
because they represent collections of data. The resource
name users represents a collection of users, and the
resource name posts represents a collection of posts.

● The idea is that plural nouns represent a collection in
the service, and the ID refers to one instance within that
collection.

● It may be justifiable to use a singular noun if there is
only one instance of that data type in the entire
application, but this is quite uncommon.

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 246

● GET - You use this method to get resource representations from
the service. You should never use it to update, delete, or create a
resource. Calling it once should have the same effect as calling it
100 times.

● If the resource requested is successful, the representation of the
resource is returned in the body of the HTTP response in the
requested data format, which commonly is either JSON or XML.
The HTTP response code returned is 200 (OK) . If the resource is
not found, it should return 404 (NOT FOUND) , and if the resource
request is badly formed, it should return 400 (BAD REQUEST) .

● A well formed URI that you might use in your forum application
could be GET users/123456/ followers , which represents all the
followers of the user 123456 .

RESTfull – API rules – HTTP methods

17.02.2024 VEA - Vývoj Enterprise Aplikací 247

● POST - You use the POST method to create a new resource within the given
context. For example, to create a new user, you would post to the users
resource the data necessary for a new user to be created. The service takes
care of creating the new resource, associating it to the context, and
assigning an ID.

● On successful creation, the HTTP response is 201 (CREATED) , and a link to
the newly created resource is returned either in the Location header of the
response or in the JSON payload of the response body. The resource
representation may be returned in the response body. This is often
preferable to avoid making an additional call to the API to retrieve a
representation of the data that had been just created. This reduces the
chattiness of the API.

● In addition to the HTTP response codes to a GET request, a POST can return
204 (NO CONTENT) if the body of the request is empty. A well formed URI
that you might use in your forum application could be POST users , with a
request body containing the new user’s details or POST users/123456/
posts to create a new post for the user 123456 from the data in the request
body.

RESTfull – API rules – HTTP methods

17.02.2024 VEA - Vývoj Enterprise Aplikací 248

● PUT - The PUT method is most commonly used to update a known
resource. The URI includes enough information to identify the
resource, such as a context and an identifier. The request body
contains the updated version of the resource.

● If the update is successful, it returns the HTTP response code 200 .
A URI that updates a user’s information is PUT users/123456 . Less
commonly, you can use the PUT method to create a resource if the
client creates the identifier of the resource. However, this way of
creating a resource is a little confusing. Why use a PUT when a
POST works just as well and is commonly known?

● An important point to note about updating a resource is that the
entire representation of the resource is passed to the service in the
HTTP body request, not just the information that has changed.

RESTfull – API rules – HTTP methods

17.02.2024 VEA - Vývoj Enterprise Aplikací 249

● DELETE - Surprisingly, you use this method to delete a
resource from a service. The URI contains the context
and the identifier of the resource. To delete a user with
the ID 123456, you use the URI

DELETE users/123456
● The response body may include a representation of the

deleted resource. A successful deletion results in a 200
(OK) HTTP response code being returned; if the resource
is not found, a 400 code is returned.

RESTfull – API rules – HTTP methods

17.02.2024 VEA - Vývoj Enterprise Aplikací 250

● A REST API must not define fixed resource names or
hierarchies (an obvious coupling of client and server).
Servers must have the freedom to control their own
namespace. Instead, allow servers to instruct clients on
how to construct appropriate URIs, such as is done in
HTML forms and URI templates, by defining those
instructions within media types and link relations.

● [Failure here implies that clients are assuming a
resource structure due to out-of band information, such
as a domain-specific standard, which is the data-
oriented equivalent to RPC’s functional coupling].

RESTfull – API rules

17.02.2024 VEA - Vývoj Enterprise Aplikací 251

RESTfull – API HATEOAS

17.02.2024 VEA - Vývoj Enterprise Aplikací 252

Code on Demand
● REST allows client functionality to be extended by downloading and

executing code in the form of applets or scripts. This simplifies clients
by reducing the number of features required to be pre-implemented.
Allowing features to be downloaded after deployment improves
system extensibility. However, it also reduces visibility, and thus is
only an optional constraint within REST.

● At the time this was written, the web was mostly just static
documents and the only "web client" was the browser itself. Now it's
commonplace for JavaScript-powered web apps to be consuming
REST APIs. This is an example of code on demand - the browser grabs
an initial HTML document and supports <script> tags inside that
document so that an application can be loaded on-demand.

RESTfull – API CoD

17.02.2024 VEA - Vývoj Enterprise Aplikací 254

{

 "glossary": {

 "title": "example glossary",

"GlossDiv": {

 "title": "S",

"GlossList": {

 "GlossEntry": {

 "ID": "SGML",

"SortAs": "SGML",

"GlossTerm": "Standard Generalized Markup Language",

"Acronym": "SGML",

"Abbrev": "ISO 8879:1986",

"GlossDef": {

 "para": "A meta-markup language, used to create markup languages such as DocBook.",

 "GlossSeeAlso": ["GML", "XML"]

 },

"GlossSee": "markup"

 }

 }

 }

 }

}

JSON

17.02.2024 VEA - Vývoj Enterprise Aplikací 255

JSON
● Object

{}
{ members }

● members
pair
pair , members

● pair
string : value

● array
[]
[elements]

● elements
value
value , elements

● string
""
" chars “

● chars
char
char chars

● char
any-Unicode-character-
 except-"-or-\-or-
 control-character
\" \\ \/ \b \f \n \r \t
\u four-hex-digits

● number
int
int frac
int exp
int frac exp
int digit
digit1-9 digits
- digit
- digit1-9 digits frac . digits exp
e digits digits digit
digit digits e e
e+ e- E E+ E-

● value
string
number
object
array
true
false
null

17.02.2024 JAT - Java Technologie 256

IDL - Interface Definition Language
● Platform-independent language for describing

interfaces and data types

CORBA – Common Object Request Broker
Architecture (1991)

interface Stock {
Quote get_quote() raises(Unknown);
void set_quote(in Quote stock_quote);
// Provides the stock description,
readonly attribute string description;
 };
interface Stock Factory {
 Stock create_stock(
 in string symbol,
 in string description
); };};

Module StockObjects {
 struct Quote {
 string symbol;
 long at_time;
 double price;
 long volume;
 };

 exception Unknown{};

256

17.02.2024 JAT - Java Technologie 257

● Distributed object architecture
● Platform and language independent
● Specification only
● No reference implementation

CORBA

257

17.02.2024 JAT - Java Technologie 258

CORBA – Architecture

CORBA 1.0 (October 1991)

Implementace objektu: Kód objektu, který implementuje zveřejněné služby objektu.
Implementace může být napsána v libovolném podporovaném jazyce (obvykle C, C++
nebo Java). Rozhraní služeb objektu je definováno v jazyce IDL (Interface Definition
Language).

Klient: Program využívající vzdálené objekty. Pro použití objektu musí mít dostupnou
definici rozhraní objektu v jazyce IDL buď vv době překladu nebo přidynamickém
volání za chodu programu a jednoznačnou adresu objektu (IOR).

IDL stubs (spojky): Kód vygenerovaný kompilátorem jazyka IDL, který propojuje
uživatelský kód s agentem ORB. V jazyce C++ má spojka formuzástupné třídy, jejíž
metody může klientský kód přímo volat.

DII (Dynamic Invocation Interface): Klient může používat také objekty, ke kterým
získá definici rozhraní za běhu programu. Rozhraní pro dynamické volání metod
dovoluje generovat dynamické požadavky.

ORB (Object Request Broker): Zprostředkovatel objektových služeb zahrnuje veškeré
vnitřní mechanismy pro vyhledání požadovaného objektu, generování a přenos
požadavků, parametrů a výsledků na úrovni komunikace mezi systémy. ORB může
používat různé metody komunikace, včetně přímé aktivace objektů v rámci jednoho
adresového prostoru.

Přenosný Objektový adaptér (POA): Objektový adaptér propojuje implementaci
objektu se agentem ORB, demultiplexuje přicházející požadavky, aktivuje objekty a
předává jim požadavky prostřednictvím volání metod kostry objektu.

Kostra objektu: Je vygenerována kompilátorem jazyka IDL, slouží jako bázová třída
odpovídající definici objektu v jazyce IDL.

DSI (Dynamic Skeleton Interface): Dynamicky vytvořená kostra objektu, obdoba DII
na straně klienta. Typickým použitím je most pro transformaci požadavků z jednoho
komunikačního protokolu do jiného nebo firewall.

GIOP (General Inter ORB Protocol): Protokol komunikace mezi různými ORB. Je
definován nad běžným spojovaným transportním protokolem. Konkrétní implementace
nad protokolem TCP/IP je definována jako IIOP (Internet Inter-ORB Protocol).

258

17.02.2024 VEA - Vývoj Enterprise Aplikací 259

The OASIS group[4] and the Open Group[5] have both
created formal definitions. OASIS defines SOA as:
● A paradigm for organizing and utilizing distributed

capabilities that may be under the control of different
ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to
produce desired effects consistent with measurable
preconditions and expectations.

SOA – Service Oriented Architecture

https://en.wikipedia.org/wiki/OASIS_(organization)
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-4
https://en.wikipedia.org/wiki/The_Open_Group
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-5
https://en.wikipedia.org/wiki/OASIS_SOA_Reference_Model

17.02.2024 VEA - Vývoj Enterprise Aplikací 260

The Open Group's definition is:
● Service-Oriented Architecture (SOA) is an architectural

style that supports service-orientation. Service-
orientation is a way of thinking in terms of services and
service-based development and the outcomes of
services.

● A service: Is a logical representation of a repeatable
business activity that has a specified outcome (e.g.,
check customer credit, provide weather data,
consolidate drilling reports) Is self-contained May be
composed of other services Is a "black box" to
consumers of the service

SOA – Service Oriented Architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 261

SOA – Service Oriented Architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 262

● Principles: There are no industry standards relating to the exact composition
of a service-oriented architecture, although many industry sources have
published their own principles. Some of these [12][13][14][15] include the
following:

● Standardized service contract: Services adhere to a communications
agreement, as defined collectively by one or more service-description
documents.

● Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each
other.

● Service abstraction: Beyond descriptions in the service contract, services hide
logic from the outside world.

● Service reusability: Logic is divided into services with the intention of
promoting reuse.

SOA – Service Oriented Architecture

https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-12
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-13
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-Terl-14
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-15

17.02.2024 VEA - Vývoj Enterprise Aplikací 263

● Service autonomy: Services have control over the logic they encapsulate, from a
Design-time and a Run-time perspective.

● Service statelessness: Services minimize resource consumption by deferring the
management of state information when necessary[16]

● Service discoverability: Services are supplemented with communicative meta data
by which they can be effectively discovered and interpreted.

● Service composability: Services are effective composition participants, regardless
of the size and complexity of the composition.

● Service granularity: A design consideration to provide optimal scope and right
granular level of the business functionality in a service operation.

● Service normalization: Services are decomposed or consolidated to a level of
normal form to minimize redundancy. In some cases, services are denormalized
for specific purposes, such as performance optimization, access, and aggregation.
[17]

SOA – Service Oriented Architecture

https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-16
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-17

17.02.2024 VEA - Vývoj Enterprise Aplikací 264

● Service optimization: All else being equal, high-quality services are
generally preferable to low-quality ones.

● Service relevance: Functionality is presented at a granularity recognized by
the user as a meaningful service.

● Service encapsulation: Many services are consolidated for use under the
SOA. Often such services were not planned to be under SOA.

● Service location transparency: This refers to the ability of a service
consumer to invoke a service regardless of its actual location in the
network. This also recognizes the discoverability property (one of the core
principle of SOA) and the right of a consumer to access the service. Often,
the idea of service virtualization also relates to location transparency. This
is where the consumer simply calls a logical service while a suitable SOA-
enabling runtime infrastructure component, commonly a service bus, maps
this logical service call to a physical service.

SOA – Service Oriented Architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 265

SOA – Orchestration
● In system administration, orchestration is the

automated configuration, coordination, and
management of computer systems and software.

● Orchestration in this sense is about aligning the business
request with the applications, data, and infrastructure.

● Orchestration includes a workflow and provides a
directed action towards larger goals and objectives.

17.02.2024 VEA - Vývoj Enterprise Aplikací 266

SOA – Choreography
● Service choreography in business computing is a form of service

composition in which the interaction protocol between several partner
services is defined from a global perspective. The idea underlying the
notion of service choreography can be summarised as follows:

● "Dancers dance following a global scenario without a single point of
control"

● That is, at run-time each participant in a service choreography executes its
part according to the behavior of the other participants. A choreography's
role specifies the expected messaging behavior of the participants that will
play it in terms of the sequencing and timing of the messages that they can
consume and produce.

● Choreography describes the sequence and conditions in which the data is
exchanged between two or more participants in order to meet some useful
purpose.

17.02.2024 VEA - Vývoj Enterprise Aplikací 267

Microservice Architecture
Context

● You are developing a server-side enterprise application. It must
support a variety of different clients including desktop browsers,
mobile browsers and native mobile applications. The application
might also expose an API for 3rd parties to consume. It might also
integrate with other applications via either web services or a
message broker. The application handles requests (HTTP requests and
messages) by executing business logic; accessing a database;
exchanging messages with other systems; and returning a
HTML/JSON/XML response. There are logical components
corresponding to different functional areas of the application.

Problem
● What’s the application’s deployment architecture?

https://martinfowler.com/articles/microservices.html
https://microservices.io/patterns/microservices.html
https://en.wikipedia.org/wiki/Microservices

https://martinfowler.com/articles/microservices.html
https://microservices.io/patterns/microservices.html
https://en.wikipedia.org/wiki/Microservices

17.02.2024 VEA - Vývoj Enterprise Aplikací 268

Microservice Architecture
Forces

● There is a team of developers working on the application
● New team members must quickly become productive
● The application must be easy to understand and modify
● You want to practice continuous deployment of the

application
● You must run multiple copies of the application on multiple

machines in order to satisfy scalability and availability
requirements

● You want to take advantage of emerging technologies
(frameworks, programming languages, etc)

17.02.2024 VEA - Vývoj Enterprise Aplikací 269

Microservice Architecture
Solution

● Define an architecture that structures the application as a set
of loosely coupled, collaborating services. This approach
corresponds to the Y-axis of the Scale Cube. Each service
implements a set of narrowly, related functions. For example,
an application might consist of services such as the order
management service, the customer management service etc.

● Services communicate using either synchronous protocols
such as HTTP/REST or asynchronous protocols such as AMQP.
Services can be developed and deployed independently of
one another. Each service has its own database in order to be
decoupled from other services.

17.02.2024 VEA - Vývoj Enterprise Aplikací 270

Microservice Architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 271

Microservice Architecture Benefits
● Enables the continuous delivery and deployment of large, complex

applications.
– Better testability - services are smaller and faster to test
– Better deployability - services can be deployed independently
– It enables you to organize the development effort around multiple, auto teams. It

enables you to organize the development effort around multiple teams. Each (two
pizza) team is owns and is responsible for one or more single service. Each team can
develop, deploy and scale their services independently of all of the other teams.

● Each microservice is relatively small
– Easier for a developer to understand
– The IDE is faster making developers more productive
– The application starts faster, which makes developers more productive, and

speeds up deployments

17.02.2024 VEA - Vývoj Enterprise Aplikací 272

Microservice Architecture Benefits
● Improved fault isolation. For example, if there is a

memory leak in one service then only that service will
be affected. The other services will continue to handle
requests. In comparison, one misbehaving component
of a monolithic architecture can bring down the entire
system.

● Eliminates any long-term commitment to a technology
stack. When developing a new service you can pick a
new technology stack. Similarly, when making major
changes to an existing service you can rewrite it using a
new technology stack

17.02.2024 VEA - Vývoj Enterprise Aplikací 273

Microservice Architecture Drawbacks
● Developers must deal with the additional complexity of creating a distributed

system.
– Developer tools/IDEs are oriented on building monolithic applications and don’t provide

explicit support for developing distributed applications.
– Testing is more difficult
– Developers must implement the inter-service communication mechanism.
– Implementing use cases that span multiple services without using distributed transactions

is difficult
– Implementing use cases that span multiple services requires careful coordination between

the teams
● Deployment complexity. In production, there is also the operational complexity of

deploying and managing a system comprised of many different service types.
● Increased memory consumption. The microservice architecture replaces N

monolithic application instances with NxM services instances. If each service runs
in its own JVM (or equivalent), which is usually necessary to isolate the instances,
then there is the overhead of M times as many JVM runtimes. Moreover, if each
service runs on its own VM (e.g. EC2 instance), as is the case at Netflix, the
overhead is even higher.

17.02.2024 VEA - Vývoj Enterprise Aplikací 274

Microservice Architecture
● The microservice architectural style [1] is an approach to

developing a single application as a suite of small
services, each running in its own process and
communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around
business capabilities and independently deployable by
fully automated deployment machinery. There is a bare
minimum of centralized management of these services,
which may be written in different programming
languages and use different data storage technologies.

17.02.2024 VEA - Vývoj Enterprise Aplikací 275

Microservice Architecture

17.02.2024 VEA - Vývoj Enterprise Aplikací 276

Characteristics of a Microservice Architecture
Componentization via Services

● Microservice architectures will use libraries, but their
primary way of componentizing their own software is by
breaking down into services. We define libraries as
components that are linked into a program and called
using in-memory function calls, while services are out-
of-process components who communicate with a
mechanism such as a web service request, or remote
procedure call. (This is a different concept to that of a
service object in many OO programs [3].)

17.02.2024 VEA - Vývoj Enterprise Aplikací 277

Characteristics of a Microservice Architecture
Organized around Business Capabilities

17.02.2024 VEA - Vývoj Enterprise Aplikací 278

Characteristics of a Microservice Architecture
Products not Projects

● Microservice proponents tend to avoid this model,
preferring instead the notion that a team should own a
product over its full lifetime. A common inspiration for
this is Amazon's notion of "you build, you run it" where
a development team takes full responsibility for the
software in production. This brings developers into day-
to-day contact with how their software behaves in
production and increases contact with their users, as
they have to take on at least some of the support
burden.

17.02.2024 VEA - Vývoj Enterprise Aplikací 279

Characteristics of a Microservice Architecture
Smart endpoints and dumb pipes

● When building communication structures between different processes, we've
seen many products and approaches that stress putting significant smarts into
the communication mechanism itself. A good example of this is the Enterprise
Service Bus (ESB), where ESB products often include sophisticated facilities for
message routing, choreography, transformation, and applying business rules.

● The microservice community favours an alternative approach: smart endpoints
and dumb pipes. Applications built from microservices aim to be as decoupled
and as cohesive as possible - they own their own domain logic and act more as
filters in the classical Unix sense - receiving a request, applying logic as
appropriate and producing a response. These are choreographed using simple
RESTish protocols rather than complex protocols such as WS-Choreography or
BPEL or orchestration by a central tool.

● Microservice teams use the principles and protocols that the world wide web
(and to a large extent, Unix) is built on. Often used resources can be cached
with very little effort on the part of developers or operations folk.

17.02.2024 VEA - Vývoj Enterprise Aplikací 280

Characteristics of a Microservice Architecture
Decentralized Governance

● One of the consequences of centralised governance is the
tendency to standardise on single technology platforms.
Experience shows that this approach is constricting - not every
problem is a nail and not every solution a hammer. We prefer
using the right tool for the job and while monolithic applications
can take advantage of different languages to a certain extent, it
isn't that common.

● Splitting the monolith's components out into services we have a
choice when building each of them. You want to use Node.js to
standup a simple reports page? Go for it. C++ for a particularly
gnarly near-real-time component? Fine. You want to swap in a
different flavour of database that better suits the read behaviour
of one component? We have the technology to rebuild him.

● Of course, just because you can do something, doesn't mean
you should - but partitioning your system in this way means
you have the option.

17.02.2024 VEA - Vývoj Enterprise Aplikací 281

Characteristics of a Microservice Architecture
Decentralized Data Management

● Decentralization of data management presents in a
number of different ways. At the most abstract level, it
means that the conceptual model of the world will differ
between systems. This is a common issue when
integrating across a large enterprise, the sales view of a
customer will differ from the support view. Some things
that are called customers in the sales view may not
appear at all in the support view. Those that do may
have different attributes and (worse) common attributes
with subtly different semantics.

17.02.2024 VEA - Vývoj Enterprise Aplikací 282

Characteristics of a Microservice Architecture
Decentralized Data Management

17.02.2024 VEA - Vývoj Enterprise Aplikací 283

Characteristics of a Microservice Architecture
Infrastructure Automation

● Infrastructure automation techniques have evolved enormously over the last few
years - the evolution of the cloud and AWS in particular has reduced the
operational complexity of building, deploying and operating microservices.

● Many of the products or systems being build with microservices are being built by
teams with extensive experience of Continuous Delivery and it's precursor,
Continuous Integration. Teams building software this way make extensive use of
infrastructure automation techniques. This is illustrated in the build pipeline
shown below.

17.02.2024 VEA - Vývoj Enterprise Aplikací 284

Characteristics of a Microservice Architecture
Design for failure

● A consequence of using services as components, is that
applications need to be designed so that they can tolerate
the failure of services. Any service call could fail due to
unavailability of the supplier, the client has to respond to
this as gracefully as possible. This is a disadvantage
compared to a monolithic design as it introduces
additional complexity to handle it. The consequence is
that microservice teams constantly reflect on how service
failures affect the user experience. Netflix's Simian Army
induces failures of services and even datacenters during
the working day to test both the application's resilience
and monitoring.

17.02.2024 VEA - Vývoj Enterprise Aplikací 285

● Asynchronous messaging between two components
● loosely coupled
● Guarantees message delivery

JMS – Java Message Services

285

17.02.2024 VEA - Vývoj Enterprise Aplikací 286

JMS – Architecture

A JMS application is composed of the following parts.
■ A JMS provider is a messaging system that implements the JMS interfaces and provides
administrative and control features. An implementation of the Java EE platform includes a
JMS provider.
■ JMS clients are the programs or components, written in the Java programming

language,
that produce and consume messages. Any Java EE application component can act as a

JMS
client.
■ Messages are the objects that communicate information between JMS clients.
■ Administered objects are preconfigured JMS objects created by an administrator for

the use
of clients. The two kinds of JMS administered objects are destinations and connection
factories, which are described in “JMS Administered Objects” on page 903.
Figure 31–2 illustrates the way these parts interact. Administrative tools allow you to bind
destinations and connection factories into a JNDI namespace. A JMS client can then use
resource injection to access the administered objects in the namespace and then

establish a
logical connection to the same objects through the JMS provider.

286

17.02.2024 VEA - Vývoj Enterprise Aplikací 287

● Point-to-Point Messaging Domain

● Publish/Subscribe Messaging Domain

JMS - domains

Point-to-Point Messaging Domain
A point-to-point (PTP) product or application is built on the concept of message queues,
senders, and receivers. Each message is addressed to a specific queue, and receiving clients
extract messages from the queues established to hold their messages. Queues retain all

messages
sent to them until the messages are consumed or until the messages expire.
PTP messaging has the following characteristics and is illustrated in Figure 31–3.
■ Each message has only one consumer.
■ A sender and a receiver of a message have no timing dependencies. The receiver can fetch
the message whether or not it was running when the client sent the message.
■ The receiver acknowledges the successful processing of a message.
Use PTP messaging when every message you send must be processed successfully by one
consumer.

Publish/Subscribe Messaging Domain
In a publish/subscribe (pub/sub) product or application, clients address messages to a topic,
which functions somewhat like a bulletin board. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierarchy. The system
takes care of distributing the messages arriving from a topic’s multiple publishers to its multiple
subscribers. Topics retain messages only as long as it takes to distribute them to current
subscribers.
Pub/sub messaging has the following characteristics.
■ Each message can have multiple consumers.
■ Publishers and subscribers have a timing dependency. A client that subscribes to a topic can
consume only messages published after the client has created a subscription, and the
subscriber must continue to be active in order for it to consume messages.
The JMS API relaxes this timing dependency to some extent by allowing subscribers to create
durable subscriptions, which receive messages sent while the subscribers are not active. Durable
subscriptions provide the flexibility and reliability of queues but still allow clients to send
messages to many recipients. For more information about durable subscriptions, see “Creating
Durable Subscriptions” on page 944.
Use pub/sub messaging when each message can be processed by zero, one, or many consumers.
Figure 31–4 illustrates pub/sub messaging.

287

17.02.2024 VEA - Vývoj Enterprise Aplikací 288

JMS – Model

288

17.02.2024 VEA - Vývoj Enterprise Aplikací 295

MDB – Message Driven Bean

The EJB container usually creates a pool of message-driven bean instances. For each
instance,

the EJB container performs these tasks:
1. If the message-driven bean uses dependency injection, the container injects these

references
before instantiating the instance.
2. The container calls the method annotated @PostConstruct, if any.

Like a stateless session bean, a message-driven bean is never passivated, and it has only
two

states: nonexistent and ready to receive messages.
At the end of the life cycle, the container calls the method annotated @PreDestroy, if any.

The
bean’s instance is then ready for garbage collection.

295

17.02.2024 VEA - Vývoj Enterprise Aplikací 296

MDB - example

296

17.02.2024 VEA - Vývoj Enterprise Aplikací 304

● JMX is a Java technology
that supplies tools for
managing and monitoring
applications, system
objects, devices (e.g.
printers) and service-
oriented networks. Those
resources are represented
by objects called MBeans
(for Managed Bean). In the
API, classes can be
dynamically loaded and
instantiated.

Java Management Extensions (JMX)

17.02.2024 VEA - Vývoj Enterprise Aplikací 305

● Java EE Connector Architecture (JCA) is a Java-based
technology solution for connecting application servers and
enterprise information systems (EIS) as part of enterprise
application integration (EAI) solutions. While JDBC is
specifically used to connect Java EE applications to
databases, JCA is a more generic architecture for connection
to legacy systems.

● The Java EE Connector Architecture defines a standard for
connecting a compliant application server to an EIS. It
defines a standard set of system-level contracts between
the Java EE application server and a resource adapter. The
system contracts defined by the Java EE Connector
Architecture are described by the specification as follows:

Java EE Connector Architecture
(JCA)

17.02.2024 VEA - Vývoj Enterprise Aplikací 306

● Connection management — Connection management enables an application server to pool
connections.

● Transaction management — Transaction management enables an application server to use a
transaction manager.

● Security management — Security management reduces security threats to the EIS and protects
valuable information resources managed by the EIS.

● Life cycle management — Life cycle management enables an application server to manage the
life cycle of a resource adapter from initiation through upgrades to obsolescence.

● Work management — Work management enables a resource adapter to do work (monitor
network endpoints, invoke application components, and so on) by submitting work instances to
an application server for execution.

● Transaction inflow management — Transaction inflow management enables a resource
adapter to propagate an imported transaction to an application server.

● Message inflow management — Message inflow management enables a resource adapter to
asynchronously deliver messages to message endpoints.

Java EE Connector Architecture
(JCA)

17.02.2024 VEA - Vývoj Enterprise Aplikací 307

What is Portal?
● A portal is a web application that commonly provides

personalization, authentication, aggregation of content from
multiple sources, and provides a presentation layer for IS.

● Aggregation is the integration of content from multiple
sources into a web page.

● A portal may have sophisticated personalization to provide
personalized content.
– A portal site may have different sets of portlets for different

users

Portal

307

17.02.2024 VEA - Vývoj Enterprise Aplikací 308

What is portlet?
● The portlet provides a specific piece of content as part

of the portal page.
● A portlet pluggable is a UI component, managed and

displayed on a web portal.
● A portlet produces a piece (fragment) of HTML (XHTML,

WML) that is aggregated into a portal page.

Portlet

308

17.02.2024 VEA - Vývoj Enterprise Aplikací 309

Portal page
● A portal page is a collection of non-overlapping portlet

windows
What is a portlet container

● A portlet container launches portlets and provides them
with an environment and manages their lifecycle.

● It provides a persistent repository for portlet settings.
● The container does not aggregate the contents of the

portlets into the page, that is the responsibility of the
portal.

Portlet

309

17.02.2024 VEA - Vývoj Enterprise Aplikací 310

Portlet

310

17.02.2024 VEA - Vývoj Enterprise Aplikací 311

Portlet

311

17.02.2024 VEA - Vývoj Enterprise Aplikací 312

Portlet

312

17.02.2024 VEA - Vývoj Enterprise Aplikací 313

Liferay porta

17.02.2024 VEA - Vývoj Enterprise Aplikací 314

• VisualVM
• https://visualvm.github.io

Java - Profiling

17.02.2024 VEA - Vývoj Enterprise Aplikací 315

● Java Flight Recorder and Java Mission Control together
create a complete tool chain to continuously collect low
level and detailed runtime information enabling after-the-
fact incident analysis. Java Flight Recorder is a profiling and
event collection framework built into the Oracle JDK. It
allows Java administrators and developers to gather detailed
low level information about how the Java Virtual Machine
(JVM) and the Java application are behaving. Java Mission
Control is an advanced set of tools that enables efficient and
detailed analysis of the extensive of data collected by Java
Flight Recorder. The tool chain enables developers and
administrators to collect and analyze data from Java
applications running locally or deployed in production
environments.

Java Mission Control

17.02.2024 VEA - Vývoj Enterprise Aplikací 316

Java Mision Control

17.02.2024 VEA - Vývoj Enterprise Aplikací 317

● Vaadin Framework lets you build single page web apps
in server-side Java or any other JVM language. All of the
browser–server communication and DTOs are
automated for you. Your app's state resides on the
server, but your end-users use an HTML5 web app in
their browsers.

Vaadin Framework

17.02.2024 VEA - Vývoj Enterprise Aplikací 318

Java Frameworks

17.02.2024 VEA - Vývoj Enterprise Aplikací 319

• What % of specific
framework users use more
than one framework?

• Spring MVC – 54%
• JSF – 54%
• Vaadin – 54%
• GWT – 70%

Java Frameworks

17.02.2024 VEA - Vývoj Enterprise Aplikací 320

Apache Jackrabbit
● The Apache Jackrabbit™

content repository is a fully
conforming implementation
of the Content Repository for
Java Technology API (JCR,
specified in JSR 170 and
JSR 283).

● A content repository is a
hierarchical content store
with support for structured
and unstructured content, full
text search, versioning,
transactions, observation,
and more.

● The JCR storage model is a tree of
nodes and properties: nodes
(addressable by path like in a
filesystem) are used to organize the
content, and named properties store
the actual data, either as simple types
(string, boolean, number, etc.) or as
binary streams for storing files of
arbitrary size.

http://jcp.org/en/jsr/detail?id=170
http://jcp.org/en/jsr/detail?id=283

17.02.2024 VEA - Vývoj Enterprise Aplikací 321

Service Layer
● Defines an application's boundary with a layer of

services that establishes a set of available
operations and coordinates the application's
response in each operation.

● Enterprise applications typically require different
kinds of interfaces to the data they store and the
logic they implement: data loaders, user interfaces,
integration gateways, and others. Despite their
different purposes, these interfaces often need
common interactions with the application to access
and manipulate its data and invoke its business
logic. The interactions may be complex, involving
transactions across multiple resources and the
coordination of several responses to an action.
Encoding the logic of the interactions separately in
each interface causes a lot of duplication.

● A Service Layer defines an application's boundary
[Cockburn PloP] and its set of available operations
from the perspective of interfacing client layers. It
encapsulates the application's business logic,
controlling transactions and coordinating responses
in the implementation of its operations.

How It Works
A Service Layer can be implemented in a couple of different

ways, without violating the defining characteristics stated
above. The differences appear in the allocation of
responsibility behind the Service Layer interface. Before I
delve into the various implementation possibilities, let me lay
a bit of groundwork.

Kinds of "Business Logic"
Like Transaction Script (110) and Domain Model (116),

Service Layer is a pattern for organizing business logic.
Many designers, including me, like to divide "business logic"
into two kinds: "domain logic," having to do purely with the
problem domain (such as strategies for calculating revenue
recognition on a contract), and "application logic," having to
do with application responsibilities [Cockburn UC] (such as
notifying contract administrators, and integrated
applications, of revenue recognition calculations).
Application logic is sometimes referred to as "workflow
logic," although different people have different
interpretations of "workflow."

Domain Models (116) are preferable to Transaction Scripts
(110) for avoiding domain logic duplication and for managing
complexity using classical design patterns. But putting
application logic into pure domain object classes has a
couple of undesirable consequences. First, domain object
classes are less reusable across applications if they
implement application-specific logic and depend on
application-specific packages. Second, commingling both
kinds of logic in the same classes makes it harder to
reimplement the application logic in, say, a workflow tool if
that should ever become desirable. For these reasons
Service Layer factors each kind of business logic into a
separate layer, yielding the usual benefits of layering and
rendering the pure domain object classes more reusable
from application to application.

Implementation Variations
The two basic implementation variations are the domain

facade approach and the operation script approach. In the
domain facade approach a Service Layer is implemented as
a set of thin facades over a Domain Model (116). The
classes implementing the facades don't implement any
business logic. Rather, the Domain Model (116) implements
all of the business logic. The thin facades establish a
boundary and set of operations through which client layers
interact with the application, exhibiting the defining
characteristics of Service Layer.

In the operation script approach a Service Layer is
implemented as a set of thicker classes that directly
implement application logic but delegate to encapsulated
domain object classes for domain logic. The operations
available to clients of a Service Layer are implemented as
scripts, organized several to a class defining a subject area
of related logic. Each such class forms an application
"service," and it's common for service type names to end
with "Service." A Service Layer is comprised of these
application service classes, which should extend a Layer
Supertype (475), abstracting their responsibilities and
common behaviors.

To Remote or Not to Remote
The interface of a Service Layer class is coarse grained

almost by definition, since it declares a set of application
operations available to interfacing client layers. Therefore,
Service Layer classes are well suited to remote invocation
from an interface granularity perspective.

However, remote invocation comes at the cost of dealing with
object distribution. It likely entails a lot of extra work to make
your Service Layer method signatures deal in Data Transfer
Objects (401). Don't underestimate the cost of this work,
especially if you have a complex Domain Model (116) and
rich editing UIs for complex update use cases! It's
significant, and it's painfulperhaps second only to the cost �
and pain of object-relational mapping. Remember the First
Law of Distributed Object Design (page 89).

My advice is to start with a locally invocable Service Layer
whose method signatures deal in domain objects. Add
remotability when you need it (if ever) by putting Remote
Facades (388) on your Service Layer or having your Service
Layer objects implement remote interfaces. If your
application has a Web-based UI or a Web-services-based
integration gateway, there's no law that says your business
logic has to run in a separate process from your server
pages and Web services. In fact, you can save yourself
some development effort and runtime response time, without
sacrificing scalability, by starting out with a colocated
approach.

Identifying Services and Operations
Identifying the operations needed on a Service Layer

boundary is pretty straightforward. They're determined by
the needs of Service Layer clients, the most significant (and
first) of which is typically a user interface. Since a user
interface is designed to support the use cases that actors
want to perform with an application, the starting point for
identifying Service Layer operations is the use case model
and the user interface design for the application.

Disappointing as it is, many of the use cases in an enterprise
application are fairly boring "CRUD" (create, read, update,
delete) use cases on domain objectscreate one of these, �
read a collection of those, update this other thing. My
experience is that there's almost always a one-to-one
correspondence between CRUD use cases and Service
Layer operations.

The application's responsibilities in carrying out these use
cases, however, may be anything but boring. Validation
aside, the creation, update, or deletion of a domain object in
an application increasingly requires notification of other
people and other integrated applications. These responses
must be coordinated, and transacted atomically, by Service
Layer operations.

If only it were as straightforward to identify Service Layer
abstractions to group related operations. There are no hard-
and-fast prescriptions in this area; only vague heuristics. For
a sufficiently small application, it may suffice to have but one
abstraction, named after the application itself. In my
experience larger applications are partitioned into several
"subsystems," each of which includes a complete vertical
slice through the stack of architecture layers. In this case I
prefer one abstraction per subsystem, named after the
subsystem. Other possibilities include abstractions reflecting
major partitions in a domain model, if these are different
from the subsystem partitions (e.g., ContractsService,
ProductsService), and abstractions named after thematic
application behaviors (e.g., RecognitionService).

Java

17.02.2024 VEA - Vývoj Enterprise Aplikací 322

Serialized LOB
● Saves a graph of objects by serializing

them into a single large object (LOB),
which it stores in a database field.

● Object models often contain
complicated graphs of small objects.
Much of the information in these
structures isn't in the objects but in
the links between them. Consider
storing the organization hierarchy for
all your customers. An object model
quite naturally shows the composition
pattern to represent organizational
hierarchies, and you can easily add
methods that allow you to get
ancestors, siblings, descendents, and
other common relationships.

17.02.2024 VEA - Vývoj Enterprise Aplikací 323

Repository
● Mediates between the domain and data mapping layers

using a collection-like interface for accessing domain
objects.

● A system with a complex domain model often benefits from
a layer, such as the one provided by Data Mapper (165),
that isolates domain objects from details of the database
access code. In such systems it can be worthwhile to build
another layer of abstraction over the mapping layer where
query construction code is concentrated. This becomes
more important when there are a large number of domain
classes or heavy querying. In these cases particularly,
adding this layer helps minimize duplicate query logic.

● A Repository mediates between the domain and data
mapping layers, acting like an in-memory domain object
collection. Client objects construct query specifications
declaratively and submit them to Repository for
satisfaction. Objects can be added to and removed from the
Repository, as they can from a simple collection of objects,
and the mapping code encapsulated by the Repository will
carry out the appropriate operations behind the scenes.
Conceptually, a Repository encapsulates the set of objects
persisted in a data store and the operations performed over
them, providing a more object-oriented view of the
persistence layer. Repository also supports the objective of
achieving a clean separation and one-way dependency
between the domain and data mapping layers.

17.02.2024 VEA - Vývoj Enterprise Aplikací 324

Session State Patterns
● Client Session State
● Stores session state on the client.
● Even the most server-oriented

designs need at least a little Client
Session State, if only to hold a
session identifier. With some
applications you can consider
putting all of the session data on the
client, in which case the client sends
the full set of session data with each
request and the server sends back
the full session state with each
response. This allows the server to
be completely stateless.

● Server Session State
● Keeps the session state on a server system in a

serialized form.
● In the simplest form of this pattern a session object

is held in memory on an application server. You can
have some kind of map in memory that holds these
session objects keyed by a session ID; all the client
needs to do is to give the session ID and the session
object can be retrieved from the map to process the
request.

● Database Session State

● Stores session data as committed data in the database.

● When a call goes out from the client to the server, the server
object first pulls the data required for the request from the
database. Then it does the work it needs to do and saves back to
the database all the data required.

● In order to pull information from the database, the server object
will need some information about the session, which requires at
least a session ID number to be stored on the client. Usually,
however, this information is nothing more than the appropriate
set of keys needed to find the appropriate amount of data in the
database.

17.02.2024 VEA - Vývoj Enterprise Aplikací 325

Remote Facade

17.02.2024 VEA - Vývoj Enterprise Aplikací 326

Query Object

17.02.2024 VEA - Vývoj Enterprise Aplikací 327

Layer Supertype
● A type that acts as the

supertype for all types in
its layer.

● It's not uncommon for all
the objects in a layer to
have methods you don't
want to have duplicated
throughout the system.
You can move all of this
behavior into a common
Layer Supertype.

class DomainObject...

 private Long ID;

 public Long getID() {

 return ID;

 }

 public void setID(Long ID) {

 Assert.notNull("Cannot set a null ID", ID);

 this.ID = ID;

 }

 public DomainObject(Long ID) {

 this.ID = ID;

 }

 public DomainObject() {

 }

17.02.2024 VEA - Vývoj Enterprise Aplikací 328

Data Transfer Object

17.02.2024 VEA - Vývoj Enterprise Aplikací 329

Optimistic Offline Lock

17.02.2024 VEA - Vývoj Enterprise Aplikací 330

Optimistic Offline Lock

17.02.2024 VEA - Vývoj Enterprise Aplikací 331

Pessimistic Offline Lock

17.02.2024 VEA - Vývoj Enterprise Aplikací 332

 public void acquireLock(Long lockable, String owner) throws ConcurrencyException {

 if (!hasLock(lockable, owner)) {

 Connection conn = null;

 PreparedStatement pstmt = null;

 try {

 conn = ConnectionManager.INSTANCE.getConnection();

 pstmt = conn.prepareStatement(INSERT_SQL);

 pstmt.setLong(1, lockable.longValue());

 pstmt.setString(2, owner);

 pstmt.executeUpdate();

 } catch (SQLException sqlEx) {

 throw new ConcurrencyException("unable to lock " + lockable);

 } finally {

 closeDBResources(conn, pstmt);

 }

 }

 }

Pessimistic Offline Lock
 public void releaseLock(Long lockable, String owner) {

 Connection conn = null;

 PreparedStatement pstmt = null;

 try {

 conn = ConnectionManager.INSTANCE.getConnection();

 pstmt = conn.prepareStatement(DELETE_SINGLE_SQL);

 pstmt.setLong(1, lockable.longValue());

 pstmt.setString(2, owner);

 pstmt.executeUpdate();

 } catch (SQLException sqlEx) {

 throw new SystemException("unexpected error releasing lock on " +
lockable);

 } finally {

 closeDBResources(conn, pstmt);

 }

 }

17.02.2024 VEA - Vývoj Enterprise Aplikací 333

Money

17.02.2024 VEA - Vývoj Enterprise Aplikací 334

Special Case

	Slide 1
	Slide 3
	Architecture?
	Enterprise application characteristic_clipboard0
	Enterprise application characteristic_clipboard1
	Enterprise application characteristic
	Charakteristika enterprise aplikací
	Kinds of Enterprise Application _clipboard2
	Thinking About Performance
	Layering
	Layer vs. Tier
	Layers
	Example of „Good“ Architecture
	Java EE Platform_clipboard6
	Java EE Platform_clipboard7
	Java EE Platform
	Java EE – Web aplikace
	Java EE – Technologie pro webové aplikace
	Java Servlet
	Slide 23
	Patterns_clipboard4
	Patterns_clipboard5
	Intercepting Filter
	Slide 38
	Slide 39
	Servlet - Filters_clipboard9
	Servlet - Filters_clipboard10
	Servlet – Filter Example_clipboard11
	Servlet - Filters_clipboard0
	Servlet - Filters_clipboard1
	Servlet – Filter – ResponseWrapper
	Servlet – Filter Example
	Servlet – Filter Mapping
	Web presentation
	Model View Controller
	Slide 50
	Slide 51
	Page Controller
	Front Controller
	Template View
	Transform View
	Slide 56
	Slide 57
	Slide 58
	Prezentační vrstva
	Domain model
	Table Module
	Transaction Script
	Domain Model
	spring_clipboard24
	Spring – Request processing
	Spring IoC
	Slide 85
	@Controler
	HandlerInterceptor
	Validation And Layers
	Spring - scope
	Aspect Oriented Programming
	Spring - AspectJ_clipboard31
	Spring - AspectJ_clipboard32
	Spring - AspectJ
	Data sources
	Table Data Gateway
	Row Data Gateway
	Active record
	Row Data Gateway vs. Active Record
	Data Mapper
	Data Layer
	DAO – Data Access Object_clipboard36
	DAO – Data Access Object
	Továrna pro DAO_clipboard37
	Továrna pro DAO
	Slide 147
	Slide 148
	ORM - behavioral
	Identity Map
	Lazy Load
	Slide 159
	Design Patterns - Unit of Work
	JPA – Java Persistent API
	JPA - Entity
	JPA - Entitní třída _clipboard42
	JPA - Entitní třída
	JPA – násobnost vazeb 1-1
	JPA – násobnost vazeb 1-N
	JPA – násobnost vazeb M-N
	JPA – mapovací strategie dědičnosti_clipboard45
	JPA – mapovací strategie dědičnosti_clipboard46
	JPA – mapovací strategie dědičnosti_clipboard47
	JPA – mapovací strategie dědičnosti
	JPA – MappedSuperclass
	JPA – životní cyklus entity
	Slide 192
	JPA – dotazy - příklady
	Spring - Transaction_clipboard54
	Spring - Transaction_clipboard56
	Spring - Transaction
	Discusion
	Security_clipboard57
	Co jsou to webové služby_clipboard60
	Co jsou to webové služby
	Architektura webových služeb_clipboard61
	Architektura webových služeb
	Web Services Description Language (WSDL)
	Příklad WSDL
	Simple Object Access Protocol (SOAP) _clipboard62
	Simple Object Access Protocol (SOAP)
	Příklad SOAP 1.2, request 1/2
	Příklad SOAP 1.2, request 2/2
	Příklad SOAP 1.2, response 1/2
	Příklad SOAP 1.2, response 2/2
	Universal Description, Discovery and Integration (UDDI)
	Java web services
	Java WS - klient
	Representational State Transfer (REST)_clipboard64
	Representational State Transfer (REST)_clipboard65
	Representational State Transfer (REST)
	RESTfull – API rules_clipboard66
	RESTfull – API rules_clipboard67
	RESTfull – API rules_clipboard68
	RESTfull – API rules_clipboard69
	RESTfull – API rules_clipboard70
	RESTfull – API rules – HTTP methods_clipboard71
	RESTfull – API rules – HTTP methods_clipboard72
	RESTfull – API rules – HTTP methods_clipboard73
	RESTfull – API rules – HTTP methods
	RESTfull – API rules
	RESTfull – API HATEOAS
	RESTfull – API CoD
	JSON_clipboard74
	JSON
	CORBA – Common Object Request Broker Architecture
	CORBA
	CORBA – Architektura
	SOA – Service Oriented Architecture_clipboard75
	SOA – Service Oriented Architecture_clipboard76
	SOA – Service Oriented Architecture_clipboard77
	SOA – Service Oriented Architecture_clipboard78
	SOA – Service Oriented Architecture_clipboard79
	SOA – Service Oriented Architecture
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	JMS – Java Message Services
	JMS – Architektura
	JMS - domény
	JMS – Model
	MDB – životní cyklus
	MDB - příklad
	Java Management Extensions (JMX)
	Java EE Connector Architecture (JCA)_clipboard83
	Java EE Connector Architecture (JCA)
	Portal
	Portlet_clipboard84
	Portlet_clipboard85
	Portlet_clipboard86
	Portlet_clipboard87
	Portlet
	Slide 313
	Java - Profiling
	Java Mission Control
	Java Mision Control
	Vaadin Framework
	Java Frameworks_clipboard88
	Java Frameworks
	Apache Jackrabbit
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334

