

www.vsb.cz

23.09.202
4

Java - EFREI 2

Java

Jan Kožusznik, David Ježek
david.jezek@vsb.cz

Tel: 597 325 874
Room: EA406

23.09.2024 Java - EFREI 3

Literature
● Sun.The Java™ Tutorials., http://download.oracle.c

om/javase/tutorial/
● Oracle Academy: Course „Java Foundations“
● Oracle Academy: Course „Java Programming“
● SCHILDT, Herbert, 2018. Java: A Beginner’s Guide,

Seventh Edition. 8 edition. New York: McGraw-Hill
Education. ISBN 978-1260440218 .

http://download.oracle.com/javase/tutorial/
http://download.oracle.com/javase/tutorial/

23.09.2024 Java - EFREI 4

1th lecture - objectives
● Types, Operators, variables
● Object type, class structure
● Constructors
● Overloading

4

23.09.202
4

Java - EFREI 5

Motivation for Java

Motto:

„Write once, run anywhere“

 Sun Microsystem

23.09.2024 Java - EFREI 6

Features of Java technology
● Multiplatform and portable
● Object Oriented
● It has simple language – core is API
● Robust, Dynamic and Secure
● Multithreaded
● Support for distributed application
●

23.09.2024 Java - EFREI 7

Data Types
● Primitive types – only values:

– int is in [-2147483648, 2147483647]
– double is in [4.9*10-324, 1.7976931348623157*10308]
– boolean is in {false, true}

● Object types – reference to instance of class:
– type from Java (more than 18000) – e.g. String
– defined by user – e.g. Rectangle, Person

23.09.2024 Java - EFREI 8

Primitive Types
● Similar to C/C++ but:

– Types has exactly same size on every platforms
– All numeric types are signed
– boolean type is separate type and numeric types are not automatically converted in.
– Type for strings (String) is object type

● Integer data types:
– byte (8b), short (16b), int (32b), long (64b)

● Their literals should contain ‘_’ …. 10_000
● long literals are defined with suffix l … 10l

● Floating point (Real) data type
– float (32b), double (64b)

● float literals are defined with suffix f … 3.151f

● Textual primitive type - char (16 b) – only single 16 bit Unicode character (0-
65535)

● Boolean type – boolean (1b)

23.09.2024 Java - EFREI 9

Operators
● Mainly for primitive types – exception is ‘+’ used for string concatenation

and ‘[]’ used for arrays.
● Like C:

– unary: +,-, ++,--
– binary: …, modulo % also available for double
– assignment: =, +=,-=, …
– relational: ==, !=, <=, … operands are values of some numeric type (integer or

real) result is value of boolean type.
– logical: !, ||, && ,^ - operands and result are always values of boolean type

● available also non lazy version |, & - both operands are always evaluated
– ternary: <condition expression>?<value1>:<value2>
– bitwise:
– cast: () – automatic casting of value is allowed to a type that has bigger

range(numeric primitive) or to parents (object)
● Construct expression with defined precedence.

23.09.2024 Java - EFREI 10

Object Type
● An Object is an distinguishable entity that has:

– Identity: a uniqueness which distinguishes it from all
other objects

– Behavior: services it provides to another objects
– State: value of attributes held by an object

● A class is an abstraction of objects with similar
implementation
– Class is definition of set of similar objects
– Every object is an instance of one class

23.09.2024 Java - EFREI 11

Object is an instance of a class

Rectangle rectangle1 = new Rectangle(); //an object creation

Instance of class
Rectangle is created.

Identifiers - name variables, functions, classes, and objects - anything that
programmers need to identify and use. Identifiers start with letter, underscore

or dollar sign and they are
case-sensitive. More about convention:

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

● Memery is allocated, object is created and
reference to the instance is stored into variable.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

23.09.2024 Java - EFREI 12

Object responds to a message call
● Methods are called on object only by ‘.’ (not by ->)

rectangle1.moveDown();

Message on the instance
could be sent.

23.09.2024 Java - EFREI 13

Reference vs. instance
● Another instance is created only by operation new.
● Reference to the same instance is passed during

assignment.
Rectangle rectangl1 = new Rectangle();

rectangl1.moveDown();

//...

Rectangle rectangl2 = rectangl1;

Rectangle (0x01010000)

Rectangle (0x01010000)

Identifiers refers the same
instance.

Only reference is
assigned.

23.09.2024 Java - EFREI 14

Comparing Variables (values)
● When you compare values by using boolean

expressions, you need to understand the nuances
of certain data types.

● Relational operators such as == are …
– Great for comparing primitives
– Terrible for comparing Strings (and other objects)

23.09.2024 Java - EFREI 15

Comparing Primitives
● The value z is set to be the sum of x + y.
● When a boolean expression tests the equality

between z and the sum of x + y, the result is true.

int x = 3;
int y = 2;
int z = x + y;

boolean test = (z == x + y);
System.out.println(test); // true

23.09.2024 Java - EFREI 16

Comparing Strings (true for objects)
● The value z is set to be the concatenation of x + y.
● When a boolean expression tests the equality

between z and the concatenation of x + y, the result
is false.

String x = "Ora";
String y = "cle";
String z = x + y;

boolean test = (z == x + y);
System.out.println(test); // false

23.09.2024 Java - EFREI 17

Why Are There Contradictory Results?
● Primitives and objects are stored differently in

memory.
– Strings are given special treatment.
– This is discussed later in the course.

● As a result ...
– == compares the values of primitives.
– == compares the objects’ locations in memory.

● It’s much more likely that you’ll need to compare
the content of Strings and not their locations in
memory.

23.09.2024 Java - EFREI 18

How Should You Compare Strings?
● You should almost never compare Strings using ==.
● Instead, compare Strings using the equals() method.

– This method is part of the String class (part of every class).
– It accepts one String argument, checks whether the contents

of Strings are equal, and then returns a boolean.
– There is also a similar method, equalsIgnoreCase()

String x = "Ora";
String y = "cle";
String z = x + y;

boolean test = z.equals(x + y);
System.out.println(test); // true

23.09.2024 Java - EFREI 19

Variables
● Again similar to C/C++ (instance, local, static,

methods arguments) except:
– There is no global variable – every declaration should

be placed inside class or their methods or other blocks

● default value depends on data type and variable
type (local, instance, static) – local variables need
explicit definition of initial value

23.09.2024 Java - EFREI 20

Accessing Uninitialized Variables
● If variables aren’t

initialized, they take on
a default value.

● Not true for local
variables!!!!!

● Java provides the
following default values:

Data Type Default Value
boolean false
int 0
double 0.0
String null
Any Object type null

23.09.2024 Java - EFREI 21

Defining constants
● variable with modifier final – its value cannot be

changed
private final int year;

● It is good practice to define variable as final when it
is not changed in the future.

● Instance variable needs to be initialized in a
constructor or by default value during declaration.

private final int year = 2024;

23.09.2024 Java - EFREI 22

Null Object reference
● Variables of object type can have a null value.
● A null object points to an empty location in memory
● If an Object has another Object as a field (such as a String),

its default value is null.
● What if a null object contains a field or method that needs to

be accessed?
– This causes the program to crash!(It is possible to handle it!)
– The specific error is a NullPointerException.

public static void main(String[] args) {
 String test = null;
 System.out.println(test.length());
}

23.09.202
4

Java - EFREI 23

Java Classes in Source Code

23.09.2024 Java - EFREI 24

Definition of class
● Every class have to be within own source file

named “<class-name>.java” - following class
Person is in file Person.java.

● Name of class should follow conventions -
● Name should be noun, in mixed case with the

first letter of each internal word capitalized.
● All class definitions are inside class block ({})
● Visibility modifiers(public, private, protected)

should be placed before every defined element.

23.09.2024 Java - EFREI 25

Structure of a Class
public class Person {
 private LocalDate birthDay;
 private int actualIq;

 public Person() {
 this(LocalDate.now());
 }
 public Person(LocalDate aBirthDay) {
 this(aBirthDay, 110);
 }
 public Person(LocalDate aBirthDay, int actualIq) {
 birthDay = aBirthDay;
 this.actualIq = actualIq;
 }
 public void run(int maxSpeed) {
 // process of running
 }
 private int getActualAge() {
 int result;
 result = Period.between(birthDay, LocalDate.now()).getYears();
 return result;
 }
}

23.09.2024 Java - EFREI 26

Class and Constructors
● Class constructor is always called when object is

created (using keyword new)
● If constructor is not deffined, Java automatically

create default empty constructor without
parameters.

23.09.2024 Java - EFREI 27

How Are the Packages Organized?
● The vast collection of

classes are organized
Into a tree-like
hierarchy, which allows
packages to be divided
into subpackages, like
this:

java.awt

java.awt.font

java.awt.geom

java.io

java

23.09.2024 Java - EFREI 28

Using a Class from a Package
● To use a class from a package in your program, you

need to specify its fully qualified name.
● For example, to use the Scanner class to read a

keyboard input the fully qualified name for the
Scanner class, which is defined in the java.util
package is

java.util.Scanner

Package Class Name

23.09.2024 Java - EFREI 29

Using the Full Qualified Class Name
public static void main(String[] args) {
 int num;
 java.util.Scanner keyboard = new java.util.Scanner(System.in);
 System.out.println("Enter a number");
 num = keyboard.nextInt();
 System.out.println("The entered number is " + num);
}

● As you can see, using the fully qualified name
creates very long names for classes.

● Long names reduce the readability of the code and
also make coding difficult.

23.09.2024 Java - EFREI 30

Using the import Statement
● You can avoid the fully qualified class name by

using the import statement.
● You place the import statement aboce your class

definition. It looks like this:
import package.ClassName;

● Example:

import java.util.Scanner;
public class Numbers {
 public static void main(String[] args) {
 int num;
 Scanner keyboard = new Scanner(System.in);

23.09.2024 Java - EFREI 31

Accessing All classes from the java.util
Package
● As you access more classes from the java.util

package in your program, the number of import
statements also increases.

● To avoid this, you can import all classes from the
java.util package by using the * wildcard character
in the import statement, like this:

import java.util.*;

//import all class names

//from package java.util

23.09.2024 Java - EFREI 32

Visibility modifiers
● They are used with:

– variables – both instance
and class

– methods

– ...and also classes!

public class MyClass {

 private int a1;

 String a2;

 public double a3;

 public void method1() {
 }

 void method2() {
 }

 private void method3() {
 }
}

access public protected <none> private

The same
class YES YES YES YES

The same
package YES YES YES NO

successors YES YES NO NO

anywhere YES NO NO NO

23.09.2024 Java - EFREI 33

Overloading Constructors
● You can write more than one constructor in a class.

– This is known as overloading a constructor.
– A class may have an unlimited number of constructors.

● Each overloaded constructor is named the same.
● But they differ in any of the following ways:

– Number of parameters.
– Types of parameters.
– Ordering of parameters.

23.09.2024 Java - EFREI 34

Recognizing Redundancy in Constructors
● Very similar code is repeated in these constructors.
● It’s possible to minimize this redundancy.

public Rectangle(int x, int y, int width, int height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.color = Color.RED;
}

public Rectangle(int x, int y, int width, int height, Color color) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.color = color;
}

23.09.2024 Java - EFREI 35

Constructors Can Call Other Constructors
● By using the this keyword, one constructor may call

another.

public Rectangle(int x, int y, int width, int height) {
 this(x, y, width, height, Color.RED);
}

public Rectangle(int x, int y, int width, int height,
Color color) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.color = color;
}

23.09.2024 Java - EFREI 36

Overloading Methods
● Any method can be overloaded, including ...

– Constructors
– Methods that model object behaviors
– Methods that perform calculations

● All versions of an overloaded method are named the same.
● But differ in any of the following ways(in a signature of the

method):
– Number of parameters
– Types of parameters
– Ordering of parameters

● Which version of overloaded methods is chosen during
compilation – important when we use object types and
inheritance.

23.09.2024 Java - EFREI 37

Methods Can Call Other Methods in the
Same Class
● In this example, one method returns a value to the

other.

public class Calculator {
 public double calcY(double m, double x) {
 return calcY(m, x, 0);
 }

 public double calcY(double m, double x, double b) {
 return m * x + b;
 }
}

23.09.2024 Java - EFREI 38

2nd lecture
● Basic OOP

– Interface
– Inheritance
– Method overriding

● Scanner class
● Nested (Internal) class

23.09.2024 Java - EFREI 39

Interface
● An interface is a Java construct that helps define the

roles that an object can assume – it allows treat with
objects of different classes uniformly

● It is implemented by a class or extended by another
interface.

● An interface looks like a class with abstract methods
(no implementation), but we cannot create an instance
of it.

● Interfaces often define collections of related methods
without implementations.

● All public methods in a Java interface are abstract (or
default using another methods in the interface).

23.09.2024 Java - EFREI 40

Why Use Interface
● When implementing a class from an interface we

force it to implement all of the abstract methods.
● The interface forces separation of what a class can

do, to how it actually does it.
● So a programmer can change how something is

done at any point, without changing the function of
the class.

● This facilitates the idea of polymorphism as the
methods described in the interface will be
implemented by all classes that implement the
interface.

23.09.2024 Java - EFREI 41

Interface properties
● An interface:

– Can declare public constants.
– Define methods without implementation, default method, private

methods or static method.
– Can only refer to its constants and defined methods or other accessible

methods (static or methods of objects passed as parameter).
– Can be used with the instanceof operator.

● A class
– can implement more then one interface

● An interface method
– Each method is public even when you forget to declare it as public –

private methods are exception.
– Is implicitly abstract but you can also use the abstract keyword.
– Each variable is public final static – even without modifier.

23.09.2024 Java - EFREI 42

Declaring Interface
● To declare a class as an interface you must replace

the keyword class with the keyword interface.
● This will declare your interface and force all

methods to be abstract and make the default
access modifier public.

public interface Paintable {
 int DEFAULT_SIZE = 10;
 void paint(MyGraphics d);
}

23.09.2024 Java - EFREI 43

Default (Java 8) and private (Java 9) methods
● These methods can not

deal with inner structure
● Help remove

redundancy in code
and extend existing
interface

public interface Movable {

 void setPosition(int x, int y);

 int getX();

 int getY();

 default void moveRight() {

 move(10, 0);

 }

 private void move(int dx, int dy) {

 setPosition(getX() + dx, getY() + dy);

 }

}

23.09.2024 Java - EFREI 44

It has to implement every
method of specified interface.

Class declares
implementation of specified

interface.

Interface Implementation
public class Rectangle implements Paintable {
// ...
 @Override
 public void paint(MyGraphics d) {
 // ...
 }

23.09.2024 Java - EFREI 45

Multiple Interface implementation
● Every class could implement more then one interface.

public class Rectangle implements Paintable, Clear {
// ...

● When are implemented two or more interfaces with same
default methods then these methods should be overridden. It
could call one of the existing implementations.

public class MyClass implements Movable, Pickable {
 @Override
 public void moveRight() {
 Movable.super.moveRight();
 }

23.09.2024 Java - EFREI 46

Design pattern Template method
● Common logic is placed externally of class.
● Class is accessed through defined interface.

23.09.2024 Java - EFREI 47

Common behavior is
in a separate class

Design pattern Template method in source
code
public class Mover {
 private static final long SLEEP_TIME_IN_MS = 500;
 private static final double SPEED = 10;

 public void move(IMovable object, int toRight, int toDown) {
 double distance = Math.sqrt(toRight * toRight + toDown * toDown);
 int STEPS = (int) (distance / SPEED);
 double dx = (toRight + 0.4) / STEPS;
 double dy = (toDown + 0.4) / STEPS;
 int xPos = object.getX();
 int yPos = object.getY();
 double x = xPos + 0.4;
 double y = yPos + 0.4;

 for (int i = STEPS; i > 0; i--) {
 x = x + dx;
 y = y + dy;
 object.setPosition((int) x, (int) y);
 Utils.sleep(SLEEP_TIME_IN_MS);
 }
 }
}

public interface IMovable {
int getX();

int getY();

void setPosition(int x, int y);
}

The algorithm – behavior will be
applicable on any object that

implements a specific interface

23.09.2024 Java - EFREI 48

Interface extension
● If class implement the interface IMovable than it

must also implement interface IPaintable.

public interface IMovable extends IPaintable {

23.09.2024 Java - EFREI 49

Interface extends multiple interfaces
● Interface can extend from multiple interfaces.
● When are extended two or more interfaces with

same default methods then these methods should
be overridden as default - it could call one of the
existing implementations (similar to implementation)
– or leave them as abstract.

23.09.2024 Java - EFREI 50

Class extension - inheritance
● Rectangle is specialization of
MovableShape.

● MovableShape is generalization of
Rectangle.

● Rectangle is subclass (successor)
of MovableShape.

● MovableShape is superclass
(predecesor) of Rectangle.

23.09.2024 Java - EFREI 51

Inheritance in Java
● Class could inherit only from one another class in

Java.
● If a superclass is not specified than class inherits

from class Object.

public class Rectangle extends MovableShape {

23.09.2024 Java - EFREI 52

Inheritance of constructors
class ParentClassType {
 private int parentValue;

 public ParentClassType() {
 parentValue = 10;
 }

 public ParentClassType(int value) {
 parentValue = value;
 System.out.println(
 "Parent constructor called");
 }
}

public class ClassType
 extends ParentClassType {

}

● Constructors are not
inherited in successors.
new ClassType(10);

● Only default non-
parametric constructor
is available in this case.

new ClassType();

23.09.2024 Java - EFREI 53

Implicit calling of predecessor constructor
class ParentClassType {
 private int parentValue;
 public ParentClassType() {
 System.out.println("Parent constructor
called ");
 }
 public ParentClassType(
 int value) {
 System.out.println("Parent constructor
called " + "with value " + value);
 parentValue = value;
 }
}

public class ClassType extends ParentClassType {
 private int value;
 public ClassType() {
 System.out.println("Child constructor called
");
 value = 0;
 }
 public ClassType(int value) {
 System.out.println("Child constructor called
");
 this.value = value;
 }
}

● Both constructors
new ClassType();
new ClassType(10);

● Product output:
Parent constructor called
Child constructor called

● Non-parametric
constructor of
predecessor
(ParentClassType) is
implicitly called at the
beginning of object
construction

23.09.2024 Java - EFREI 54

Explicit calling of predecessor constructors
class ParentClassType {
 private int parentValue;

 public ParentClassType(
 int value) {
 parentValue = value;
 }
}

public class ClassType
 extends ParentClassType {

 private int value;

 public ClassType() {
 super(7);
 value = 10;
 }

 public ClassType(
 int value) {
 super(7);
 this.value = value;
 }
}

● Explicit call of a specific
parent constructor is by
keyword super in child
constructor. It has to be
first statement in
constructor of child.

23.09.2024 Java - EFREI 55

Instance building
class ParentClassType {
 private int parentValue;

 public ParentClassType() {
 }

 public ParentClassType(int value) {
 parentValue = value;
 }
}

public class ClassType
 extends ParentClassType {
 private int value;

 public ClassType() {
 this(10);
 }

 public ClassType(int value) {
 this(value, 7);
 }

 public ClassType(int value,
 int parentValue) {
 super(parentValue);
 this.value = value;
 }

 public ClassType(String anotherValue) {
 System.out.println(
 "Child constructor called with value "
 + anotherValue);
 }
}

● If this(…) or super() are
used, then it should be
first statement in
constructor. Otherwise
nonparametric
constructor of
predecessor is called.

23.09.2024 Java - EFREI 56

Disadvantage of inheritance
● It breaks encapsulation principle
● it is necessary to know details of implementation in

super-class.
● Composition is preferred.

23.09.2024 Java 1 57

Class Lifecycle - Full
public class ClazzLifeCycle {

 static {
 System.out.println("Static Initializer 1");
 statField4 = 5;
 }

 private static final int statField1 = statMethod1();
 private static int statField2 = statMethod1();
 private static int statField3 = 5;
 private static final int statField4;

 static {
 System.out.println("Static Initializer 2");
 }

 private static int statMethod1() {
 System.out.println("Static method 1");
 return 1;
 }

 {
 System.out.println("instance initializer block 1");
 field5 = 5;
 }

 private final int field1 = statMethod1();
 private final int field2 = method1();
 private int field3 = method1();
 private final int field4 = 4;
 private final int field5;
 private final int field6;

 {
 System.out.println("instance initializer block 2");
 }

 public ClazzLifeCycle() {
 field6 = 6;
 System.out.println("Constructor");
 }

 private int method1() {
 System.out.println("Method 1");
 return 2;
 }

 public static void main(String[] args) {
 new ClazzLifeCycle();
 }

}

https://blogs.oracle.com/javamagazine/post/
java-instance-initializer-block

23.09.2024 Java - EFREI 58

Method overriding
● Method redefined in

successor are marked
with annotation
@Override.

● Overriding method
should have same
signature and
compatible return type:

● same in case of a
primitive type

● same or a subtype in
case of an object type

class ParentClassType {
 public void methodA() {
 // some implementation
 // of methodA
 }
 public void methodB() {
 }
}

public class ClassType
 extends ParentClassType {

 @Override
 public void methodA() {
 // statements before
 super.methodA();
 // statements after
 }
 public void methodC() {
 }
}

23.09.2024 Java - EFREI 59

Casting object variables, operator instanceof
● Variable of object type is implicitly casted to a supertype –

predecessor or type of interface implemented by the given
type.

● Variable of a object type could be explicitly casted to a its
subtype:
– An interface implemented by object
– A class that is a super class or a class of the object.

● Casting to a unfit type fails during runtime –
ClassCastException is thrown.

● Binary operator instanceof is used for testing whether object
is given type

 ParentClassType val = new ClassType();
 ClassType val2 = (ClassType)val;

23.09.2024 Java - EFREI 66

Nested (Internal) class
● Global – could be qualified with name/instance of

outer class.
– class – static internal class
– instance – inner classes.

● Local – defined in block of code
– Named,
– Anonymous.

23.09.2024 Java - EFREI 67

Static internal class
● A static internal class can only access static attributes

of its containing (external)class.
● Internal class that does not need an object of the

enclosing class to exist.
● Useful class for hiding layout details
● In another class, one can instantiate an internal class

object, provided you use the visibility qualifier which is
the name of the enclosing (external) class in order to
access the internal class.

● The name of the internal class is
ExternalClass.InternalClass

23.09.2024 Java - EFREI 68

Static internal class
public interface IMovable {

 static public class MAdapter implements IMovable {
 // class implementation
 }

 public static void main(String[] args) {
 IMovable.MAdapter adapte =
 new IMovable.MAdapter();
 }
}
● Class nested type is qualified with name of outer

type – if is needed.

23.09.2024 Java - EFREI 69

Inner classes (non-static internal class)
● An internal Class instance needs an instance of the

enclosing (external) class to exist.
● The internal class can access the fields of the

object.
● During construction, an internal class must be

constructed by an object of the enclosing class.
● It is forbidden to declare static members inside an

inner-class, but it is possible to declare it at the
level of its enclosing class.

23.09.2024 Java - EFREI 70

Instance of inner
class contains
reference to an

instance of outer
class.

Inner classes (non-static internal class)
public class OutterClass {
 private int outerVal;

 public class InnerClass {
 private int innerVal;

 public void setVal(int val) {
 // accessing feature of outer class
 OutterClass.this.outerVal = val;

 // accessing feature
 // of current class
 this.innerVal = val + 1;
 }
 }

 public InnerClass getInstance() {
 return new InnerClass();
 }
}

public static void main(
 String[] args) {
 OutterClass val =
 new OutterClass();
 OutterClass.InnerClass nextVal
 = val.new InnerClass();
}

Instance of inner class could be in an
instance method of outer class or with
instance of outer class qualification.

Instance of inner class could be in an
instance method of outer class or with
instance of outer class qualification.

23.09.2024 Java - EFREI 71

Anonymous local class -
“block of code” object that

can be evaluated when
needed.

Name local
class.

Local classes
public void moveDown() {
 class MThread extends Thread {
 @Override
 public void run() {
 Baloon.this.run();
 }
 }
 new MThread().start();
}

public void moveUp() {
 Runnable run = new Runnable() {
 @Override
 public void run() {
 Baloon.this.run();
 }
 };
 new Thread(run).start();
}

● When a class definition
is local to a block, it
may access only
attributes and constants

23.09.2024 Java - EFREI 72

Anonymous class
● An anonymous class is a class that does not have a name.
● Since an anonymous class has no name, it is therefore not possible to

define a constructor for it.
● An anonymous class is instantiated immediately in its declaration according

to a specific syntax:

 new <class identifier>(<list of construction parameters>) {
 <body of the class>
 }

● An anonymous class is useful when a class is needed for single use, it is
defined and instantiated where it is to be used.

● This also applies to interfaces using the following syntax:

 Interface c = new Interface() {
 // implementation of Interface methods
 };

23.09.2024 Java - EFREI 74

Supertype Class Object
● Root node in a hierarchy of all Java classes –

supertype.
● Contains fundamental methods provided by all

object:
– toString
– equals
– hashCode
– getClass
– notify, notifyAll, wait
– ...

23.09.2024 Java - EFREI 75

Overriding of equals method
public class Fraction {
 final private int numerator;
 final private int denominator;

 public Fraction(int numerator, int denominator) {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj instanceof Fraction) {
 Fraction other = (Fraction) obj;
 if (denominator == other.denominator
 && numerator == other.numerator)
 return true;
 }
 return false;
 }
}

23.09.2024 Java - EFREI 76

Overriding of toString method
public class Fraction {
 final private int numerator;
 final private int denominator;

 public Fraction(int numerator, int denominator) {
 this.numerator = numerator;
 this.denominator = denominator;
 }
 @Override
 public String toString() {
 return numerator + "/" + denominator;
 }
}

23.09.2024 Java - EFREI 77

Keyword static
● Used for variable – value is defined for given class

instead of an object

public class Mover {
 private static final long SLEEP_TIME_IN_MILI_SECONDS = 100;

● Used for method – method is called on given class
instead of an object (e.g. public)

public class URLExample {
 public static void main(String[] args) {

23.09.2024 Java - EFREI 78

Singleton classes
public class PrinterDriver {
// Static variable reference of driverInstance
// of type PrinterDriver
 private static PrinterDriver driverInstance
 = null;

 private String port;

// Private constructor restricted to
// this class itself, ensure only
// this class can create instance
 private PrinterDriver() {
 port = detectPort();
 }

// Static method to create instance
// of PrinterDriver class
 public static PrinterDriver getInstance() {
 if (driverInstance == null)
 driverInstance = new PrinterDriver();
 return driverInstance;
 }
}

public static void main(
 String[] args) {
// Instantiating PrinterDriver
// class with variable x
 PrinterDriver x =
 PrinterDriver.getInstance();

// Instantiating PrinterDriver
// class with variable y
 PrinterDriver y =
 PrinterDriver.getInstance();

 System.out.println(x == y); //true
}

23.09.2024 Java - EFREI 79

Abstract Classes
● An abstract method has no body; it has a signature

definition followed by a semicolon, e.g.
public abstract void method();

● Any class with an abstract method must be abstract – it
needs keyword abstract before class.

● An abstract class cannot be instantiated.
● A subclass of an abstract class can be instantiated if it

implements each of the abstract methods.
● This concept is defined a common predecesor for

classes that share inner structure or implementation.

23.09.2024 Java - EFREI 80

Virtual method
● All methods(functions) except final, private and

static are virtual.
● Virtual machine (Java Hotspot) could make virtual

method non-virtual or even inline during
optimalization and conversion into a native code but
prommer do not need take care about.

23.09.2024 Java - EFREI 81

Complete meaning of a final modifier
● used with:

– variable – its value cannot be changed

private final int year;

– method – cannot be overridden

public final void someMethod() {/*implemntation*/}

● class – cannot be subclassed (be parent to another
class)

public final class MyDate {

23.09.202
4

Java - EFREI 82

Exceptions

23.09.2024 Java - EFREI 83

Handling of exceptional situations in Java
● Java uses system of exceptions as many other

programming languages:
– C++
– C#
– Python
– PHP
– Ruby

23.09.2024 Java - EFREI 84

Technics to indicate that an error occurred
● diagnostic return value

– Test the return value.
● Attempt recovery on error.
● Avoid program failure.

– Ignore the return value.
● Cannot be prevented.
● Likely to lead to program failure.

● exception throwing (preferred)
– Handle exception
– Pass exception to another block of code where it should

be handled

23.09.2024 Java - EFREI 85

Exception-throwing principles
● Directly implemented in a language
● No ‘special’ return value needed.
● The normal flow-of-control is interrupted.
● Special recovery actions are supposed.
● Thrown exception cannot be ignored in the client

object

23.09.2024 Java - EFREI 86

How is an exception thrown
● An object representing an exception is constructed:

new ExceptionType("...")
● The keyword “throw” is used to throw the exception

object:
throw new ExceptionType("a error message");

● If the method throws an exception outside, then it is
specified in Javadoc documentation:

@throws ExceptionType reason description
● An exception should be also thrown by Virtual

machine internally (division by zero value)

23.09.2024 Java - EFREI 87

Exceptions
● Its throwing indicates an exceptional situation,
● any instance of class inherited from Throwable
● important examples: IllegalArgumetnException,

IllegalStateException, NullPointerException,
IndexOutOfBoundException, RuntimeException

 // immediate exception throwing
 throw new IllegalArgumentException();

 // exception could be throwed later
 IllegalArgumentException e = new IllegalArgumentException();
 throw e;

23.09.2024 Java - EFREI 88

Overview of an exception class hierarchy

Throwable

Error Exception

RuntimeExceptionMyCheckedException

MyUncheckedException

Standard library classes

User defined classes

23.09.2024 Java - EFREI 89

Main exception categories
● Checked exceptions

– Subclass of Exception
– Used for anticipated failures.
– Where recovery may be possible.
– Should be handled in a method when raises or the

method should be marked
● Unchecked exceptions

– Subclass of RuntimeException
– Used for unanticipated failures.
– can raise uncontrollably from a method

23.09.2024 Java - EFREI 90

What exceptions does Java throw to us
● Error – InternalError, OutOfMemoryError,

VirtualMachineError, StackOverflowError.
● Exception

– unchecked- RuntimeException and its successor
● ArithmeticException, IllegalArgumentException,

UnsuportedOperationException, IllegalStateException,…

– checked – other successor of Exception
● ClassNotFoundException, DataFormatException,

InterruptedException, IOException.

23.09.2024 Java - EFREI 91

The effect of an exception
● The throwing method finishes exceptionally.
● The throwing method returns no value.
● Control does not return after the point of method

call.
● A client must/may handle an exception.

23.09.2024 Java - EFREI 92

Unchecked exceptions
● Compiler doesn’t check these exceptions
● It causes program termination if not handled.
● NotSupportedException is a typical example.

23.09.2024 Java - EFREI 93

Example of an unchecked exception
 public void setDimension(int width, int height) {
 if ((width < 0) || (height < 0)) {
 throw new IllegalArgumentException(
 "Dimension should be greater or equal to 0:
width=" + width + ", height = " + height);
 }
 erase();
 this.width = width;
 this.height = height;
 paint();
 }

23.09.2024 Java - EFREI 94

Exception handling
● Checked exceptions are perceived to be caught

and eventually handled.
● The compiler ensures that their use is strictly

controlled.
● Used carefully, failures may be recoverable.

23.09.2024 Java - EFREI 95

Example of block with an exception
try {
 // critical section
} catch (IllegalArgumentException e) {
 // handle exception o type IllegalArgumentException
} catch (NullPointerException | IOException e) {
 // handle exception o type NullPointerException and
IOException
} catch (Throwable e) {
 // handle every exception – object o type Throwable
} finally {
 // this block is always performed when the critical section
is leaved
}

23.09.2024 Java - EFREI 96

Throws clause
● Methods that can propagate a checked exception must be

marked with throws clause:
/**
 *
 * @param fileName
 * @return
 * @throws IOException
 */
public String filterInputFile(String fileName) throws IOException {
 InputStream is = new FileInputStream(fileName);
 StringBuilder sb = new StringBuilder();
 int chars;
 byte[] buffer = new byte[1024];
 while (-1 != (chars = is.read(buffer))) {
 sb.append(new String(buffer, 0, chars));
 }
 is.close();
 return sb.toString();
}

Every checked exception should be
handled in the method or the method

specifies exception throwing.

23.09.2024 Java - EFREI 97

try statement
● The source code catching an exception must

surround the call with the try statement:
 try {
 // this section contains commands that are
 // source of exception throwing
 } catch (Exception e) {
 // caught exception is handled here,
 // it is accessible as variable with name e
 }

23.09.2024 Java - EFREI 98

1. Exception thrown from this method

2. Control moves here

try statement

try {
 exceptionalFilter.filterInputFile(fileName);
 //some following code
} catch(IOException e) {
 System.out.println("Unable to process file "
 + fileName + "exception thrown: "
 + e.getMessage());
}

23.09.2024 Java - EFREI 99

Catching multiple exceptions
try {
 // block of code that should throw exceptions
 FileInputStream fis = new FileInputStream("input.txt");
 // file processing
} catch (EOFException e) {
 // Take action on an end-of-file exception.
} catch (FileNotFoundException e) {
 // Take action on a file-not-found exception.
}

23.09.2024 Java - EFREI 100

Handling different exceptions by same code
block
try {
 // block of code that should throw exceptions
 FileInputStream fis = new FileInputStream("input.txt");
 // file processing
} catch (EOFException | FileNotFoundException e) {
 // Take action on an end-of-file and
 // file-not-found exception.
}

23.09.2024 Java - EFREI 101

Finally clause
● The finally clause is executed even if a return

statement is executed in the try or catch clauses.
● An uncaught or propagated exception still exits via

the finally clause.

try {
 //Protect one or more statements here.
} catch (Exception e) {
 //Report and recover from the exception here.
} finally {
 //Perform any actions here common to whether or not
 //an exception is thrown.
}

23.09.2024 Java - EFREI 102

Exception conversion
● Used when we need propagate a different exception

type from a method
● Often used to the conversion into the

RuntimeException or another unchecked exception
● Add useful information what's wrong
● Good practices is wrap original exception (use it as

constructor parameter)

 try {
 // ...
 } catch (IOException e) {
 throw new MyException(e);
 }

23.09.2024 Java - EFREI 103

Features of exceptions
● methods:

– getMessage
– toString
– printStackTrace
– printStackTrace(PrintStream)

23.09.2024 Java - EFREI 104

Defining new exception types
● Extend RuntimeException for an unchecked or

Exception for a checked exception.
● We use our exception type to improve diagnostic

information.
– It can contain additional reporting and/or recovery

information.

23.09.2024 Java - EFREI 105

Defining new exception types in an action
public class NotConnectedException extends Exception {

 private String host;

 public NotConnectedException(String address) {
 super("Host: " + address + " is not accesible");
 host = address;
 }

 public String getHost() {
 return host;
 }

 @Override
 public String toString() {
 return "NotConnectedException [host=" + host
 + ", getMessage()=" + getMessage() + "]";
 }
}

23.09.2024 Java - EFREI 106

Error recovery
● Clients should take description of error notifications.

– After method calling, it checks the method return values.
– Exceptions should not be ‘ignored’.

● Client code usually attempts to recover.
– It is often implemented in a loop.

23.09.2024 Java - EFREI 107

Attempting recovery
// Try to connect to server.
boolean successful = false;
int attempts = 0;
do {
 try {
 server.connect();
 successful = true;
 }
 catch(TimeoutException e) {
 System.out.println("Unable connect to " + server);
 attempts++;
 if(attempts < MAX_ATTEMPTS) {
 server = getAlternativeServer(server);
 }
 }
} while(!successful && attempts < MAX_ATTEMPTS);
if(!successful) {
 //Report the probslem and give up;
}

23.09.2024 Java - EFREI 108

Enhanced syntax of “try” - motivation
BufferedReader reader = null;
try {
 reader = new BufferedReader(new FileReader("filename"));
 reader.lines();
} catch (FileNotFoundException e) {
 // the specified file could not be found
} catch (IOException e) {
 // something went wrong with reading
} finally {
 try {
 if (reader != null)
 reader.close();
 } catch (IOException e) {
 // something went wrong with closing
 }
}

23.09.2024 Java - EFREI 109

Enhanced syntax of “try”
try (BufferedReader reader =
 new BufferedReader(new FileReader("filename"))) {
 String line = null;
 while (null != (line = reader.readLine())) {
 // do something with line
 }
} catch (FileNotFoundException e) {
 // the specified file could not be found
} catch (IOException e) {
 // something went wrong with reading
}

23.09.2024 Java - EFREI 110

Enhanced syntax of “try” - usage
● It can be used on any class that implements

interface AutoCloseable

public interface AutoCloseable {
 void close() throws Exception;
}

23.09.2024 Java - EFREI 111

4th lecture – Java Collection Framework
● General Architecture
● Interfaces
● Implementations

23.09.2024 Java - EFREI 112

Collections in Java
● Collection (container) - objects that groups

multiple elements into single unit.
● Collections Framework:

– Interfaces – abstract data types representing collections
– Implementations - concrete implementations of the

interfaces – general, legacy, special-purpose,
concurrent, wrapper, abstract

– Algorithms - methods that perform useful computations
(searching and sorting)

23.09.2024 Java - EFREI 113

Collection types hierarchy
● Extended from:

– java.util.Collection
– java.util.Map

● java.util.Map – not true collection but offers
collection-like manipulation

23.09.2024 Java - EFREI 114

java.util.Collection - hierarchy

Deque

23.09.2024 Java - EFREI 115

java.util.Collection
● base interface
● used to define a group of objects – allow manipulation,

uniqueness and ordering is not defined for the interface
● methods:

– add(E), addAll(Collection<E>), remove(E),
removeAll(Collection<E>), clear(), retainAll(Collection<E>) –
add/remove elements

– size():int, isEmpty():boolean – check number of elements
– contains (Object):boolean – check existence of element
– iterator() - returns new iterator – enable browsing
– toArray()

23.09.2024 Java - EFREI 116

java.util.List
● ordered(defined index for every element) collection

that may contain duplicate elements
● methods:

– <extends Collection>
– add(int,E), set(int,E), addAll(int,Collection<E>),

get(int):E, remove(int):E – add/remove elements
to/from given position

– indexOf(Object):int, lastIndexOf(Object):int – find
position of given object

– listIterator():ListIterator – return iterator that allows
forward/backward browsing

23.09.2024 Java - EFREI 117

java.util.Set
● collection of elements that does not contain

duplicates
● methods:

– <extends Collection>
– add(E):boolean, addAll(Collection<E>),

contains(Object):boolean – added constraints to
inherited methods

23.09.2024 Java - EFREI 118

java.util.SortedSet
● set of elements where is defined ordering (index for

items are not defined)
● methods:

– <extends Set>
– comparator(): Comparator<E>
– subSet(E, E): SortedSet<E>
– headSet(E): SortedSet<E>
– tailSet(E): SortedSet<E>
– first(): E
– last(): E

23.09.2024 Java - EFREI 119

java.util.Queue
● Queue is a list of elements with a first in first out

ordering.
● When you enqueue an element, it adds it to the end of

the list.
● When you dequeue an element, it returns the element

at the front of the list and removes that element from
the list.

● methods:
– <extends Collection>
– add(E), offer(E) – enqueue
– remove(): E, poll(): E – dequeue
– element():E, peek():E – retrieves but not remove

23.09.2024 Java - EFREI 120

java.util.Deque
● double ended queue,
● enables enqueue to the start and dequeue from the

end,
● provides stack functionality
● methods:

– <extends Queue>
– addLast/addFirst; getLast/getFirst – manipulation with

end or beginning
– push(E), pop(): E
– descendingIterator(): Iterator<E>

23.09.2024 Java - EFREI 121

Choose type of collection
● choose more general type.
● Iterable – only browsing (.. .and remove by iterator).
● others – modification (add, remove), provide size

information, check existence of elements.
Ordered Indexed Unique FIFO LIFO

Collection

List Y Y

Queue Y Y

Deque Y Y Y

Set Y

OrderdSet Y Y

Map Y – by key Y – only key

23.09.2024 Java - EFREI 122

java.util.Map
● is a collection that links a key to a value.
● cannot contains duplicates of key – each key can

only exists once and can only link to a single value.
● for key and value could be used any type

Map<KeyType, ValueType> myMap;

23.09.2024 Java - EFREI 123

java.util.Map - example
● map String → Color
Map<String, Color> fruit2color = new HashMap<>();

● insert pairs
 fruit2color.put("Apple", Color.RED);
 fruit2color.put("Banana", Color.YELLOW);
 fruit2color.put("Mellone", Color.GREEN);

● get value for a specific key
 Color colorOfBanana = fruit2color.get("Banana");
 Color colorOfApple = fruit2color.get("Apple");

23.09.2024 Java - EFREI 124

java.util.Map – another methods
● containsKey(Object): boolean
● containsValue(Object): boolean
● keySet(): Set<K>
● values(): Collection<V>
● entrySet: Set<Entry<K,V>>
● remove(Object): V
● size(): int

23.09.2024 Java - EFREI 125

Collection Implementations
Interface Hash Table

Resizable
Array

Balanced
Tree

Linked List
Hash Table +
Linked List

Set HashSet TreeSet LinkedHashSet

Collection HashSet ArrayList TreeSet LinkedList LinkedHashSet

List ArrayList LinkedList

Queue ArrayDeque LinkedList

Deque ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap

23.09.2024 Java - EFREI 126

List implementation: ArrayList vs LinkedList
● Definition:

– ArrayList: A resizable array
implementation of the List interface.

– LinkedList: A doubly-linked list
implementation of the List and Deque
interfaces.

● Performance:
– ArrayList has a faster average time

for accessing elements as it uses an
index-based system.

– LinkedList has a faster average time
for adding and removing elements.

● Memory Usage:
– ArrayList uses less memory as it

holds only data.
– LinkedList uses more memory as

it holds data and two references
for neighbor nodes.

● Use Case:
– Use ArrayList when you have a

fixed-size list, and you know the
size won't change.

– Use LinkedList when you have to
change the list size frequently by
adding or removing elements.

● Syntax:
 List<String> arrayList =
 new ArrayList<>();
 List<String> linkedList =
 new LinkedList<>();null prev

data
next

prev

data
next

prev

data
next

prev

data
next null

23.09.2024 Java - EFREI 127

Map implementation: HashMap vs TreeMap
● Definition:

– HashMap: Part of Java's collection since Java 1.2, provides
the basic implementation of Map interface by hash table

– TreeMap: A Red-Black tree based NavigableMap
implementation, sorted according to the natural ordering of its
keys.

● Performance:
– HashMap generally offers constant time performance for the

basic operations — get and put.

– TreeMap guarantees log(n) time cost for the containsKey, get,
put, and remove operations.

● Ordering:
– HashMap does not maintain any order of its keys.

– TreeMap maintains ascending order of its keys.
● Null Keys and Values:

– HashMap allows one null key and multiple null values.

– TreeMap does not allow null keys but may contain multiple null
values.

● Use Case:
– Use HashMap when you do not need sorted keys, and you

need better performance.

– Use TreeMap when you need sorted keys, and you can
compromise on performance for ordering.

● Syntax:
 Map<String, String> hashMap = new HashMap<>();

 Map<String, String> treeMap = new TreeMap<>();

23.09.2024 Java - EFREI 128

Set implementation: HashSet, TreeSet
● It is implemented by HashMap / TreeMap

23.09.2024 Java - EFREI 129

Requirements of using hash tables
● classes of objects (value objects) stored in hash

tables:
– objects stored in HashSet
– keys used with HashMap

● should correctly override:
– hashCode
– equals (important also for comparison).

● value object – instances where their identity is not
important but their state – String, Date, Money,
Fraction, ComplexNumber…

●

23.09.2024 Java - EFREI 130

hashCode method
● provide Hash Function

for given object
● for two objects

representing the same
value must return same
result

● for two objects
representing different
values should return
different results –
collisions are sometimes
necessary

●

23.09.2024 Java - EFREI 131

equals method
● used for distinguishing

between object targeting
the same bucket

● for two objects representing
the same value must return
true

● for two objects representing
different values must return
false

● used also in implementation
of method contains
(declared in Collection)

●

23.09.2024 Java - EFREI 132

23.09.2024 Java - EFREI 133

23.09.2024 Java - EFREI 134

23.09.2024 Java - EFREI 135

23.09.2024 Java - EFREI 136

23.09.2024 Java - EFREI 137

23.09.2024 Java - EFREI 138

	Slide 1
	Slide 2
	Slide 3
	Architecture?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

