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Literature
● Sun.The Java™ Tutorials., http://download.oracle.c

om/javase/tutorial/ 
● Oracle Academy: Course „Java Foundations“
● Oracle Academy: Course „Java Programming“
● SCHILDT, Herbert, 2018. Java: A Beginner’s Guide, 

Seventh Edition. 8 edition. New York: McGraw-Hill 
Education. ISBN 978-1260440218 .

http://download.oracle.com/javase/tutorial/
http://download.oracle.com/javase/tutorial/
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1th lecture - objectives
● Types, Operators, variables
● Object type, class structure
● Constructors
● Overloading
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Motivation for Java

Motto:

„Write once, run anywhere“

                             Sun Microsystem
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Features of Java technology
● Multiplatform and portable
● Object Oriented
● It has simple language – core is API
● Robust, Dynamic and Secure
● Multithreaded
● Support for distributed application
●
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Data Types
● Primitive types – only values:

– int is in [-2147483648, 2147483647 ]
– double is in [4.9*10-324, 1.7976931348623157*10308]
– boolean is in {false, true}

● Object types – reference to instance of class:
– type from Java (more than 18000) – e.g. String 
– defined by user – e.g. Rectangle, Person
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Primitive Types
● Similar to C/C++ but:

– Types has exactly same size on every platforms
– All numeric types are signed
– boolean type is separate type and numeric types are not automatically converted in.
– Type for strings (String) is object type

● Integer data types:
– byte (8b), short (16b), int (32b), long (64b)

● Their literals should contain ‘_’ …. 10_000
● long literals are defined with suffix l  … 10l

● Floating point (Real) data type
– float (32b), double (64b)

● float literals are defined with suffix f  … 3.151f

● Textual primitive type - char (16 b) – only single 16 bit Unicode character (0-
65535)

● Boolean type – boolean (1b)
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Operators
● Mainly for primitive types – exception is ‘+’ used for string concatenation 

and ‘[]’ used for arrays.
● Like C:

– unary: +,-, ++,-- 
– binary: …, modulo %  also available for double
– assignment: =, +=,-=, …
– relational: ==, !=, <=, … operands are values of some numeric type (integer or 

real) result is value of boolean type.
– logical: !, ||, && ,^ - operands and result are always values of boolean type

● available also non lazy version |, & - both operands are always evaluated
– ternary: <condition expression>?<value1>:<value2> 
– bitwise: 
– cast: () – automatic casting of value is allowed to a type that has bigger 

range(numeric primitive) or to parents (object)
● Construct expression with defined precedence.
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Object Type
● An Object is an distinguishable entity that has:

– Identity: a uniqueness which distinguishes it from all 
other objects

– Behavior: services it provides to another objects
– State: value of attributes held by an object

● A class is an abstraction of objects with similar 
implementation
– Class is definition of set of similar objects
– Every object is an instance of one class
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Object is an instance of a class

Rectangle rectangle1 = new Rectangle(); //an object creation

Instance of class 
Rectangle is created.

Identifiers - name variables, functions, classes, and objects - anything that 
programmers need to identify and use.  Identifiers start with letter, underscore 

or dollar sign and they are 
case-sensitive. More about convention:

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

● Memery is allocated, object is created and 
reference to the instance is stored into variable.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
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Object responds to a message call
● Methods are called on object only by ‘.’ (not by -> )

rectangle1.moveDown();

Message on the instance 
could be sent.
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Reference vs. instance
● Another instance is created only by operation new.
● Reference to the same instance is passed during 

assignment.
Rectangle rectangl1 = new Rectangle(); 

rectangl1.moveDown();

        

//...

Rectangle rectangl2 = rectangl1;

Rectangle (0x01010000)

Rectangle (0x01010000)

Identifiers refers the same 
instance.

Only reference is 
assigned.
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Comparing Variables (values)
● When you compare values by using boolean 

expressions, you need to understand the nuances 
of certain data types.

● Relational operators such as == are …
– Great for comparing primitives
– Terrible for comparing Strings (and other objects)
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Comparing Primitives
● The value z is set to be the sum of x + y.
● When a boolean expression tests the equality 

between z and the sum of x + y, the result is true.

int x = 3;
int y = 2;
int z = x + y;

boolean test = (z == x + y);
System.out.println(test); // true
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Comparing Strings (true for objects)
● The value z is set to be the concatenation of x + y.
● When a boolean expression tests the equality 

between z and the concatenation of x + y, the result 
is false.

String x = "Ora";
String y = "cle";
String z = x + y;

boolean test = (z == x + y);
System.out.println(test); // false
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Why Are There Contradictory Results?
● Primitives and objects are stored differently in 

memory.
– Strings are given special treatment.
– This is discussed later in the course.

● As a result ...
– == compares the values of primitives.
– == compares the objects’ locations in memory.

● It’s much more likely that you’ll need to compare 
the content of Strings and not their locations in 
memory.
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How Should You Compare Strings?
●  You should almost never compare Strings using ==.
● Instead, compare Strings using the equals() method.

– This method is part of the String class (part of every class).
– It accepts one String argument, checks whether the contents 

of Strings are equal, and then returns a boolean.
– There is also a similar method, equalsIgnoreCase()

String x = "Ora";
String y = "cle";
String z = x + y;

boolean test = z.equals(x + y);
System.out.println(test); // true
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Variables
● Again similar to C/C++ (instance, local, static, 

methods arguments) except:
– There is no global variable – every declaration should 

be placed inside class or their methods or other blocks

● default value depends on data type and variable 
type (local, instance, static) – local variables need 
explicit definition of initial value
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Accessing Uninitialized Variables
● If variables aren’t 

initialized, they take on 
a default value.

● Not true for local 
variables!!!!!

● Java provides the 
following default values:

Data Type Default Value
boolean false
int 0
double 0.0
String null
Any Object type null
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Defining constants
● variable with modifier final – its value cannot be 

changed
private final int year;

● It is good practice to define variable as final when it 
is not changed in the future.

● Instance variable needs to be initialized in a 
constructor or by default value during declaration.

private final int year = 2024;
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Null Object reference
● Variables of object type can have a null value.
● A null object points to an empty location in memory 
● If an Object has another Object as a field (such as a String), 

its default value is null.
● What if a null object contains a field or method that needs to 

be accessed?
– This causes the program to crash!(It is possible to handle it!)
– The specific error is a NullPointerException.

public static void main(String[] args) {
  String test = null;
  System.out.println(test.length());
}
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Java Classes in Source Code
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Definition of class
● Every class have to be within own source file 

named “<class-name>.java” - following class 
Person is in file Person.java.

● Name of class should follow conventions - 
● Name should be noun, in mixed case with the 

first letter of each internal word capitalized. 
● All class definitions are inside class block ({})
● Visibility modifiers(public, private, protected) 

should be placed before every defined element.
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Structure of a Class
public class Person {
  private LocalDate birthDay;
  private int actualIq;

  public Person() {
    this(LocalDate.now());
  }
  public Person(LocalDate aBirthDay) {
    this(aBirthDay, 110);
  }
  public Person(LocalDate aBirthDay, int actualIq) {
    birthDay = aBirthDay;
    this.actualIq = actualIq;
  }
  public void run(int maxSpeed) {
    // process of running
  }
  private int getActualAge() {
    int result;
    result = Period.between(birthDay, LocalDate.now()).getYears();
    return result;
  }
}
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Class and Constructors
● Class constructor is always called when object is 

created (using keyword new)
● If constructor is not deffined, Java automatically 

create default empty constructor without 
parameters.



 

23.09.2024 Java - EFREI 27

How Are the Packages Organized?
● The vast collection of 

classes are organized 
Into a tree-like 
hierarchy, which allows 
packages to be divided 
into subpackages, like 
this:

java.awt

java.awt.font

java.awt.geom

java.io

java
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Using a Class from a Package
● To use a class from a package in your program, you 

need to specify its fully qualified name.
● For example, to use the Scanner class to read a 

keyboard input the fully qualified name for the 
Scanner class, which is defined in the java.util 
package is

java.util.Scanner

Package Class Name
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Using the Full Qualified Class Name
public static void main(String[] args) {
  int num;
  java.util.Scanner keyboard = new java.util.Scanner(System.in);
  System.out.println("Enter a number");
  num = keyboard.nextInt();
  System.out.println("The entered number is " + num);
}

● As you can see, using the fully qualified name 
creates very long names for classes.

● Long names reduce the readability of the code and 
also make coding difficult.
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Using the import Statement
● You can avoid the fully qualified class name by 

using the import statement.
● You place the import statement aboce your class 

definition. It looks like this:
import package.ClassName;

● Example:

import java.util.Scanner;
public class Numbers {
  public static void main(String[] args) {
    int num;
    Scanner keyboard = new Scanner(System.in);



 

23.09.2024 Java - EFREI 31

Accessing All classes from the java.util 
Package
● As you access more classes from the java.util 

package in your program, the number of import 
statements also increases.

● To avoid this, you can import all classes from the 
java.util package by using the * wildcard character 
in the import statement, like this:

import java.util.*;

//import all class names

//from package java.util
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Visibility modifiers
● They are used with:

– variables – both instance 
and class

– methods

– ...and also classes!

public class MyClass {

  private int a1;

  String a2;

  public double a3;

  public void method1() {
  }

  void method2() {
  }

  private void method3() {
  }
}

access public protected <none> private

The same 
class YES YES YES YES

The same 
package YES YES YES NO

successors YES YES NO NO

anywhere YES NO NO NO
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Overloading Constructors
● You can write more than one constructor in a class.

– This is known as overloading a constructor.
– A class may have an unlimited number of constructors.

● Each overloaded constructor is named the same.
● But they differ in any of the following ways:

– Number of parameters.
– Types of parameters.
– Ordering of parameters.
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Recognizing Redundancy in Constructors
● Very similar code is repeated in these constructors.
● It’s possible to minimize this redundancy.

public Rectangle(int x, int y, int width, int height) {
  this.x = x;
  this.y = y;
  this.width = width;
  this.height = height;
  this.color = Color.RED;
}

public Rectangle(int x, int y, int width, int height, Color color) {
  this.x = x;
  this.y = y;
  this.width = width;
  this.height = height;
  this.color = color;
}
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Constructors Can Call Other Constructors
● By using the this keyword, one constructor may call 

another.

public Rectangle(int x, int y, int width, int height) {
  this(x, y, width, height, Color.RED);
}

public Rectangle(int x, int y, int width, int height, 
Color color) {
  this.x = x;
  this.y = y;
  this.width = width;
  this.height = height;
  this.color = color;
}
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Overloading Methods
● Any method can be overloaded, including ...

– Constructors
– Methods that model object behaviors
– Methods that perform calculations

● All versions of an overloaded method are named the same.
● But differ in any of the following ways(in a signature of the 

method):
– Number of parameters
– Types of parameters
– Ordering of parameters

● Which version of overloaded methods is chosen during 
compilation – important when we use object types and 
inheritance.
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Methods Can Call Other Methods in the 
Same Class
● In this example, one method returns a value to the 

other.

public class Calculator {
  public double calcY(double m, double x) {
    return calcY(m, x, 0);
  }

  public double calcY(double m, double x, double b) {
    return m * x + b;
  }
}
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2nd lecture
● Basic OOP

– Interface
– Inheritance
– Method overriding

● Scanner class
● Nested (Internal) class
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Interface
● An interface is a Java construct that helps define the 

roles that an object can assume – it allows treat with 
objects of different classes uniformly 

● It is implemented by a class or extended by another 
interface.

● An interface looks like a class with abstract methods 
(no implementation), but we cannot create an instance 
of it.

● Interfaces often define collections of related methods 
without implementations.

● All public methods in a Java interface are abstract (or 
default using another methods in the interface).
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Why Use Interface
● When implementing a class from an interface we 

force it to implement all of the abstract methods.
● The interface forces separation of what a class can 

do, to how it actually does it.
● So a programmer can change how something is 

done at any point, without changing the function of 
the class.

● This facilitates the idea of polymorphism as the 
methods described in the interface will be 
implemented by all classes that implement the 
interface.
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Interface properties
● An interface:

– Can declare public constants.
– Define methods without implementation, default method, private 

methods or static method.
– Can only refer to its constants and defined methods or other accessible 

methods (static or methods of objects passed as parameter).
– Can be used with the instanceof operator.

● A class
– can implement more then one interface

● An interface method
– Each method is public even when you forget to declare it as public – 

private methods are exception.
– Is implicitly abstract but you can also use the abstract keyword.
– Each variable is public final static – even without modifier.
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Declaring Interface
● To declare a class as an interface you must replace 

the keyword class with the keyword interface.
● This will declare your interface and force all 

methods to be abstract and make the default 
access modifier public.

public interface Paintable {
  int DEFAULT_SIZE = 10;
  void paint(MyGraphics d);
}
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Default (Java 8) and private (Java 9) methods 
● These methods can not 

deal with inner structure
● Help remove  

redundancy in code 
and extend existing 
interface

public interface Movable {

  void setPosition(int x, int y);

  int getX();

  int getY();

  default void moveRight() {

    move(10, 0);

  }

  private void move(int dx, int dy) {

    setPosition(getX() + dx, getY() + dy);

  }

}
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It has to implement every 
method of specified interface.

Class declares 
implementation of specified 

interface.

Interface Implementation
public class Rectangle implements Paintable {
// ...
  @Override
  public void paint(MyGraphics d) {
    // ...
  }
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Multiple Interface implementation
● Every class could implement more then one interface.

public class Rectangle implements Paintable, Clear {
// ...

● When are implemented two or more interfaces with same 
default methods then these methods should be overridden. It 
could call one of the existing implementations.

public class MyClass implements Movable, Pickable {
  @Override
  public void moveRight() {
    Movable.super.moveRight();
  }
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Design pattern Template method
● Common logic is placed externally of class.
● Class is accessed through defined interface.
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Common behavior is 
in a separate class

Design pattern Template method in source 
code
public class Mover {
  private static final long SLEEP_TIME_IN_MS = 500;
  private static final double SPEED = 10;

  public void move(IMovable object, int toRight, int toDown) {
    double distance = Math.sqrt(toRight * toRight + toDown * toDown);
    int STEPS = (int) (distance / SPEED);
    double dx = (toRight + 0.4) / STEPS;
    double dy = (toDown + 0.4) / STEPS;
    int xPos = object.getX();
    int yPos = object.getY();
    double x = xPos + 0.4;
    double y = yPos + 0.4;

    for (int i = STEPS; i > 0; i--) {
      x = x + dx;
      y = y + dy;
      object.setPosition((int) x, (int) y);
      Utils.sleep(SLEEP_TIME_IN_MS);
    }
  }
}

public interface IMovable {
int getX();

int getY();

void setPosition(int x, int y);
}

The algorithm – behavior will be 
applicable on any object that 

implements a specific interface
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Interface extension
● If class implement the interface IMovable than it 

must also implement interface IPaintable.

public interface IMovable extends IPaintable {
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Interface extends multiple interfaces
● Interface can extend from multiple interfaces.
● When are extended two or more interfaces with 

same default methods then these methods should 
be overridden as default - it could call one of the 
existing implementations (similar to implementation) 
– or leave them as abstract.
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Class extension - inheritance
● Rectangle is specialization of 
MovableShape.

● MovableShape is generalization of 
Rectangle.

● Rectangle is subclass (successor) 
of MovableShape.

● MovableShape is superclass 
(predecesor) of Rectangle.
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Inheritance in Java
● Class could inherit only from one another class in 

Java.
● If a superclass is not specified than class inherits 

from class Object.

public class Rectangle extends MovableShape {
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Inheritance of constructors
class ParentClassType {
  private int parentValue;

  public ParentClassType() {
    parentValue = 10;
  }

  public ParentClassType(int value) {
    parentValue = value;
    System.out.println(
      "Parent constructor called");
  }
}

public class ClassType
  extends ParentClassType {

}

● Constructors are not 
inherited in successors.
new ClassType(10);

● Only default non-
parametric constructor 
is available in this case.

new ClassType();
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Implicit calling of predecessor constructor
class ParentClassType {
  private int parentValue;
  public ParentClassType() {
    System.out.println("Parent constructor 
called ");
  }
  public ParentClassType(
    int value) {
    System.out.println("Parent constructor 
called " + "with value " + value);
    parentValue = value;
  }
}

public class ClassType extends ParentClassType {
  private int value;
  public ClassType() {
    System.out.println("Child constructor called 
");
    value = 0;
  }
  public ClassType(int value) {
    System.out.println("Child constructor called 
");
    this.value = value;
  }
}

● Both constructors
new ClassType();
new ClassType(10);

● Product output:
Parent constructor called
Child constructor called

● Non-parametric 
constructor of 
predecessor 
(ParentClassType) is 
implicitly called at the 
beginning of object 
construction
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Explicit calling of predecessor constructors
class ParentClassType {
  private int parentValue;

  public ParentClassType(
   int value) {
    parentValue = value;
  }
}

public class ClassType
 extends ParentClassType {

  private int value;

  public ClassType() {
    super(7);
    value = 10;
  }

  public ClassType(
   int value) {
    super(7);
    this.value = value;
  }
}

● Explicit call of a specific 
parent constructor is by 
keyword super in child 
constructor. It has to be 
first statement in 
constructor of child.
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Instance building
class ParentClassType {
  private int parentValue;

  public ParentClassType() {
  }

  public ParentClassType(int value) {
    parentValue = value;
  }
}

public class ClassType
 extends ParentClassType {
  private int value;

  public ClassType() {
    this(10);
  }

  public ClassType(int value) {
    this(value, 7);
  }

  public ClassType(int value,
   int parentValue) {
    super(parentValue);
    this.value = value;
  }

  public ClassType(String anotherValue) {
    System.out.println(
      "Child constructor called with value "
      + anotherValue);
  }
}

● If this(…) or super() are 
used, then it should be 
first statement in 
constructor. Otherwise 
nonparametric 
constructor of 
predecessor is called.
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Disadvantage of inheritance
● It breaks encapsulation principle
● it is necessary to know details of implementation in 

super-class.
● Composition is preferred.
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Class Lifecycle - Full
public class ClazzLifeCycle {

  static {
    System.out.println("Static Initializer 1");
    statField4 = 5;
  }

  private static final int statField1 = statMethod1();
  private static int statField2 = statMethod1();
  private static int statField3 = 5;
  private static final int statField4;
  
  static {
    System.out.println("Static Initializer 2");
  }
  
  private static int statMethod1() {
    System.out.println("Static method 1");
    return 1;
  }

  {
    System.out.println("instance initializer block 1");
    field5 = 5;
  }

  private final int field1 = statMethod1();
  private final int field2 = method1();
  private int field3 = method1();
  private final int field4 = 4;
  private final int field5;
  private final int field6;
  
  {
    System.out.println("instance initializer block 2");
  }
 
  public ClazzLifeCycle() {
    field6 = 6;
    System.out.println("Constructor");
  }
  
  private int method1() {
    System.out.println("Method 1");
    return 2;
  }
  
  public static void main(String[] args) {
    new ClazzLifeCycle();
  }
  
}

https://blogs.oracle.com/javamagazine/post/
java-instance-initializer-block
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Method overriding
● Method redefined in 

successor are marked 
with annotation 
@Override.

● Overriding method 
should have same 
signature and 
compatible return type:

● same in case of a 
primitive type 

● same or a subtype in 
case of an object type

class ParentClassType {
  public void methodA() {
    // some implementation
    // of methodA
  }
  public void methodB() {
  }
}

public class ClassType
 extends ParentClassType {

  @Override
  public void methodA() {
    // statements before
    super.methodA();
    // statements after
  }
  public void methodC() {
  }
}
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Casting object variables, operator instanceof
● Variable of object type is implicitly casted to a supertype – 

predecessor or type of interface implemented by the given 
type.

● Variable of a object type could be explicitly casted to a its 
subtype: 
– An interface implemented by object
– A class that is a super class or a class of the object.

● Casting to a unfit type fails during runtime – 
ClassCastException is thrown.

● Binary operator instanceof is used for testing whether object 
is given type

    ParentClassType val = new ClassType();
    ClassType val2 = (ClassType)val;
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Nested (Internal) class
● Global – could be qualified with name/instance of 

outer class. 
– class  – static internal class
– instance – inner classes.

● Local – defined in block of code
– Named,
– Anonymous.
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Static internal class
● A static internal class can only access static attributes 

of its containing (external)class.
● Internal class that does not need an object of the 

enclosing class to exist.
● Useful class for hiding layout details
● In another class, one can instantiate an internal class 

object, provided you use the visibility qualifier which is 
the name of the enclosing (external) class in order to 
access the internal class.

● The name of the internal class is 
ExternalClass.InternalClass
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Static internal class
public interface IMovable {
  
  static public class MAdapter implements IMovable {
    // class implementation
  }

  public static void main(String[] args) {
    IMovable.MAdapter adapte = 
      new IMovable.MAdapter();
  }
}
● Class nested type is qualified with name of outer 

type – if is needed.
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Inner classes (non-static internal class)
● An internal Class instance needs an instance of the 

enclosing (external) class to exist.
● The internal class can access the fields of the 

object.
● During construction, an internal class must be 

constructed by an object of the enclosing class.
● It is forbidden to declare static members inside an 

inner-class, but it is possible to declare it at the 
level of its enclosing class.
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Instance of inner 
class contains 
reference to an 

instance of outer 
class.

Inner classes (non-static internal class)
public class OutterClass {
  private int outerVal;

  public class InnerClass {
    private int innerVal;

    public void setVal(int val) {
      // accessing feature of outer class
      OutterClass.this.outerVal = val;
      
      // accessing feature
      // of current class
      this.innerVal = val + 1;
    }
  }

  public InnerClass getInstance() {
    return new InnerClass();
  }
}

public static void main(
  String[] args) {
  OutterClass val =
   new OutterClass();
  OutterClass.InnerClass nextVal 
   = val.new InnerClass(); 
}

Instance of inner class could be in an 
instance method of outer class or with 
instance of outer class qualification.

Instance of inner class could be in an 
instance method of outer class or with 
instance of outer class qualification.
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Anonymous local class - 
“block of code” object that 

can be evaluated when 
needed.

Name local 
class.

Local classes
public void moveDown() {
  class MThread extends Thread {
    @Override
    public void run() {
      Baloon.this.run();
    }
  }
  new MThread().start();
}

public void moveUp() {
  Runnable run = new Runnable() {
    @Override
    public void run() {
      Baloon.this.run();
    }
  };
  new Thread(run).start();
}

● When a class definition 
is local to a block, it 
may access only 
attributes and constants
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Anonymous class
● An anonymous class is a class that does not have a name. 
● Since an anonymous class has no name, it is therefore not possible to 

define a constructor for it. 
● An anonymous class is instantiated immediately in its declaration according 

to a specific syntax:

      new <class identifier>(<list of construction parameters>) {
        <body of the class>
      }

● An anonymous class is useful when a class is needed for single use, it is 
defined and instantiated where it is to be used. 

● This also applies to interfaces using the following syntax: 

      Interface c = new Interface() {
        // implementation of Interface methods
      }; 
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Supertype Class Object
● Root node in a hierarchy of all Java classes – 

supertype.
● Contains fundamental methods provided by all 

object:
– toString
– equals
– hashCode
– getClass
– notify, notifyAll, wait
– ...
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Overriding of equals method
public class Fraction {
  final private int numerator;
  final private int denominator;

  public Fraction(int numerator, int denominator) {
    this.numerator = numerator;
    this.denominator = denominator;
  }

  @Override
  public boolean equals(Object obj) {
    if (obj instanceof Fraction) {
      Fraction other = (Fraction) obj;
      if (denominator == other.denominator
          && numerator == other.numerator)
        return true;
    }
    return false;
  }
}
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Overriding of toString method
public class Fraction {
  final private int numerator;
  final private int denominator;

  public Fraction(int numerator, int denominator) {
    this.numerator = numerator;
    this.denominator = denominator;
  }
  @Override
  public String toString() {
    return numerator + "/" + denominator;
  }
}
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Keyword static
● Used for variable – value is defined for given class 

instead of an object

public class Mover {
  private static final long SLEEP_TIME_IN_MILI_SECONDS = 100;

● Used for method – method is called on given class 
instead of an object (e.g. public)

public class URLExample {
  public static void main(String[] args) {
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Singleton classes
public class PrinterDriver {
// Static variable reference of driverInstance
// of type PrinterDriver
  private static PrinterDriver driverInstance
    = null;

  private String port;

// Private constructor restricted to
// this class itself, ensure only
// this class can create instance
  private PrinterDriver() {
    port = detectPort();
  }

// Static method to create instance
// of PrinterDriver class
  public static PrinterDriver getInstance() {
    if (driverInstance == null)
      driverInstance = new PrinterDriver();
    return driverInstance;
  }
}

public static void main(
 String[] args) {
// Instantiating PrinterDriver
// class with variable x
  PrinterDriver x =
   PrinterDriver.getInstance();

// Instantiating PrinterDriver
// class with variable y
  PrinterDriver y =
   PrinterDriver.getInstance();
    
  System.out.println(x == y); //true
}
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Abstract Classes
● An abstract method has no body; it has a signature 

definition followed by a semicolon, e.g.
public abstract void method();

● Any class with an abstract method must be abstract – it 
needs keyword abstract before class.

● An abstract class cannot be instantiated.
● A subclass of an abstract class can be instantiated if it 

implements each of the abstract methods.
● This concept is defined a common predecesor for 

classes that share inner structure or implementation.
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Virtual method
● All methods(functions) except final, private and 

static are virtual.
● Virtual machine (Java Hotspot) could make virtual 

method non-virtual or even inline during 
optimalization and conversion into a native code but 
prommer do not need take care about.
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Complete meaning of a final modifier
● used with:

– variable – its value cannot be changed

private final int year;

– method – cannot be overridden

public final void someMethod() {/*implemntation*/}

● class – cannot be subclassed (be parent to another 
class)

public final class MyDate {
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Exceptions
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Handling of exceptional situations in Java
● Java uses system of exceptions as many other 

programming languages:
– C++
– C#
– Python
– PHP
– Ruby
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Technics to indicate that an error occurred
● diagnostic return value

– Test the return value.
● Attempt recovery on error.
● Avoid program failure.

– Ignore the return value.
● Cannot be prevented.
● Likely to lead to program failure.

● exception throwing (preferred)
– Handle exception
– Pass exception to another block of code where it should 

be handled
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Exception-throwing principles
● Directly implemented in a language
● No ‘special’ return value needed.
● The normal flow-of-control is interrupted.
● Special recovery actions are supposed.
● Thrown exception cannot be ignored in the client 

object
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How is an exception thrown
● An object representing an exception is constructed:

new ExceptionType("...")
● The keyword “throw” is used to throw the exception 

object:
throw new ExceptionType("a error message");

● If the method throws an exception outside, then it is 
specified in Javadoc documentation:

@throws ExceptionType reason description
● An exception should be also thrown by Virtual 

machine internally (division by zero value)
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Exceptions
● Its throwing indicates an exceptional situation,
● any instance of class inherited from Throwable
● important examples: IllegalArgumetnException, 

IllegalStateException, NullPointerException, 
IndexOutOfBoundException, RuntimeException

    // immediate exception throwing
    throw new IllegalArgumentException();

    // exception could be throwed later
    IllegalArgumentException e = new IllegalArgumentException();
    throw e;
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Overview of an exception class hierarchy

Throwable

Error Exception

RuntimeExceptionMyCheckedException

MyUncheckedException

Standard library classes 

User defined classes
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Main exception categories
● Checked exceptions

– Subclass of Exception
– Used for anticipated failures.
– Where recovery may be possible.
– Should be handled in a method when raises or the 

method should be marked
● Unchecked exceptions

– Subclass of RuntimeException
– Used for unanticipated failures.
– can raise uncontrollably from a method
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What exceptions does Java throw to us
● Error – InternalError, OutOfMemoryError, 

VirtualMachineError, StackOverflowError.
● Exception

– unchecked- RuntimeException and its successor
● ArithmeticException, IllegalArgumentException, 

UnsuportedOperationException, IllegalStateException,…

– checked – other successor of Exception
● ClassNotFoundException, DataFormatException, 

InterruptedException, IOException.
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The effect of an exception
● The throwing method finishes exceptionally.
● The throwing method returns no value.
● Control does not return after the point of method 

call.
● A client must/may handle an exception.
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Unchecked exceptions
● Compiler doesn’t check these exceptions 
● It causes program termination if not handled.
● NotSupportedException is a typical example.
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Example of an unchecked exception
  public void setDimension(int width, int height) {
    if ((width < 0) || (height < 0)) {
      throw new IllegalArgumentException(
          "Dimension should be greater or equal to 0: 
width=" + width + ", height = " + height);
    }
    erase();
    this.width = width;
    this.height = height;
    paint();
  }
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Exception handling
● Checked exceptions are perceived to be caught 

and eventually handled.
● The compiler ensures that their use is strictly 

controlled.
● Used carefully, failures may be recoverable.
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Example of block with an exception
try {
  // critical section
} catch (IllegalArgumentException e) {
  // handle exception o type IllegalArgumentException
} catch (NullPointerException | IOException e) {
  // handle exception o type NullPointerException and 
IOException
} catch (Throwable e) {
  // handle every exception – object o type Throwable
} finally {
  // this block is always performed when the critical section 
is leaved
}
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Throws clause
● Methods that can propagate a checked exception must be 

marked with throws clause:
/**
 *
 * @param fileName
 * @return
 * @throws IOException
 */
public String filterInputFile(String fileName) throws IOException {
  InputStream is = new FileInputStream(fileName);
  StringBuilder sb = new StringBuilder();
  int chars;
  byte[] buffer = new byte[1024];
  while (-1 != (chars = is.read(buffer))) {
    sb.append(new String(buffer, 0, chars));
  }
  is.close();
  return sb.toString();
}

Every checked exception should be 
handled in the method or the method 

specifies exception throwing.
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try statement
● The source code catching an exception must 

surround the call with the try statement:
    try {
      // this section contains commands that are
      // source of exception throwing
    } catch (Exception e) {
      // caught exception is handled here,
      // it is accessible as variable with name e
    }
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1. Exception thrown from this method

2. Control moves here

try statement

try {
  exceptionalFilter.filterInputFile(fileName);
  //some following code
} catch(IOException e) {
    System.out.println("Unable to process file  "
     + fileName + "exception thrown: "
     + e.getMessage());
}
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Catching multiple exceptions
try {
  // block of code that should throw exceptions
  FileInputStream fis = new FileInputStream("input.txt");
  // file processing
} catch (EOFException e) {
  // Take action on an end-of-file exception.
} catch (FileNotFoundException e) {
  // Take action on a file-not-found exception.
}
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Handling different exceptions by same code 
block
try {
  // block of code that should throw exceptions
  FileInputStream fis = new FileInputStream("input.txt");
  // file processing
} catch (EOFException | FileNotFoundException e) {
  // Take action on an end-of-file and
  // file-not-found exception.
}
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Finally clause
● The finally clause is executed even if a return 

statement is executed in the try or catch clauses.
● An uncaught or propagated exception still exits via 

the finally clause.

try {
  //Protect one or more statements here.
} catch (Exception e) {
  //Report and recover from the exception here.
} finally {
  //Perform any actions here common to whether or not
  //an exception is thrown.
}
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Exception conversion
● Used when we need propagate a different exception 

type from a method
● Often used to the conversion into the 

RuntimeException or another unchecked exception
● Add useful information what's wrong
● Good practices is wrap original exception (use it as 

constructor parameter) 

  try {
    // ...
  } catch (IOException e) {
    throw new MyException(e);
  } 
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Features of exceptions
● methods:

– getMessage
– toString
– printStackTrace
– printStackTrace(PrintStream)
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Defining new exception types
● Extend RuntimeException for an unchecked or 

Exception for a checked exception.
● We use our exception type to improve diagnostic 

information.
– It can contain additional reporting and/or recovery 

information.
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Defining new exception types in an action
public class NotConnectedException extends Exception {

  private String host;

  public NotConnectedException(String address) {
    super("Host: " + address + " is not accesible");
    host = address;
  }

  public String getHost() {
    return host;
  }

  @Override
  public String toString() {
    return "NotConnectedException [host=" + host
     + ", getMessage()=" + getMessage() + "]";
  }
}
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Error recovery
● Clients should take description of error notifications.

– After method calling, it checks the method return values.
– Exceptions should not be ‘ignored’.

● Client code usually attempts to recover.
– It is often implemented in a loop.
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Attempting recovery
// Try to connect to server.
boolean successful = false;
int attempts = 0;
do {
    try {
        server.connect();
        successful = true;
    }
    catch(TimeoutException e) {
        System.out.println("Unable connect to " + server);
        attempts++;
        if(attempts < MAX_ATTEMPTS) {
            server = getAlternativeServer(server);
        }
    }
} while(!successful && attempts < MAX_ATTEMPTS);
if(!successful) {
    //Report the probslem and give up;
}
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Enhanced syntax of “try” - motivation
BufferedReader reader = null;
try {
  reader = new BufferedReader(new FileReader("filename"));
  reader.lines();
} catch (FileNotFoundException e) {
  // the specified file could not be found
} catch (IOException e) {
  // something went wrong with reading
} finally {
  try {
    if (reader != null)
      reader.close();
  } catch (IOException e) {
    // something went wrong with closing
  }
}
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Enhanced syntax of “try”
try (BufferedReader reader = 
 new BufferedReader(new FileReader("filename"))) {
  String line = null;
  while (null != (line = reader.readLine())) {
    // do something with line
  }
} catch (FileNotFoundException e) {
  // the specified file could not be found
} catch (IOException e) {
  // something went wrong with reading
}
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Enhanced syntax of “try” - usage
● It can be used on any class that implements 

interface AutoCloseable

public interface AutoCloseable {
    void close() throws Exception;
}
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4th lecture – Java Collection Framework
● General Architecture
● Interfaces
● Implementations
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Collections in Java
● Collection (container) - objects that groups 

multiple elements into single unit.
● Collections Framework:

– Interfaces – abstract data types representing collections
– Implementations - concrete implementations of the 

interfaces – general, legacy, special-purpose, 
concurrent, wrapper, abstract

– Algorithms - methods that perform useful computations 
(searching and sorting)
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Collection types hierarchy
● Extended from:

– java.util.Collection
– java.util.Map

● java.util.Map – not true collection but offers 
collection-like manipulation



 

23.09.2024 Java - EFREI 114

java.util.Collection - hierarchy

Deque
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java.util.Collection
● base interface
● used to define a group of objects – allow manipulation, 

uniqueness and ordering is not defined for the interface 
● methods:

– add(E), addAll(Collection<E>), remove(E), 
removeAll(Collection<E>), clear(), retainAll(Collection<E>) – 
add/remove elements

– size():int, isEmpty():boolean – check number of elements
– contains (Object):boolean – check existence of element
– iterator() - returns new iterator – enable browsing
– toArray() 



 

23.09.2024 Java - EFREI 116

java.util.List
● ordered(defined index for every element) collection 

that may contain duplicate elements
● methods:

– <extends Collection>
– add(int,E), set(int,E), addAll(int,Collection<E>), 

get(int):E, remove(int):E – add/remove elements 
to/from given position

– indexOf(Object):int, lastIndexOf(Object):int – find 
position of given object

– listIterator():ListIterator – return iterator that allows 
forward/backward browsing
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java.util.Set
● collection of elements that does not contain 

duplicates
● methods:

– <extends Collection>
– add(E):boolean, addAll(Collection<E>), 

contains(Object):boolean – added constraints to 
inherited methods
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java.util.SortedSet
● set of elements where is defined ordering (index for 

items are not defined)
● methods:

– <extends Set>
– comparator(): Comparator<E> 
– subSet(E, E): SortedSet<E>
– headSet(E): SortedSet<E>
– tailSet(E): SortedSet<E>
– first(): E
– last(): E
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java.util.Queue
● Queue is a list of elements with a first in first out 

ordering.
● When you enqueue an element, it adds it to the end of 

the list.
● When you dequeue an element, it returns the element 

at the front of the list and removes that element from 
the list.

● methods:
– <extends Collection>
– add(E), offer(E) – enqueue
– remove(): E, poll(): E – dequeue
– element():E, peek():E – retrieves but not remove 
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java.util.Deque
● double ended queue,
● enables enqueue to the start and dequeue from the 

end,
● provides stack functionality
● methods:

– <extends Queue>
– addLast/addFirst; getLast/getFirst – manipulation with 

end or beginning
– push(E), pop(): E
– descendingIterator(): Iterator<E>
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Choose type of collection
● choose more general type.
● Iterable – only browsing (.. .and remove by iterator).
● others – modification (add, remove), provide size 

information, check existence of elements.
Ordered Indexed Unique FIFO LIFO

Collection

List Y Y

Queue Y Y

Deque Y Y Y

Set Y

OrderdSet Y Y

Map Y – by key Y – only key
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java.util.Map
● is a collection that links a key to a value.
● cannot contains duplicates of key – each key can 

only exists once and can only link to a single value.
● for key and value could be used any type

Map<KeyType, ValueType> myMap;
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java.util.Map - example
● map String → Color
Map<String, Color> fruit2color = new HashMap<>();

● insert pairs
    fruit2color.put("Apple", Color.RED);
    fruit2color.put("Banana", Color.YELLOW);
    fruit2color.put("Mellone", Color.GREEN);

● get value for a specific key
    Color colorOfBanana = fruit2color.get("Banana");
    Color colorOfApple = fruit2color.get("Apple");
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java.util.Map – another methods
● containsKey(Object): boolean
● containsValue(Object): boolean 
● keySet(): Set<K>
● values(): Collection<V>
● entrySet: Set<Entry<K,V>>
● remove(Object): V
● size(): int
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Collection Implementations
Interface Hash Table

Resizable 
Array

Balanced 
Tree

Linked List
Hash Table + 
Linked List

Set HashSet TreeSet LinkedHashSet

Collection HashSet ArrayList TreeSet LinkedList LinkedHashSet

List ArrayList LinkedList

Queue ArrayDeque LinkedList

Deque ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap
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List implementation: ArrayList vs LinkedList
● Definition:

– ArrayList: A resizable array 
implementation of the List interface.

– LinkedList: A doubly-linked list 
implementation of the List and Deque 
interfaces.

● Performance:
– ArrayList has a faster average time 

for accessing elements as it uses an 
index-based system.

– LinkedList has a faster average time 
for adding and removing elements.

● Memory Usage:
– ArrayList uses less memory as it 

holds only data.
– LinkedList uses more memory as 

it holds data and two references 
for neighbor nodes.

● Use Case:
– Use ArrayList when you have a 

fixed-size list, and you know the 
size won't change.

– Use LinkedList when you have to 
change the list size frequently by 
adding or removing elements.

● Syntax:
     List<String> arrayList = 
       new ArrayList<>();
     List<String> linkedList = 
       new LinkedList<>();null prev

data
next

prev

data
next

prev

data
next

prev

data
next null
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Map implementation: HashMap vs TreeMap
● Definition:

– HashMap: Part of Java's collection since Java 1.2, provides 
the basic implementation of Map interface by hash table

– TreeMap: A Red-Black tree based NavigableMap 
implementation, sorted according to the natural ordering of its 
keys.

● Performance:
– HashMap generally offers constant time performance for the 

basic operations — get and put.

– TreeMap guarantees log(n) time cost for the containsKey, get, 
put, and remove operations.

● Ordering:
– HashMap does not maintain any order of its keys.

– TreeMap maintains ascending order of its keys.
● Null Keys and Values:

– HashMap allows one null key and multiple null values.

– TreeMap does not allow null keys but may contain multiple null 
values.

● Use Case:
– Use HashMap when you do not need sorted keys, and you 

need better performance.

– Use TreeMap when you need sorted keys, and you can 
compromise on performance for ordering.

● Syntax:
    Map<String, String> hashMap = new HashMap<>();

    Map<String, String> treeMap = new TreeMap<>();
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Set implementation: HashSet, TreeSet
● It is implemented by HashMap / TreeMap
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Requirements of using hash tables
● classes of objects (value objects) stored in hash 

tables:
– objects stored in HashSet
– keys used with HashMap

● should correctly override:
– hashCode
– equals (important also for comparison).

● value object – instances where their identity is not 
important but their state – String, Date, Money, 
Fraction, ComplexNumber… 

●
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hashCode method
● provide Hash Function 

for given object
● for two objects 

representing the same 
value must return same 
result

● for two objects 
representing different 
values should return 
different results – 
collisions are sometimes 
necessary

●
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equals method
● used for distinguishing 

between object targeting 
the same bucket 

● for two objects representing 
the same value must return 
true

● for two objects representing 
different values must return 
false

● used also in implementation 
of method contains 
(declared in Collection) 

●
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