

2

05/04/22 TSK 2

Testing Software Systems

David Ježek

VŠB – Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

3TSK05/04/22

History

The First
"Computer Bug"
● Moth found

trapped between
points at Relay #
70, Panel F, of
the Mark II

The First "Computer Bug" Moth found trapped
between points at Relay # 70, Panel F, of the Mark II
Aiken Relay Calculator while it was being tested at
Harvard University, 9 September 1945. The
operators affixed the moth to the computer log, with
the entry: "First actual case of bug being found".
They put out the word that they had "debugged" the
machine, thus introducing the term "debugging a
computer program". In 1988, the log, with the moth
still taped by the entry, was in the Naval Surface
Warfare Center Computer Museum at Dahlgren,
Virginia.

While Grace Hopper was working on the Harvard Mark II Computer at
Harvard University, her associates discovered a moth stuck in a relay and thereby
impeding operation, whereupon she remarked that they were "debugging" the system.
Though the term computer bug cannot be definitively attributed to Admiral Hopper, she
did bring the term into popularity. The remains of the moth can be found in the group's
log book at the Smithsonian Institution's National Museum of American History in
Washington, D.C..[1]

3

http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Harvard_Mark_II
http://en.wikipedia.org/wiki/Harvard_University
http://en.wikipedia.org/wiki/Moth
http://en.wikipedia.org/wiki/Relay
http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Smithsonian_Institution
http://en.wikipedia.org/wiki/National_Museum_of_American_History
http://en.wikipedia.org/wiki/Washington,_D.C.

4

4TSK05/04/22

1-Principle of Testing
● What is software testing
● Testing terminology
● Why testing is necessary
● Fundamental test process
● Re-testing and regression testing
● Expected results
● Prioritisation of tests

5

5TSK05/04/22

1.1-What is Software Testing
What people usually
think:

● Second class carrier
option

● Verification of a running
program

● Manual testing only
● Boring routine tasks
●

Professional approach:
● Respected discipline in

software development
● Reviews, code inspections,

static analysis, etc.
● Using test tools, test

automation
● Analysis, design,

programming test scripts,
evaluation of results, etc.

●

 Testing in the past was recognized as a second-class careen option among software
professionals. But the demand for qualified testers is growing and understanding of testing
as the separate discipline grows as well. Testing forms now the essential activity in the
software engineering and professional testers are respected at least as well as professional
developers.

 Testing doesn’t mean only the verification of a running program, it includes also testing
requirements, review of documentation, code inspections, static analysis, etc.

 Testing doesn’t mean only manual testing, it includes also tools for testing requirements,
static analysis tools, test-running tools, performance test tools, dynamic analysis tools,
debugging tools, test management tools, etc. Effective usage of these tools require
professionals with analytical, programming and other skills.

 Testing doesn’t mean boring routine tasks but demanding creative tasks that include
requirement analysis, test case and test scenario design, programming test scripts,
evaluation of test results, etc.

6

6TSK05/04/22

1.1-What is Software Testing (2)
A) Testing is the demonstration that errors are NOT preset in the program?
B) Testing shows that the program performs its intended functions correctly?
C) Testing is the process of demonstrating that a program does what is supposed to
do?
D) Testing is the process of executing a program with the intent of finding errors.

Testing vs. Quality Assurance
● Testing - The process consisting of all lifecycle activities, both static and dynamic, concerned with

planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for purpose
and to detect defects. (ISTQB)

● Quality Assurance - Activities focused on providing confidence that quality requirements will be
fulfilled. (ISTQB)

 Demonstration that errors are NOT present:
If our goal is to demonstrate that a program has no errors, then we will subconsciously be

steered toward this goal; that is, we tend to select test data that have a low probability of
causing the program to fail. On the other hand, if our goal is to demonstrate that a program
has errors, our test data will have a higher probability of finding errors. The latter approach
will add more value to the program than the former.

 Testing shows that the program performs its intended functions correctly:

 Testing is the process of demonstrating that a program does what is supposed to do:
Programs that do what they are supposed to do still can contain errors. That is, an error is

clearly present if a program does not do what it is supposed to do, but errors are also
present if a program does what it is not supposed to do.

Program testing is more properly viewed as the destructive process of trying to find the errors
(whose presence is assumed) in a program. A successful test case is one that furthers
progress in this direction by causing the program to fail. Of course, you eventually want to
use program testing to establish some degree of confidence that a program does what it is
supposed to do and does not do what it is not supposed to do, but this purpose is best
achieved by a diligent exploration for errors.

7

7TSK05/04/22

1.1-What is Software Testing (2)
A) Testing is the demonstration that errors are NOT preset in the program?
B) Testing shows that the program performs its intended functions correctly?
C) Testing is the process of demonstrating that a program does what is supposed to
do?
D) Testing is the process of executing a program with the intent of finding errors.

Testing vs. Quality Assurance
● Testing - The process consisting of all lifecycle activities, both static and dynamic, concerned with

planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for purpose
and to detect defects. (ISTQB)

● Quality Assurance - Activities focused on providing confidence that quality requirements will be
fulfilled. (ISTQB)

Testing is the process of executing a program
with the intent of finding errors.

Glenford J. Myers

 Demonstration that errors are NOT present:
If our goal is to demonstrate that a program has no errors, then we will subconsciously be

steered toward this goal; that is, we tend to select test data that have a low probability of
causing the program to fail. On the other hand, if our goal is to demonstrate that a program
has errors, our test data will have a higher probability of finding errors. The latter approach
will add more value to the program than the former.

 Testing shows that the program performs its intended functions correctly:

 Testing is the process of demonstrating that a program does what is supposed to do:
Programs that do what they are supposed to do still can contain errors. That is, an error is

clearly present if a program does not do what it is supposed to do, but errors are also
present if a program does what it is not supposed to do.

Program testing is more properly viewed as the destructive process of trying to find the errors
(whose presence is assumed) in a program. A successful test case is one that furthers
progress in this direction by causing the program to fail. Of course, you eventually want to
use program testing to establish some degree of confidence that a program does what it is
supposed to do and does not do what it is not supposed to do, but this purpose is best
achieved by a diligent exploration for errors.

8

8TSK05/04/22

What ca be tested
● From testing user requirements to monitoring the

system in operation
● From testing the functionality to checking all other

aspects of software:
– Documents (specifications)
– Design (model)
– Code
– Code+platform
– Production, acceptance
– Usage, business process

 From testing user requirements to monitoring the system in operation:
Testing is not done only once (e.g. with the first version of the product), but it is an continuous

activity throughout product’s entire lifecycle (from user requirements, through system design
and implementation, to monitoring the system in operation and its maintenance). Testing it
most effective in early phases of the development.

 From testing the functionality to checking all other aspects of software:
Testing is not focusing only to the system functionality but to all other attributes of the software:
 Documents (specifications)
 Design (model)
 Code
 Code+platform
 Production, acceptance
 Usage, business process
 Verification:
Its goal is to answer the question: “Have we done the system correctly?” Verification uses a

previous development step (i.e. functional specification prior to coding) as the reference. A
piece of code that fulfils its specification is verified.

 Validation:
Its goal is to check whether correct product has been built, i.e. whether it fulfils the customers

needs. Thus, any step in the development process can be validated against user
requirements.

The goal of testing may be verification or validation.

9

9TSK05/04/22

Realities in Software Testing
● Testing can show the presence of errors but cannot

show the absence of errors (Dijkstra)
● All defects can not be found
● Testing does not create quality software or remove

defects
● Building without faults means – among other – testing

very early
● Perfect development process is impossible, except in

theory
● Perfect requirements: cognitive impossibility

 Testing can show the presence of errors but cannot show the absence of errors:
There are still some errors never found in the software.
 All defects can not be found:
Even for simple programs/applications, the number of possible input combination or possible

paths through the program is so large that all cannot be checked.
 Testing does not create quality software or remove defects:
It is the responsibility of development.
 Building without faults means – among other – testing very early:
A popular “argument” against testing is: “We should build correctly from the very beginning

instead of looking for faults when all is ready”. Sure. But “correctly from the very beginning”
means among other things thorough checking very early and all the time in the
development process. Inspections of requirements specifications and design documents
may to some extent replace the system test and acceptance test, but that does not mean
“development without test”!

 Perfect development process is impossible, except in theory:
In practice, the way from concept to ready product cannot be guaranteed to be error-free

(inaccurate requirements specifications, cognitive errors, organizational errors). Therefore
the need to test the final product, regardless how perfect development is.

 Perfect requirements: cognitive impossibility:
Validation of requirements – are they what we really want? – is a kind of testing. But it is often

impossible to define all requirements correctly in advance. Testing of the first version of a
product is often a kind of additional requirements engineering: “is it what is really needed?

10

10TSK05/04/22

1.2-Testing Terminology
● Not generally accepted set of terms
● ISEB follows British Standards BS 7925-1 and BS 7925-2

– http://www.testingstandards.co.uk/bs_7925-1.htm
– http://www.testingstandards.co.uk/bs_7925-2.htm

● ISO/IEC/IEEE 29119 Software Testing (1-5)
● Replace:

– IEEE 829 Test Documentation
– IEEE 1008 Unit Testing
– BS 7925-1 Vocabulary of Terms in Software Testing
– BS 7925-2 Software Component Testing Standard

● ISTQB Glossary https://www.istqb.org/downloads/glossary.html

Not generally accepted set of terms:
Different experts, tools vendors, companies,

and countries use different terminologies
(sometimes very exotic). These problems
arise very obviously, e.g. after merge or
acquisition of more companies.

ISEB follows British Standards BS 7925-1
and BS 7925-2:

BS are owned by British Standards Institution
(BSI). These two standards were developed
by British Computer Society (BCS), Specialist
Interest Group In Software Testing (SIGIST)
in 1998.

Other standards in software testing provide
partial terminologies:

QA standards ISO series 9000, 10000,
12000, 15000

CMMI
Industry specific standards
Testing standards BS 7925-1, BS 7925-2,

IEEE 829, IEEE 1008, IEEE 1012

https://www.istqb.org/downloads/glossary.html

11

11TSK05/04/22

Why Terminology?
● Poor communication
● Example: component – module – unit – basic – design –

developer,... testing
● There is no ”good” and ”bad” terminology, only

undefined and defined
● Difficult to describe processes
● Difficult to describe status

Poor communication:
If every test manager puts different meaning to

each term, he/she spends lot of time on
defining what is what.

Example: component – module – unit – basic
– design – developer, ... testing:

Not only names differ but their precise meaning
as well, which makes mapping difficult. Still
worse if the same word means two
completely different things, like “component”
(either module, unit or “an independent
component for component-based
development”).

There is no ”good” and ”bad” terminology,
only undefined and defined:

Some people readily argue about the “right”
names for things but almost any defined,
standardized and generally accepted
terminology is almost always better than a
“better” but not standardized terminology.

Difficult to describe processes:
Without adopted and accepted test

terminology, process definition is difficult. The
sentence like “component integration testing
is followed by system testing” means nothing
unless “component integration testing” and
“system testing” are defined.

Difficult to describe status:
“This product has passed Internal Acceptance

Test and Final Quality Checkpoint” – hard to
tell whether it is a good or bad product
without knowing what these terms mean.

12

12TSK05/04/22

1.3-Why Testing is Necessary
Depreciation of Software Testing

● Due to software errors the U.S. business loss is ~ $60 billions.
● 1/3 of software errors can be avoided by better testing

process
● National Institute of Standarts and Technology 2002
● Testing process in most software companies is on lowest

levels from CMMI model (usually 1 or 2)
● Software Enginering Institute CMU of Pitsburg
● All current software development models include software

testing as an essential part
●

●

14

14TSK05/04/22

money

money

Development

Testing

products

1.3-Why Testing is Necessary (2)

 In Development, “money” (investment) result in products, that can be sold any yield
revenue.

 In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

 Testing produces three kind of outputs:
 risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
 bug information: input to development to enable them to remove those bugs (and, possibly,

to the customer to let them avoid the bugs)
 process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

15

15TSK05/04/22

money

money

Development

Testing

products

risk information

bug information

process information

1.3-Why Testing is Necessary (2)

 In Development, “money” (investment) result in products, that can be sold any yield
revenue.

 In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

 Testing produces three kind of outputs:
 risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
 bug information: input to development to enable them to remove those bugs (and, possibly,

to the customer to let them avoid the bugs)
 process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

16

16TSK05/04/22
16

0.1 x

1 x

10 x

100 x

Requirements Design Testing MaintenanceCoding

Cost of finding and
correcting fault

Product Lifecycle Phase

1.3-Why Testing is Necessary (3)

The cost of discovering, localizing, correcting and removing a fault is often hundreds or
thousands of times higher in ready product than it is in the early states of development.

The cost of re-testing, regression testing, and updating or replacing the faulty software multiply
very quickly after release (especially in mass production).

Test is most effective in early phases:
Contrary to traditional approach, test need not wait until development is ready. Test – reviews,

inspections and other verification techniques for documentation and models - is actually the
most effective in very early stages of any development process.

17

17TSK05/04/22

Testing and Quality
● Test measures and supports quality
● Testing is a part of Quality Assurance
● Many qualities:

– Functional quality (traditional focus)
– Non-functional quality (e.g. Performance)
– Quality attributes (maintainability, reusability, testability, ...)
– Usability for all stackeholders (vendor, retail merchant, operator,

end-user, ...)
● Test techniques: tools to measure quality efficiently and

effectively
● Test management: how to organize this

 Test measures and supports quality:
Test has two goals: to measure and visualize (the level of quality becomes known) quality and

to support achieving quality by identifying product and process faults.
 Testing is a part of Quality Assurance:
The goal is to achieve planned and known quality, not to test. If it could be achieved without

testing, test would disappear. The goal for testing is therefore to minimize the volume of
testing without compromising quality or to achieve as good (reliable) quality measurement
as possible with given resources and time, not to “test as much as possible”.

 Many qualities:
 Functional quality: the system does what the user required.
 Non-functional quality: these aspects (e.g. performance) are growing in importance. Cannot

be reliably engineered without extensive testing.
 Quality attributes: there are other attributes (e.g. maintainability, reusability, testability, …)

that must be check by testing too.
 Usability for all stakeholders: “Usability” is not only important but multidimensional. What is

comfortable for the operation may be uncomfortable for the end-user. Therefore growing
need for measuring and quality assessment in this area.

 Test techniques: tools and methods to measure quality efficiently and effectively:
Test theory contains knowledge how to test efficiently (so that desired levels of quality and test

reliability are achieved) and effectively (so that it is done as cheaply as possible).
 Test management: how to organize this:
Test management has much in common with general project and process management.

18

18TSK05/04/22

Complexity
● Software – and its environment – are too complex to

exhaustively test their behavior
● Software can be embedded
● Software has human users
● Software is part of the organization’s workflow

 Software is too complex to exhaustively test its behaviour:
Even for relatively simple programs/applications, the number of possible input combinations or

possible paths through the program is so large that all cannot be checked. Then testing is
necessary as a king of art of predicting under uncertainty, choosing the few tests we can
afford to run that give us best confidence in program’s future correct behavior.

 Software environment is too complex to test it exhaustively:
A simple piece of code can be run on different PC-machines, OS (and their versions), with

different printers, on different browsers. The number of combination easily becomes huge.
 Software can be embedded:
The testing products means testing SW, HW and “mechanics” around. Again, complexity. Again,

methods required to make the best of this mess.
 Software has often human users:
For most applications, the behavior (and needs) of the users cannot be fully predicted by the

engineering means only. Testing (acceptance, usability) helps to tackle this aspect.
 Software is part of the organization’s workflow:
Engineering considerations are not the only important considerations for many software

products. Any useful knowledge about product quality is a combination of engineering
quality and the product’s quality contribution during organizational or marketing usage.

19

19TSK05/04/22

How much testing?
● This is a risk-based, business decision

– Test completion criteria
– Test prioritization criteria
– Decision strategy for the delivery
– Test manager presents products quality

● Test is never ready
● The answer is seldom ”more testing” but rather ”better testing”, see the

completion criteria:
– All test cases executed
– All test cases passed
– No unresolved (serious) incident reports
– Pre-defined coverage achieved
– Required reliability (MTBF) achieved
– Estimated number of remaining faults low enough

 This is a risk-based, business decision:
 Test completion criteria – must be specified in advance in test plan
 Test prioritization criteria - scales on which to compare test cases’ relative importance

(severity, urgency, probability, visibility, business criticality, etc.)
 Decision strategy for the delivery – must be specified in advance (what shall happen if test

completion criteria are not fulfilled)
 Test manager presents products quality - he/she is responsible for the estimation and

presentation of product quality but the business decision based on this data is made by
responsible manager (project manager, project owner, product owner, etc.).

 Test is never ready:
As exhaustive testing is not possible, we can always test a little more, and there is always some

justification for it in (the diminishing) probability that more faults will be found. Unless
completion criteria are established and test cases prioritized, the probability of finding more
faults cannot be reliably estimated

 The answer is seldom “more testing” but rather “better testing”:
Testing must be based on the combination of completion criteria:
 All test cases executed
 All test cases passed
 No unresolved (serious) incident reports
 Pre-defined coverage achieved
 Required reliability (MTBF) achieved
 Estimated number of remaining faults low enough

20

20TSK05/04/22

Exhaustive Testing
● Exhaustive testing is impossible
● Even in theory, exhaustive testing is wasteful because it

does not prioritize tests
● Contractual requirements on testing
● Non-negligent practice important from legal point of

view

Exhaustive testing is impossible:
Even for modest-sized applications with few

inputs and outputs, the number of test cases
quickly becomes huge.

Contractual requirements on testing:
The contract between the vendor and the

customer may contain clauses on the
required amount of testing, acceptable
reliability levels, or even on specific test
techniques or test coverage measures.

Non-negligent practice important from the
legal point of view:

If you ever get sued by your customer, his or
her lawyers will sure try the trick of accusing
you of negligence because your testing was
not “exhaustive”. As defense, the
impossibility of exhaustive testing should be
raised, and you should be able to prove that
your testing was performed according to a
non-negligent practice.

21

21TSK05/04/22

Risk-Based Testing
●

● Testing finds faults, which – when faults have been
removed – decreases the risk of failure in operation

● Risk-based testing

 Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure in operation as

this is the most obvious indication of quality software.
 Risk-based testing
 The chosen amount and quality of testing shall be based on how much risk is acceptable
 Test design (choosing what to test) shall be based on the involved risks
 The order of testing shall be chosen according to the risks
 Error: the ”mistake” (human, process or machine) that introduces a fault into software:
 Human mistake: users forget a need. Requirements engineer misinterprets users’ need.

Designer makes a logical mistake. Programmer makes a coding mistake.
 Process mistake: requirements not uniquely identifiable, no routines for coping with

changing/new requirements, not enough time to perform design inspections, poor control
over programmers’ activities, poor motivation, …

 Machine mistake: incorrect compiler results, lost files, measurement instruments not precise
enough…

 Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient bandwidth of a bus

or a communication link.
 Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A faulty SW or

HW “crashes” the system. A faulty system introduces longer delays than allowed during
heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

22

22TSK05/04/22

Base terms connected with “error”
● Error: the ”mistake” (human, process or machine) that

introduces a fault into software
● Fault: ”bug” or ”defect”, a faulty piece of code or HW
● Failure: when faulty code is executed, ti may lead to

incorrect results (i.e. to failure)

Error Fault Failurecreate cause

• Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure

in operation as this is the most obvious indication of quality software.
• Risk-based testing

• The chosen amount and quality of testing shall be based on how much
risk is acceptable

• Test design (choosing what to test) shall be based on the involved risks
• The order of testing shall be chosen according to the risks

• Error: the ”mistake” (human, process or machine) that introduces a fault into
software:

• Human mistake: users forget a need. Requirements engineer
misinterprets users’ need. Designer makes a logical mistake.
Programmer makes a coding mistake.

• Process mistake: requirements not uniquely identifiable, no routines for
coping with changing/new requirements, not enough time to perform
design inspections, poor control over programmers’ activities, poor
motivation, …

• Machine mistake: incorrect compiler results, lost files, measurement
instruments not precise enough…

• Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient

bandwidth of a bus or a communication link.
• Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to

failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A

faulty SW or HW “crashes” the system. A faulty system introduces longer
delays than allowed during heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

23

23TSK05/04/22

Cost of Failure
● Reliability: the probability of no failure
● Famous: American Airlines, Ariane 5 rocket, Heathrow

Terminal 5
● Quality of life
● Safety-critical systems
● Embedded systems
● Usability requirements for embedded systems and Web

applications

 Reliability: the probability of no failure:
The probability that software will not cause the failure of a system for a specific time under specified

conditions.
 Famous: American Airlines, Ariane 5 rocket, Heathrow Terminal 5:
The financial cost can be shocking, many billions of dollars. As compared to the estimated cost of

additional testing that would probably have discovered the fault (a few hundred thousand dollars).
 American Airlines: new booking system Sabre (1988) with complex mathematical algorithms for

optimization of the numbers of business class and economy class passengers. It had a fault, which
resulted in approximately 4 passengers fewer on every flight. $50 million in lost revenue after a few
months’ operation were the first indication there was a fault at all!

 Ariane 5 rocket: an unmanned Ariane 5 rocket (1996) exploded just forty seconds after its lift-off from
Kourou. 10 years of development costing $7 billion, the rocket itself and its cargo were valued at
$500 million. 64-bit floating point number relating to the horizontal velocity with respect to the
platform was converted to a 16 bit signed integer which overflowed. Could easily be found if tested.

 Heathrow Terminal 5: 300 flights were cancelled during the first five days as “teething problems” at
the new Terminal 5 caused chaos (2008). It went about a combination of factors. Some were
technical, involving glitches with the sophisticated new baggage set-up. But other issues were more
mundane. Employees arriving for work, for example, could not find their way to the staff car park.
Testing of new terminal took 6 months and 15,000 volunteers were called to help test out facilities.
The trials had been designed using lessons learned from the security and baggage delays faced by
passengers at other terminals over the past few months.

 Quality of life:
As anyone using a PC realizes, failures need not be catastrophes to sharply reduce the joy of living.
 Safety-critical systems:
More and more safety-critical systems contain software – the necessity of high safety and reliability

grows. The cost of failure is injury or human life (railway, aircraft, medical systems). For many safety-
critical systems the important attribute is usability (low usability can cause “operator mistake” or
“human factor” in an accident, coming usually from confusing or unusable information, especially in
stress situations).

 Embedded systems
Embedded systems (whether safety-critical or not), require high-quality software, because of the difficulty

(or impossibility) of updates. Remember the cost of software errors in some mobile phones.
 Usability requirements for embedded systems and Web applications:
Embedded systems and Web applications are mass consumer products, where customers require easy

usage. Failure to provide it results in lost revenues or market shares, which is a novel experience for
software industry, used more to putting requirements on customers than the other way round!

24

24TSK05/04/22

1.4. – QA Standards
ISO – International Organization for Standardization
● http://www.iso.ch/

ISO 9000 family
● ISO 9000:2000 – QMS Fundamentals and Vocabulary
● ISO 9001:2000 – QMS Requirements
● ISO 9004:2000 – QMS Guidelines for performance

improvements
● TickIT / ISO 9000-3 & ISO 9001 is a guidance document

which explains how ISO 9001 should be interpreted
within the software industry

• ISO International Organization for Standardization
• ISO is the world’s leading developer of International Standards.

• ISO standards specify the requirements for state-of-the-art products, services, processes, materials and systems,
and for good conformity assessment, managerial and organizational practice.

• ISO standards are designed to be implemented worldwide.
• The ISO 9000 family is primarily concerned with "quality management“. This means what the organization does

to fulfil:
- the customer's quality requirements
- applicable regulatory requirements, while aiming to
- enhance customer satisfaction
- achieve continual improvement of its performance in pursuit of these objectives.

- ISO 9000:2000 – QMS Fundamentals and Vocabulary
It describes fundamentals of quality management systems (QMS), which form the subject of the ISO 9000 family, and

defines related terms (quality, product, process, process approach, effectiveness, etc.).
• ISO 9001:2000 – QMS Requirements
It specifies requirements for a quality management system where an organization needs to demonstrate its ability to

consistently provide product that meets customer and applicable regulatory requirements, and aims to enhance
customer satisfaction through the effective application of the system, including processes for continual
improvement of the system and the assurance of conformity to customer and applicable regulatory requirements.

• ISO 9004:2000 – QMS Guidelines for performance improvements
This International Standard provides guidelines beyond the requirements given in ISO 9001 in order to consider both

the effectiveness and efficiency of a quality management system, and consequently the potential for improvement
of the performance of an organization.

• TickIT / ISO 9000-3 & ISO 9001 is a guidance document which explains how ISO 9001 should be interpreted
within the software industry

The TickIT program was created by the government of the United Kingdom to provide a method for registering
software development systems based on the ISO 9000-3 standard. The scheme was jointly developed by the
United Kingdom Department of Trade and Industry (DTI) and the British Computer Society (BSC). The ISO 9000-
3 Standard is named "Quality management and quality assurance standards - Part 3: Guidelines for the
application of ISO 9001 to the development, supply and maintenance of software." It was originally written as a
"guidance standard." The TickIT program turns it into a compliance standard. It is possible to be certified to ISO
9001 without gaining TickIT, but ISO 9001 with TickIT is a mark of excellence!

http://www.iso.ch/

26

26TSK05/04/22

CMMI
● CMM (Capability Maturity Model) is a reference model

of mature practices in a specified discipline, used to
improve and appraise a group’s capability to perform
that discipline (e.g. software development practices).

● CMMI is the integrated process model (CMM)
CMM + Integration = CMMI

● A CMMI model provides a structured view of process
improvement across an organization.

● http://www.sei.cmu.edu/cmmi

• CMM (Capability Maturity Model) is a reference model of mature practices in a specified discipline
• Developed by SEI – Software Engineering Institute, established in 1984 as Federally

Funded Research and Development Center FFRDC
• Awarded to Carnegie Mellon University
• Based on the concepts of Crosby, Demin, Juran, Humphrey, etc.
• 1986: Start at request of Department of Defense (DoD)
• 1987: Framework and Maturity Questionnaire
• 1991: CMM V1.0
• 1993: CMM V1.1
• CMMs differ by

• discipline (e.g. software engineering, system engineering)
• structure (e.g. staged, continuous)
• definition of maturity (i.e. process improvement path)

The CMM builds upon a set of processes and practices that have been developed in collaboration with a
broad selection of practitioners.

• CMMI is the integrated process model
• Developed by SEI – Software Engineering Institute at Carnegie Mellon University
• 2000: CMMI V1.0 – first release together with associated appraisal and training materials
• 2002: CMMI V1.1 - saw the release of CMMI

• A CMMI model provides a structured view of process improvement across an organization:
• integrate traditionally separate organizations
• set process improvement goals and priorities
• provide guidance for quality processes
• provide a yardstick for appraising current practices

http://www.sei.cmu.edu/cmmi

30

30TSK05/04/22

The Capability CMMI Levels

5 Optimizing

4 Quantitatively
 managed

3 Defined

2 Managed

1 Performed

0 Incomplete0

1

2

3

4

5

Capability Levels
• A capability level is a well-defined

evolutionary plateau describing the
organization’s capability relative to a
particular process area.

• There are six capability levels.
• Each level is a layer in the foundation for

continuous process improvement.
• Thus, capability levels are cumulative (i.e., a

higher capability level includes the
attributes of the lower levels).

• http://www.tutorialspoint.com/cmmi/cmmi-
capability-levels.htm

33

Maturity Levels
• A maturity level is a well-defined

evolutionary plateau of process
improvement.

• There are five maturity levels.
• Each level is a layer in the foundation for

continuous process improvement using a
proven sequence of improvements,
beginning with basic management
practices and progressing through a
predefined and proven path of successive
levels.

Maturity Levels Should Not Be Skipped
• Each maturity level provides a necessary

foundation for effective implementation of
processes at the next level.

• Higher level processes have less chance
of success without the discipline
provided by lower levels.

• The effect of innovation can be obscured
in a noisy process.

• Higher maturity level processes may be
performed by

• organizations at lower maturity levels, with
the risk of not

• being consistently applied in a crisis.

• http://www.tutorialspoint.com/cmmi/cmmi-
maturity-levels.htm

33TSK05/04/22

Process unpredictable,
poorly controlled and
reactive

Process characterized for
projects and is often
reactive

Process characterized
for the organization
and is proactive

Process measured
and controlled

Focus on process
improvement

Optimizing

Quantitatively
Managed

Defined

Performed

Managed

1

2

3

4

5

The Five CMMI Maturity Levels

34

34TSK05/04/22

Test Process Definition
● Test Planning
● Test Specification
● Test Execution
● Test Recording & Evaluation
● Completion Criteria

Test process as part of development or
production process

Test is a part of QA, and test process should
not be defined separately, but should be seen
in the context of overall development
process.

Large companies have own process
definitions

Most development and production companies
have own test processes. There can be of
course similarities (though used
terminologies are often strikingly different),
but nevetheless many thousands different
test processes exist in industrial reality.

“COTS” test process
COTS (Commercial Off The Shelf)
It is possible to buy a test processes. The most

known vendor today is probably IBM Rational
with its RUP – Rational Unified Process (test
process is part of it). Such a process
contains the descriptions of the workflow,
example documents as well as tools and
methods for adapting it to the customer’s
environment. Consulting companies, QA and
test tool vendors may have their own test
processes for sale, often tailored to the way
their tools work.

Test process and test strategy
Test process (how testing is done) is a

realization of test strategy: required product
quality and test reliability, used development
process, etc.

35

35TSK05/04/22
35

Test
Strategy

Project
Specification

Test
Process

Applied
Test

Process

Test
Plan

Exceptions
to the Test
Strategy

Test Planning

A company’s Test Strategy together with its
Test Process (defined in the organization) are
adopted to the current project based on a
Project Specification. This results into an
Applied Test Process, i.e. an overall vision
“how we will test this time”. This vision is the
implemented (described in detail) in a Test
Plan. Often, Test Plan is a document written
in a natural language.

The process of creating a Test Plan is test
planning. The is mostly done very early
during project. Later, the processes of test
estimation, monitoring and control may lead
to changes in the test plan.

36

36TSK05/04/22

Test Plan’s Goal
● High-level test plan and more detailed test plans
● Related to project plan
● Follows QA plan
● Configuration management, requirements, incident

management

Even the best test plan will not work unless it is
synchronized with other areas, project and
technical.

High-level test plan and more detailed test
plans

Depending on project size and complexity, test
plan can sensibly be divided into one high-
level test plan and some detailed test plans.
The division can follow test area or test level,
or specific aspects of testing.

Project plan
Test plan must be inspected for correctness

and compliance with overall project plan.
Sometimes (in small projects) the test plan is
the part of a project plan.

Follows the QA plan
Hopefully, the function and contents of a test

plan is not “discovered” anew for each
project, but included in the company’s quality
strategy and project’s quality plan.

Configuration management, requirements,
incident management

These areas may either be the part of a test
plan or belong somewhere else (CM Plan),
depending on the overal QA strategy.

37

37TSK05/04/22

Test Specification
The complete documentation of the test design, test
cases and test procedures for a specific test item.
(ISTQB)

● Test specification defines what to test
● Test specification is part of testware
● Basic building blocks of test specifications are test cases
● Test specification – instruction – script
● Test specification – requirements
● Test specification - reporting

 Test specification defines what to test
Test specification are repositories of test cases. They should be free from organizational issues,

which belong to the test plan(s).
 Test specification is part of testware
Testware – test cases, test scripts, test data, etc. is often under CM control (manages either by

test tool or by a separate tool).
 Basic building blocks of test specifications are test cases
Test cases are generated when applying test design techniques. They shell be general and

repeatable.
 Test specification – instruction – script
Test cases need not contain all detailed information on how to perform them. This information

may be put into a separate description, sometimes called test instructions (this approach is
not practical because of maintenance difficulties).

If test execution is automated, then the instructions for a test tool are called test script (test
program). Test script can replace test case (instructions).

 Test specification – requirements
It is desirable that for every test case, there is a link to the requirements behind it and for every

requirement, there are links to all test cases that verify it. This is very hard to achieve and
maintain without using test tools (test management tools, e.g. Test Manager).

 Test specification – reporting
The test specification must support logging and reporting during and after test execution, mainly

through the identification of test cases and their steps. This can be easily automated by
using test tools (test running tools, e.g. Robot)

38

38TSK05/04/22

Test Case
● Unique name/title
● Unique ID
● Description
● Preconditions / prerequisites
● Actions (steps)
● Expected results

Labs

Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

Description
Brief description explaining what functionality

the case case covers.
Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

Expected results
Reaction of the system to the performed action.

39

39TSK05/04/22

1.4 - Fundamental Test Processs - terms (ISTQB)
● test case - A set of input values, execution preconditions, expected results and execution

postconditions, developed for a particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a specific requirement.

● test case result - The final verdict on the execution of a test and its outcomes, such as pass,
fail, or error. The result of error is used for situations where it is not clear whether the
problem is in the test object.

● test case specification - A document specifying a set of test cases (objective, inputs, test
actions, expected results, and execution preconditions) for a test item.

● test specification - A document that consists of a test design specification, test case
specification and/or test procedure specification.

● test script - Commonly used to refer to a test procedure specification, especially an
automated one.

● test procedure specification - A document specifying a sequence of actions for the
execution of a test. Also known as test script or manual test script.

● Test Design Specification - A document specifying the test conditions (coverage items) for
a test item, the detailed test approach and identifying the associated high-level test cases.

Labs

• Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

• Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

• Description
Brief description explaining what functionality

the case case covers.
• Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
• Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

• Expected results
Reaction of the system to the performed action.

40

40TSK05/04/22

Test Execution
● Manual
● Automated
● Test sequence
● Test environment
● Test data

 Manual
Tester follows the description from the test case and performs step by step all specified actions.

Prone to errors, boring (monkey testing) and time-consuming. It is recommended that the
author of the test case performs it first.

 Automated
Test tool executes test case according to predefined instructions (test scripts or test program).

The automation scope can include any of / all of the following:
 Preparation (set-up to fulfill preconditions)
 Execution
 Result evaluation (comparing actual and expected results)
 Clean-up (putting system back into some known state)
 Test sequence
Sometimes it is not practical to execute each test case separately but it is better to put test

cases into a sequence, e.g.:
 Insert new record
 Search existing record
 Modify existing record
 Delete existing record
 Test environment
There are more environments used for developing, testing and maintaining software

applications (DEV – development, IT – functional and performance testing, QA –
acceptance testing, PROD – production). Configuration files of test environment as part of
testware are under CM control.

 Test data
Test data are various input and output files (for expected and actual results) that must be

managed properly as part of testware. If test data are taken from the production, they must
be degraded.

41

41TSK05/04/22

Test Recording & Evaluation
● Recording actual outcomes and comparison against

expected outcomes
● Off-line test result evaluation
● Test log
● Test report
● Recording test coverage
● Incident management

 Recording actual outcomes and comparison against expected outcomes
Manual testing: If actual and expected outcomes match, then test case passed. If not, then test case

failed, actual outcomes are recorded and incident (defect) is created and assigned to development.
Automated testing: Comparison is done automatically, everything is recorded and even incidents are

created.
 Off-line test result evaluation
Sometimes the immediate result (pass/fail) is impossible (too fast execution to allow on-line evaluation by

a lower analysis tool or the final result is available only after some other tests have been performed,
etc.), so during test execution the results are gathered for the evaluation, which is done later.

 Test log
It is a log of “all” (relevant and important) what happened during test execution. This activity (log creation)

is best to automate, as it is repetitive, boring and requires exactness. It is used for (1) off-line
evaluation,(2) failure analysis and debugging and (3) for archiving and future reference.

 Test report
It is a summary of the results of all executed test cases. Must contain as well complete information on

configuration and versions of test environment, testware and test object. Some test tools are capable
to produce test report.

 Recording test coverage
If test cases are mapped to requirements, test coverage can be easily derived. When executing test

cases, the results are projected into requirements with the information how much functionality was
successfully tested.

 Incident management
Answer the following questions:
1. Was this really a failure?
2. What presumably caused this failure?
3. How to assign correction responsibility?
Incident must be repeatable – put enough information to the incident report to enable reproducing the

incident by the developer who is fixing it.

42

42TSK05/04/22

Test Completion
● Test completion criteria must be specified in advance
● Decision strategy for the release/delivery decision must be specified in

advance
● Test manager is responsible for the estimation and presentation of the

product quality, not for release/delivery decision
– Run TC
– Passed TC
– Failed TC
– Executed TC
– Failure intensity
– Number of incident reports
– Estimation of product quality
– Reliability of this estimation
– Projected estimation of product quality

 Test completion criteria must be specified in advance
In the test plan or similar document.
 Decision strategy for the release/delivery decision must be specified in advance
What shall happen if test completion criteria are not fulfilled, but deadlines are approaching and

there is strong pressure to release? The strategy for making this decision should be defined
in advance.

 Test manager is responsible for the estimation and presentation of the product quality, not
for release/delivery decision

It is the responsibility of test manager to preset to project management accurate and up-to-date
data on:

1. Number of percentage of run test cases
2. Number and percentage of passed tests
3. Number and percentage of failed tests
4. Trends in test execution (cumulative number of executed test cases)
5. Trends in failure intensity
6. Similar data on the number of incident reports, their status and trends
7. Estimation of product quality based on the data available
8. Reliability (level of significance) of this estimation
9. Projected estimation of product quality and test reliability for various scenarios

43

43TSK05/04/22

Completion Criteria
● All test cases executed
● All test cases passed
● No unresolved incident reports
● No unresolved serious incident reports
● Number of faults found
● Pre-defined coverage achieved

– Code coverage
– Functional coverage
– Requirements coverage
– If not, design more test cases

● Required reliability (MTBF) achieved
● Estimated number of remaining faults low enough

 All test cases executed
It is a sensible criterion, provided good quality, coverage and reliability of those tests (otherwise the less

test cases we have, the easier to achieve completion).
 All test cases passed
The previous criterion plus additionally that there must be no failed tests – strong requirement not

achievable in practice.
 No unresolved incident reports
It may be the same as the previous one but not necessarily: some incident reports may be postponed,

rejected (e.g. caused by faults of test environment or testware, etc.).
 No unresolved serious incident reports
The previous criterion might be too strong – we can divide incident reports according to severity (e.g. 1

and 2 must be resolved).
 Number of faults found
Generally a useless criterion, as it is the estimated number of remaining faults that matter. The

assumption is that many found faults means few remaining (this can be wrong – many found faults
may mean many remaining).

 Pre-defined coverage achieved
Generally better that “all tests… no incidents…” family, because they address the issue of achieved test

quality/reliability as well:
 Code coverage: there is a number of different code coverage measures that tell what

proportion of tested code have been exercised by executed tests.
 Functional coverage: even very high code coverage does not guarantee that “all” (paths,

user scenarios) has been tested. Therefore, it should be complemented by some kind of
functional coverage.

 Requirements coverage: all code and all functions may have been tested, but in order to
discover missing functionality, tests should cover all requirements.

 Required reliability (MTBF) achieved
This can only be calculated if statistical testing is used (MTBF – Mean Time Between Failures).
 Estimated number of remaining faults low enough
Based on the number and frequency of faults discovered so far during testing, an estimation of the

number of remaining faults can be made.

44

44TSK05/04/22

1.5-Re-Testing and Regression Testing
Definitions
● Re-testing: re-running of test cases that caused failures

during previous executions, after the (supposed) cause
of failure (i.e. fault) has been fixed, to ensure that it
really has been removed successfully

● Regression testing: re-running of test cases that did NOT
cause failures during previous execution(s), to ensure
that they still do not fail for a new system version or
configuration

● Debugging: the process of identifying the cause of
failure; finding and removing the fault that caused failure

Definition of Re-testing (BS 7925-1)
Running a test more than once.
Definition of Regression Testing (BS 7925-1)
Re-testing to a previously tested program

following modification to ensure that faults
have not been introduced or uncovered as a
result of the changes made.

Definition of Debugging (BS 7925-1)
The process of finding and removing the

causes of failures in software (don’t mix with
testing). Debugging is NOT part of testing,
but has many aspects in common with
testing. During debugging, test cases may be
re-run in order to study failure more in detail.
Re-running of test cases during debugging is
NOT re-test or regression testing. Additional
“debugging test cases” may be created and
run to help expose suspected fault or
eliminate alternative sources of failures
(these are not added to test suite and are
discarded after usage.

45

45TSK05/04/22

Re-testing
● Re-running of the test case that caused failure

previously
● Triggered by delivery and incident report status
● Running of a new test case if the fault was previously

exposed by chance
● Testing for similar or related faults

 Re-running of the test case that caused failure previously
A test case has caused a test object to fail. The fault that (supposedly) caused this failure has

been discovered and removed (fixed). The very same test case is executed on the new
(corrected) version of the system to ensure that the fault has really been successfully fixed.

 Triggered by delivery and incident report status
Re-testing is normally done after the delivery of a fixed build and after the corresponding

incident report has been put into a “fixed” (“corrected”, “re-test”, “put into build”, or similar
name) status. Some kind of private re-test before formal release may be used as well.

 Running of a new test case if the fault was previously exposed by chance
When failure occurred by chance without any intentional test case being executed (e.g. by

“smoke-test”, “sanity-check”, or “ad-hoc” testing), a new test case should be designed and
added. Re-testing means then the execution of this new test case.

 Testing for similar or related faults
During re-testing, even test cases looking for similar faults may be executed. For example if a

record deletion from a file caused failure, even other record deletion routines may be
tested. Re-testing related faults is advisable too. For example if a record deletion method
has been fixed, then other methods belonging to the same class can be re-tested after
correcting the fault. This can be defined as “increased testing”, or new test design caused
by faults already found.

46

46TSK05/04/22

Regression Testing
● Regression due to fixing the fault (side effects)
● Regression due to added new functionality
● Regression due to new platform
● Regression due to new configuration or after the

customization
● Regression and delivery planning

 Regression due to fixing the fault (side effects)
On average, according to empirical data, 10-25% of all fixes actually introduce new faults,

sometimes in areas seemingly “far away” (temporally, functionally or structurally) from the
original fault. To be able to discover the new faults, test cases seemingly “far away” from
the fixed fault must be executed on fixed builds.

 Regression due to added new functionality
Adding new functionality may introduce faults into already existing functionality, or expose faults

existing previously, but not found. Therefore, old functionality must be tested again for
releases with new functionality.

 Regression due to new platform
A system that executes correctly in one environment may fail in another environment, either

due to hidden faults or interface faults. Therefore, regression testing may be required even
when not a single software instruction has been changed.

 Regression due to new configuration or after the customization
Sometimes called “configuration testing”. For example, a Java script depends on HW, operating

system and browser of the client machine. Including different versions of them, the number
of possible combinations is very large, requiring impossibility large amount of regression
testing. Special strategies are available to tackle this.

 Regression and delivery planning
To decrease the amount of regression testing, a regression test suite may be run once on a

release with many fault corrections and new functionality added. If an incremental
methodology is used (e.g. RUP), then some increments (usually the latest ones) are
focusing only on bug fixing which means that only re-testing and regression testing is
needed. Regression testing is often used in maintenance when emergency fixes and “extra”
functionality is introduced.

47

47TSK05/04/22

Regression Schemes
● Less frequent deliveries
● Round-robin scheme
● Additional selection of test cases
● Statistical selection of test cases
● Parallel testing
● “Smoke-test” for emergency fixes
● Optimisation or regression suite:

– General (understanding system, test case objectives, test coverage)
– History (decreased regression for stable functionality)
– Dependencies (related functionality)
– Test-level co-ordination (avoiding redundant regression on many levels)

 Less frequent deliveries
If a regression test takes longer than the time between releases, decreasing the delivery frequency may be an option.

If a number of fixes and functionality enhancements are delivered together, less frequent deliveries are possible
without increasing the overall development time.

 Round-robin scheme
Example: A regression test suite has 300 test cases. It takes 1 day to execute 100 test cases. Releases come every

day. Test cases no 1-100 are executed on release N, 101-200 on N+1, 201-300 on N+2, then again 1-100 on
N+1, etc. Even if no release is fully regression tested, a relatively good measure of product quality is achieved.

 Additional selection of test cases
The regression test suite may be pruned to fit the available time. A selection of regression test cases may be used for

most releases, while the complete test suite will be executed only before external releases, quality checkpoints,
project milestones, etc.

 Statistical selection of test cases
Provided that the data on the probability distribution of user actions is available, test cases can be ordered according

to their “importance”, i.e. the relative frequency of the user action that they test. In this way, even if the complete
regression test suite is not executed, the reliability level can be estimated for releases.

 Parallel testing
By dividing test execution into a number of parallel tracks, that can execute independently and in parallel, calendar

test execution time can be significantly decreased. This applies both to manual and to automated testing. The
cost is that multiple amount of test equipment and of testers are required.

 “Smoke-test” for emergency fixes
Emergency fix – exceptional release that fixes one fault (or low number of faults) or sometimes introduces a new

(small in scope) functionality and its delivery is urgently required. As changes in the system are relatively small,
complete testing is not needed.

“Smoke-test” or “sanity-check” means execution of a subset of the most important test cases from the regression suite
with the goal to check if there is not major problem in the system after the change. Even in the emerging
situation, some kind of “smoke-test” must be performed.

 Optimisation of regression suite
 General – basic test techniques can help choose test cases for regression test suites effectively.

Required level of test coverage can be used to estimate the needed amount of regression testing.
Good system understanding is required to identify and remove repetitive or less important lest cases.
Redundant test cases can be removed.

 History – regression test cases may become obsolete with time. Stable functionality where faults are
no longer discovered during regression testing, need not be tested as extensively as new, unstable
functionality, or as a system area with a history of many faults.

 Dependencies – provided a well-designed system with clear-cut dependencies and interfaces, it is
possible to minimize the amount of regression for areas that are not related and not connected to the
area, where recent changes have occurred.

 Test-level co-ordination – savings in regression test time can often be achieved by coordinating tests
run on different levels, to avoid repetition.

48

48TSK05/04/22

Regression and Automation
● Regression test suites under CM control
● Incident tracking for test cases
● Automation pays best in regression
● Regression-driven test automation
● Incremental development

 Regression test suites under CM control
All test cases shell be archived and under version control to be able to return back to already

not used test cases. Regression test cases are changing from release to release. This
applies even more to automated regression testing which increases the amount of
testware: test scripts, test programs, test data, test configurations, etc.

 Incident tracking for test cases
Test cases (especially test scripts, test programs, test data) can be faulty or changed for other

reasons (e.g. effectiveness). These changes should be controlled and traceable like any
software changes. The development and maintenance of testware should be handled like
development and maintenance of any other software, i.e. planned, designed, under version
management, etc.

 Automation pays best in regression
When test automation is considered, it shall be first of all applied to regression testing. The

strategy for regression testing must therefore be known before the automation strategy is
developed. Large amount of regression requires automation (the automation is effective
starting from number of releases > 3). Performance testing cannot be done without tools
(load generation, monitoring, performance measurement, etc.). These tools and test cases
may therefore be candidates to be included in regression testing.

 Regression-drive test automation
Introducing test automation into projects must be planned according to the needs of the

regression test strategy.
 Incremental development
New development methods (“incremental development”, “daily build”, “Rapid Application

Development”, RUP, etc.) become increasingly popular. They are characterized by frequent
deliveries, incremental functionality growth, and fast feedback from test to development.
Therefore, they require heavy regression testing, which makes both test automation and
other techniques for regression optimization especially important.

49

49TSK05/04/22

1.6-Expected Results
Why Necessary?
● Test = measuring quality = comparing actual outcome

with expected outcome
● What about performance measurement?
● Results = outcomes; outcomes ≠ outputs
● Test case definition: preconditions – inputs – expected

outcomes
● Results are part of testware – CM control

 Test = measuring quality = comparing actual outcome with expected outcome
Test is verifying whether something is correct or not – means by definition comparing two

values: actual and expected. Random testing is (1) normally not really testing at all (2) or
testing actual results against our vague and unspecified outcome expectations.

 What about performance measurement?
Performance measurement = benchmarking.
Performance requirements are notoriously vague or absent, but performance testing is thriving.

Explanation? It is then either testing against informal, unspecified “random requirements” or
a kind of requirement engineering (trying to find out what the requirements should be) by
running ready product.

 Results = outcomes; outcomes ≠ outputs
Application outputs can be test case outcomes, but not all test cases outcomes are outputs –

performance levels, state transitions, data modifications are possible test case outcomes
which are not application outputs. In order to evaluate them, test environment must provide
access to them: through special test outputs, debug tools, etc.

 Test case definition: preconditions – inputs – expected outcomes
When expected test result/outcome is missing, then it is NOT a test case specification at all.

Unspecified or insufficiently specified expected outcomes make some failures harder to
discover.

 Results are part of testware – CM control
Often, the expected outcome is a data file. Unless it can be incorporated in a test specification,

it will require to be under separate CM control. Changing the expected outcome file will
have the same effect as directly changing the test specification – a common baseline for
them will therefore be required.

50

50TSK05/04/22

Types of Outcomes
● Outputs
● State transitions
● Data changes
● Simple and compound results
● “Long-time” results
● Quality attributes (time, size, etc.)
● Non-testable?
● Side-effects

 Outputs
They are most easily observable, therefore often utilized as outcomes/results. Outputs have

very many forms: displayed or changed GUI objects, sent messages or signals, printouts,
sounds, movements.

 State transitions
Does the system perform correct state transition for a given set of inputs? Outputs following

transitions are often used to judge, but the new state is the expected outcome.
 Data changes
Has data changed correctly?
 Simple and compound results
Results may be simple (“Error message appears”) or compound (“new record put into

database, index updated, display adjusted, message sent…”).
 “Long-time” results
For example, testing for long-time stability: system still works correctly after a week.
 Quality attributes (time, size, etc.)
Most non-functional requirements are of this kind.
 Non-testable?
1) Possibly valid requirements, but formulated in a non-testable way, e.g. “sufficient

throughput to handle typical traffic”.
2) Valid, measurable requirements, which cannot be measured due to technical constraints.
 Side-effects
Implicitly, every test case has an invisible clause in expected outcome definition “the program

does this… and nothing incorrect happens”. “Nothing incorrect” is easily implied, but
impossible to verify.

51

51TSK05/04/22

Sources of Outcomes
Finding out or calculating correct expected outcomes/results
is often more difficult than can be expected. It is a major task
in preparing test cases.
● Requirements
● Oracle
● Specifications
● Existing systems
● Other similar systems
● Standards
● NOT code

 Requirements
Sufficiently detailed requirement specifications can be used directly as the source of expected

test results. Most often however, requirements do not have sufficient quality.
 Oracle
According to BS 7925-1 it is “a mechanism to produce the predicted outcomes to compare with

the actual outcomes of the software under test”; often a program, another similar
application, etc.

 Specifications
Specifications other than requirement specification (e.g. design specification, use case

specification, interface specification, function specification) are generally a good source of
expected outcomes – verification means testing whether system works “according to
specification”.

 Existing systems
Previous, verified versions of the same system can be used as oracle for getting correct

expected results.
 Other similar systems
Any other software – commercial or not – that has already been sufficiently verified and

implements part of the functionality of the tested system, often makes a good oracle.
 Standards
Many standards, e.g. in telecommunications, contain detailed specifications that can be used as

expected test results. A good example of a test case suite built entirely around standard
specification is Sun’s test suite for verification whether a JVM (Java Virtual Machine)
conforms to Sun’s Java standard.

 NOT code
(nor the same specification if specification is the test object), Because anything compared to

itself (the same source of expected and actual outcomes) will always give “correct” results.

52

52TSK05/04/22

Difficult Comparisons
● GUI
● Complex outcomes
● Absence of side-effects
● Timing aspects
● Unusual outputs (multimedia)
● Real-time and long-time difficulties
● Complex calculations
● Intelligent and “fuzzy” comparisons

 GUI
Notoriously difficult expected results. Prone to frequent changes, complex, often asynchronous. If treated

on pixel level, often useless, require some kind of object approach. Most tools existing today to not
cope well with moving or scrolling components.

 Complex outcomes
Actually, GUI outputs are one of them. Comparison may be difficult simple because the results are large

and complex.
 Absence of side-effects
For most test cases, there are infinitely many possible outcomes that must not happen. For a test case

“press key” with expected outcome “text <<key pressed>> appears” there are innumerable things
that are expected NOT to happen: program does not crash, database is not deleted, no – say –
blinking green triangle appears in the middle of the screen… etc. Verifying this is impossible, on the
other hand some degree of observant caution is necessary.

 Timing aspects
Outcomes that either occur very quickly or last very short time, or are asynchronous, or occur after

undefined delay may all be hard to verify correctly.
 Unusual outputs (multimedia)
Video sequences, complex graphics, sounds, smells, etc. are very hard to test.
 Real-time and long-time difficulties
(it is a sub-set of “absence of side effects”)
For real-time, multithread applications there may exist hidden faults that only cause failure when certain

rare timing conditions are fulfilled. Such failures are not easily repeatable. During long-time
execution a gradual “decay” of software may occur (stability testing aims at those problems). Typical
example of such problems are memory-leaks.

 Complex calculations
Their results are hard to verify, may only “look right”. AA booking system fault 1988.
 Intelligent and “fuzzy” comparisons
Whenever correct result is not fully deterministic or analogue rather than discrete, it is difficult to verify.

53

53TSK05/04/22

1.7-Prioritization of Tests
Why Prioritize Test Cases?
● Decide importance and order (in time)
● “There is never enough time”
● Testing comes last and suffers for all other delays
● Prioritizing is hard to do right (multiple criteria with

different weights)

Decide importance and order (in time)
To prioritize test cases means to measure their

importance on an ordinal scale, then plan
test execution accordingly (typically, in
descending order of importance, i.e. more
important cases before less important).

“There is never enough time”
Dedicated testers easily become paranoid –

they suspect faults everywhere and want to
verify every tiny detail. To balance this desire
with business reality, we must choose what is
most important to test, i.e. prioritize.

Testing comes last and suffers for all other
delays

The day for customer delivery is often holy, but
development is nevertheless delayed.
Planned test time is cut as a result, often with
short notice, with no time for re-planning.
Keeping ones test cases prioritized so that
most important are run first guarantees that
we will…

Prioritizing is hard to do right (multiple criteria
with different weights)

Prioritizing test cases is not an easy job. There
are different criteria and different methods to
apply them. Prioritizing test cases is part not
only of testing but of risk management.

54

54TSK05/04/22

Prioritization Criteria
● Severity (failure)
● Priority (urgency)
● Probability
● Visibility
● Requirement priorities
● Feedback to/from

development
● Difficulty (test)

● What the customer wants
● Change proneness
● Error proneness
● Business criticality
● Complexity (test object)
● Difficult to correct

This is a tentative list of possible prioritization criteria (scales on which to compare test cases’
relative importance). This list is not ordered (i.e. it gives no clue to which criteria are more
important). The criteria are not independent nor exclusive. For operational usage, they must
be defined more in details. Put them into columns are mark each test case with the level of
importance:

 H – high
 M – medium
 L – low
 Severity (failure); the consequences of failure (in operation): 1 – fatal, 2 – serious, 3 –

disturbing, 4 – tolerable, 5 – minor
 Priority (urgency): how important it is to test this particular function as soon as possible: 1 –

immediately, 2 – high priority, 3 – normal queue, 4 – low priority
 Probability: the (estimated) probability of the existence of faults and failure in operation
 Visibility: if a failure occurs, how visible it is? (it relates to “severity”)
 Requirement priorities: if requirements are prioritized, the same order shall apply to test

cases
 Feedback to/from development: do the developers need test results to proceed? (similar to

“priority”). Do the developers know a specific tricky area or function?
 Difficulty (test): is this test case difficult to do (resource- and time-consuming?)
 What the customer wants: ask the customer what he prefers (it relates to “requirements

priorities”)
 Change proneness: does this function change often?
 Error proneness: is it a new, badly designed, or well-knows “stinker” feature?
 Business criticality: related to “severity” and “what the customer wants”
 Complexity (test object): related to “error proneness”
 Difficult to correct: a fault known to be difficult to correct, may be given lower priority

(provided severity is sufficiently low)

55

55TSK05/04/22

Prioritization Methods
● Random (the order specs happen)
● Experts’ “gut feeling”
● Based on history with similar projects, products or

customers
● Statistical Usage Testing
● Availability of: deliveries, tools, environment, domain

experts…
● Traditional Risk Analysis
● Multidimensional Risk Analysis

– analytic hierarchy process (AHP)

Random (the order specs happen)
No method at all, but “the order test specs

happen” may actually mirror both the
“priority” and “business criticality” as well as
“requirements prioritization” – the not so bad.

Experts’ “gut feeling”
Experts with testing, technical and domain

(application) knowledge do the prioritization.
Experts are good to have, but their “gut
feeling” may often be misleading, unless
structured methods (see below) are followed.

Based on history with similar projects,
products or customers

Documented data on previous fault history,
priority, severity, etc. is used to prioritize test
cases for current project/product according to
some chosen criterion (or a chosen
combination of criteria).

Statistical Usage Testing
The main criteria is the long-time frequency of

usage in operation. The underlying
assumption is that frequency of usage
correlates strongly with severity, probability,
visibility, “what the customer wants”, and
business criticality. Test suite is randomly
generated based on known probability
distribution of user actions.

Traditional Risk Analysis
Importance = probability * consequence.

Rough-and-ready method, easy to use, easy
to misuse. Does not give any support to
accommodate multiple prioritization criteria.

Multidimensional Risk Analysis
Prioritization based on statistical decision

theory. Very seldom used in managerial
practice.

56

56TSK05/04/22

2-Testing through the Lifecycle
● Models for testing
● Economics of testing
● Test planning
● Component testing
● Component integration testing
● System testing (functional)
● System testing (non-functional)
● System integration testing
● Acceptance testing
● Maintenance testing

57

57TSK05/04/22

2.1-Models for Testing
Verification, Validation and Testing
● Verification: The process of evaluation a system or

component to determine whether the products of the
given development phase satisfy the conditions
imposed at the start of that phase – building the system
right

● Validation: The determination of the correctness of the
products of software development with respect to the
user needs and requirements – building the right system

● Testing: The process of exercising software to verify that
is satisfies specified requirements and to detect errors

Testing is not only test execution. Static
analysis can be performed before the code
has been written. Writing and designing test
cases is also part of testing. Reviews of
requirement specifications and models, and
of any other documents, belong to testing as
well.

58TSK05/04/22

3.1.36 verification:
● (A) The process of evaluating a system or component to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase.
● (B) The process of providing objective evidence that the software and its associated products

conform to requirements (e.g., for correctness, completeness, consistency, accuracy) for all life
cycle activities during each life cycle process (acquisition, supply, development, operation, and
maintenance); satisfy standards, practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life
cycle activities (e.g., building the software correctly).

3.1.35 Validation:
• (A) The process of evaluating a system or component during or at the end of the development

process to determine whether it satisfies specified requirements.
• (B) The process of providing evidence that the software and its associated products satisfy system

requirements allocated to software at the end of each life cycle activity, solve the right problem
(e.g., correctly model physical laws, implement business rules, use the proper system
assumptions), and satisfy intended use and user needs.

• NOTE—For (A), see IEEE Std 610.12-1990 [B3].

• NOTE—For subdefinition (A), see IEEE Std 610.12-1990 [B3].

IEEE standards

59TSK05/04/22

BS 7925-1
● verification: The process of evaluating a system or

component to determine whether the products of the
given development phase satisfy the conditions
imposed at the start of that phase. [IEEE]

● validation: Determination of the correctness of the
products of software development with respect to the
user needs and requirements. [IEEE]

60TSK05/04/22

ISTQB Glosary

Verification Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that specified requirements have
been fulfilled.

Validation Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that the requirements for a specific
intended use or application have been fulfilled.

61TSK05/04/22

V&V – Where is truth?

http://www.chambers.com.au/glossary/verification_validation.php

62TSK05/04/22

V&V – Where is truth?

http://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/

63

63TSK05/04/22

Requirements
Analysis

Functional
Specifications

Design
Specifications

Coding

Testing

Maintenance

2.1-Models for Testing (2)
Waterfall Model

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Functional Specifications
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the functional
specification.

Design Specifications
Once the functional specifications are developed, software engineers should have a complete

description of the requirements the software must implement. This enables software engineers to
begin the design phase. It is during this phase that the overall software architecture is defined and
the high-level and detailed design work is performed. This work is documented in the design
specifications.

Coding
The information contained in the design specifications should be sufficient to begin to the coding phase.

During this phase, the design is transformed or implemented in code. If the design specifications are
complete, the coding phase proceeds smoothly, since all of the information needed by software
engineers is contained in these specifications.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the functional and design specifications already in
the coding phase. These tests determine if the software meets defined requirements. A software
validation test plan defines the overall validation testing process. Individual test procedures (test
cases, test scripts, test programs) are developed based on a logical breakdown of requirements. The
results of the testing activities are usually documented in a software validation test report. Following
the successful completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

64

64TSK05/04/22

Requirements
Analysis

Functional
Specifications

Design
Specifications

Coding

Testing

Maintenance

1. Requirement descriptions incomplete

2. Analysis paralysis

3. Loss of information

4. Virtual reality

5. Chill out, dude 6. Hurry up

7. Workarounds

8. Testing squeezed

9. Big surprise

Issues of traditional (waterfall) model

1. Requirement descriptions incomplete
Nobody knows all the system requirements at the beginning of the project. User is not able to describe

what he needs. Requirements description is incomplete. In the real word the requirements are
changing during the project life. It is not possible to freeze the requirements in the moment of signing
the contract.

2. Analysis paralysis
We need to fully understand what we have to do before we start making it. Too much details tend to

including our own functionality. We spent too much time on analysis of the requirements that are
changing in details – analysis paralysis.

3. Loss of information
Once one specialized team (e.g. analysts) finish the work, it throws the brick over the wall into another

team (e.g. designers). No close communication among these teams. One blame another for
incompetence - loss of information.

4. Virtual reality
Specialized teams are not in contact with the reality because of loss of information – they are designing a

virtual reality they understand from information they got.
5. Chill out, dude
Until now the project was "chill-out dude" part of the project (deadline was so far, analysis must be

perfect, …) so now the project comes into the "hurry up!!" part…
6. Hurry up
…where is no time for any complete solution…
7. Workarounds
…only "holy hacking“ (hacking sacred from leader/manager). Only workarounds are made instead of

making right solution.
8. Testing squeezed
This is the time where the weekend work and overtimes take place. There is no time for testing. Testing

is squeezed (8) or even worse excluded from the process and at the end comes the…
9. Big surprise
The project is delayed, project costs increasedand what is the worst - project does not fulfill user needs.

65

65TSK05/04/22

Iterative

Analysis

Functional
Specifications

Design

Coding

Testing

Maintenance

Feedback

Main cycle

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Requirements Definition
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the software
requirements specification.

Design
Once the SRS is developed, software engineers should have a complete description of the requirements

the software must implement. This enables software engineers to begin the design phase. It is during
this phase that the overall software architecture is defined and the high-level and detailed design
work is performed. This work is documented in the software design description.

Coding
The information contained in the SDD should be sufficient to begin to the coding phase. During this

phase, the design is transformed or implemented in code. If the SDD is complete, the coding phase
proceeds smoothly, since all of the information needed by software engineers is contained in the
SDD.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the SRS and the SDD already in the coding phase.
These tests determine if the software meets defined requirements. A software validation test plan
defines the overall validation testing process. Individual test procedures (test cases, test scripts, test
programs) are developed based on a logical breakdown of requirements. The results of the testing
activities are usually documented in a software validation test report. Following the successful
completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

66TSK05/04/22

2.1-Models for Testing (4)

Time

Analysis

Design

Coding

Testing

Waterfall Iterative XP

Waterfall Extreme programming (XP)Iterative (RUP, SCRUM)

2.1-Models for Testing (4)

• Waterfall
There is no ideal model. Waterfall model is the right one in ideal world.
Analysis - I understand everything
Design - I design perfect solution with complete and right knowledge of customer and target

platform
Coding - Design is coded without bugs
Testing – Well, why the hell test ideal system? Testing can be omitted…
Eureka!!! the system is accepted and it fulfills all stakeholder needs
but ideal does not exist in reality therefore waterfall model is out of touch with reality
• Iterative (RUP, SCRUM)
The development is divided into iterations. In the first iteration we focus on a big picture.

The project is split into small pieces (iterations), in which we deliver product to the
customer to get customer feedback. Iterations are here to reduce time we are walking the
wrong way (one iteration usually takes 2- 3 weeks). The iteration must not be changed
during processing, all plans/bugs/etc must be planned for the next iteration. There must
be no disturbance from the iteration plan - focus on the target. The iteration should end as
planned and evaluated. Unfinished tasks together with bugs found in this iteration must
be estimated again and planned for the beginning of the next iteration. Do not save bugs
for later, unfixed bug means the work was not done. One or two iterations are planned
just to remove bugs (no new functionality is implemented). In SCRUM terminology an
iteration is called a Sprint.

• Extreme programming (XP)
It goes about agile software development methodology (rapid development), the set of daily

practices that embody and encourage particular XP values: communication (simple
design, common metaphors, collaboration of users and programmers, frequent verbal
communication and feedback), simplicity (starting with the simplest solution), feedback
(from the system by writing unit tests and running periodic integration tests, from the
customer by acceptance testing, from the team by quick response to new requirements),
courage (design and code for today and not for tomorrow – developers feel comfortable
with refactoring their code when necessary) and respect between team members.

66

67

67TSK05/04/22
 Specifications -> Design -> Implementation -> Testing

System
Integration Testing

Test
Preparation

Test
Execution

User
Requirements

Acceptance
Testing

System
Specifications

System
Testing

Design Component
Integration Testing

Implementation Component
Testing

Code

Coding
errors

Design errors

Errors in system specifications

Errors in user requirements

V-model: Levels of Testing

For each stage in the model there are
deliverables to the next stage, both
development and testing. Such a delivery is
an example of a baseline.

For example, when the user requirements are
ready, they are delivered both to the next
development stage and to the corresponding
test level, i.e. acceptance testing. The user
requirements will be used as input to the
system specification (where the system
requirements will be the deliverable to the
next stage) and the acceptance test design.

Note that this is a simplified model. In reality,
the arrows should point in both directions
since each stage naturally will find faults and
give feedback to the previous stages.

68

68TSK05/04/22

Test Levels
● Component testing
● Component integration testing
● System testing (functional and non-functional)
● System integration testing
● Acceptance testing
● Maintenance testing

The objectives are different for each test
level (see the V-model)

Test techniques used (black- or white- box)
Object under test, e.g. component, grouped

components, sub-system or complete system
Responsibility for the test level, e.g.

developer, development team, an
independent test team or users

The scope of testing

69

69TSK05/04/22

Paralel development model

Software
development

Test
development

SRS

Preparation
to revision

Finish
criteria

Formal
validation

Incremental development

Informal validation

The concurrent development model is well
suited for rapid, flexible development. In this
model, the SRS is the starting point for
development of both software and tests.
Developers and test engineers work
concurrently to develop and test the
software. In the synchronize-and-stabilize
model, the project team begins with the
product vision, a vague description of what
the product should do. An SRS evolves over
the course of the project from this product
vision.

As bits of the product are developed, they are
immediately tested and feedback is provided
to developers. In the synchronize-and-
stabilize model, this usually occurs about
three times during the project (it can occur as
many times as appropriate, determined by
the project team.

During the formal validation phase, all of the
tests that were run during the informal
validation phase are repeated one more time
on the completed product. During informal
validation, developers are free to change
whatever is required to meet the SRS. During
formal validation, the only changes that are
permitted are changes in response to bugs
reported. No new features are allowed during
this time.

70

70TSK05/04/22

The Rapid Prototyping Model

Requirement qathering and improvment

Fast design

Creation/Improvement of prototype

Customer evaluate prototype and get feedback

Customer accept prototype and Improve requirements

Through away Prototype and traditional development starts

Accept?
No

Yes

By using a prototyping approach, the customer
can assess the prototype and provide
feedback as to its suitability for a particular
application. The prototype can range from a
paper schematic all the way to a working
system that includes both hardware and
software.

The rapid prototyping model begins with a
requirements-gathering stage whereby the
developers collect and refine product
requirements based on whatever information
or source are available. Then, a rapid
prototype is developed. This prototype is
intended to be used for requirements
exploration only. It is not intended to be the
product. Customers can then evaluate and
criticize the prototype, providing the
developers with insight into what they really
want. Based on this evaluation, the prototype
may be refined and evaluated again. This
process continues until the customer and
developers agree that they have a good
definition of the requirements.

The next step in the process requires that the
prototype is thrown away; once the
requirements are understood, the product
can be developed using a more traditional,
structured approach, such as the waterfall
model.

71

71TSK05/04/22

Rational Unified Process (RUP)
• Iterative development
• Requirement management
• Component base architecture

• Visual modeling
• Software Quality Verification
• Change Management

Inceprtion Elaboration Construction Transaction

Milestone Milestone Milestone Milestone

Time

RUP is an example of object-oriented methodologies that emphasize the incremental, iterative, and concurrent nature
of software development.

RUP is a product process developed by Rational Software Corporation that provides project teams with a guide to
more effective use of the industry-standard Unified Modeling Language (UML). RUP also provides software-
engineering best practices through templates, guidelines, and tools. Most of the tools are, as you might guess,
also provided by Rational.

The RUP is based on four consecutive phases. The purpose of the inception phase is to establish the business case
for the project. This is done by creating several high-level use case diagrams, defining success criteria, risk
assessment, resource estimate, and an overall plan showing the four phases and their approximate time frames.
Some deliverables the inception phase might include are:

• A vision statement
• An initial set of use cases
• An initial business case
• An initial risk assessment
• An initial project plan
• Prototypes
The purpose of the elaboration phase is to analyze the problem domain, establish the overall product architecture,

eliminate the highest risks, and refine the project plan. Evolutionary prototypes are developed to mitigate risks
and address technical issues and business concerns. Some key deliverables this phase might include are:

• A relatively complete use case model supplemented with text as appropriate
• Architecture description
• Revised risk assessment
• Revised project plan
• Initial development plan
• Initial user manual
During the construction phase, the remaining components are developed, and thoroughly tested. Key deliverables

from this phase include:
• Software product operating on target platform
• Revised user manual
• Complete description of current release
The purpose of the transition phase is to transition the product from development to the user community. Activities that

would typically be performed include:
• Beta testing by users
• Conversion of existing information to new environment
• Training of users
• Product rollout

72TSK05/04/22

Rational Unified Process (RUP)

73TSK05/04/22

Test Driven Development
● TDD adopts a “Test-First” approach in which unit tests

are written before code.
● This idea, which dates back to ancient times, was

formalized in the mid-1990s by Kent Beck, who made it
one of the pillars of the Extreme Programming (XP)
methodology.

● TDD is a way of managing fear during programming.

74

74TSK05/04/22

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

75

75TSK05/04/22

TDD – Clean Tests
● The test code is as important if not more important than

the production code!
– readability
– simple, clear and as dense a test as possible
– a unit test should represent only one concept and contain

only one assertion

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

76

76TSK05/04/22

TDD – Clean Tests
● 5 other rules that can be easily memorized using the

acronym FIRST:
– Fast: a test must be fast to be executed often.
– Independent: tests must not depend on each other.
– Repeatable: a test must be reproducible in any environment.
– Self-Validating: a test must have a binary result (Failure or

Success) for a quick and easy conclusion.
– Timely: a test must be written at the appropriate time, i.e.

just before the production code it will validate.

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

77

77TSK05/04/22

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

78

78TSK05/04/22

Test Driven Development
● Test structure - Effective layout of a test case ensures all required actions are

completed, improves the readability of the test case, and smooths the flow of
execution. Consistent structure helps in building a self-documenting test case. A
commonly applied structure for test cases has (1) setup, (2) execution, (3)
validation, and (4) cleanup.

● Setup: Put the Unit Under Test (UUT) or the overall test system in the state
needed to run the test.

● Execution: Trigger/drive the UUT to perform the target behavior and capture all
output, such as return values and output parameters. This step is usually very
simple.

● Validation: Ensure the results of the test are correct. These results may include
explicit outputs captured during execution or state changes in the UUT.

● Cleanup: Restore the UUT or the overall test system to the pre-test state. This
restoration permits another test to execute immediately after this one.[8]

79

79TSK05/04/22

Individual best practices states that one should
● Separate common set-up and teardown logic into test support services

utilized by the appropriate test cases.
● Keep each test oracle focused on only the results necessary to validate

its test.
● Design time-related tests to allow tolerance for execution in non-real

time operating systems. The common practice of allowing a 5-10 percent
margin for late execution reduces the potential number of false negatives
in test execution.

● Treat your test code with the same respect as your production code. It
also must work correctly for both positive and negative cases, last a long
time, and be readable and maintainable.

● Get together with your team and review your tests and test practices to
share effective techniques and catch bad habits. It may be helpful to
review this section during your discussion.

80

80TSK05/04/22

Practices to avoid - "anti-patterns"
● Having test cases depend on system state manipulated from

previously executed test cases (i.e., you should always start a
unit test from a known and pre-configured state).

● Dependencies between test cases. A test suite where test
cases are dependent upon each other is brittle and complex.
Execution order should not be presumed. Basic refactoring
of the initial test cases or structure of the UUT causes a
spiral of increasingly pervasive impacts in associated tests.

● Interdependent tests. Interdependent tests can cause
cascading false negatives. A failure in an early test case
breaks a later test case even if no actual fault exists in the
UUT, increasing defect analysis and debug efforts.

81

81TSK05/04/22

Practices to avoid - "anti-patterns"
● Testing precise execution behavior timing or

performance.
● Building "all-knowing oracles". An oracle that inspects

more than necessary is more expensive and brittle over
time. This very common error is dangerous because it
causes a subtle but pervasive time sink across the
complex project.

● Testing implementation details.
● Slow running tests.

82TSK05/04/22

Test Driven Development
Myth
● You create a 100% regression test suite

Reality
Although this sounds like a good goal, and it is, it unfortunately isn't realistic for several reasons:
● I may have some reusable components/frameworks/... which I've downloaded or purchased

which do not come with a test suite, nor perhaps even with source code. Although I can, and
often do, create black-box tests which validate the interface of the component these tests
won't completely validate the component.

● The user interface is really hard to test. Although user interface testing tools do in fact exist,
not everyone owns them and sometimes they are difficult to use. A common strategy is to not
automate user interface testing but instead to hope that user testing efforts cover this
important aspect of your system. Not an ideal approach, but still a common one.

● Some developers on the team may not have adequate testing skills.
● Database regression testing is a fairly new concept and not yet well supported by tools.
● I may be working on a legacy system and may not yet have gotten around to writing the tests

for some of the legacy functionality.

83TSK05/04/22

Test Driven Development
Myth
● The unit tests form 100% of your design specification

Reality
● The reality is that the unit test form a fair bit of the

design specification, similarly acceptance tests form a
fair bit of your requirements specification, but there's
more to it than this. (Agile Model - Driven Development
-AMDD).

● Because you think about the production code before
you write it, you effectively perform detailed design.

84TSK05/04/22

Test Driven Development
Myth
● You only need to unit test

Reality
● For all but the simplest systems this is completely false.
● The agile community is very clear about the need for a

host of other testing techniques.

85TSK05/04/22

Test Driven Development
Myth
● TDD is sufficient for testing

Reality
● TDD, at the unit/developer test as well as at the

customer test level, is only part of your overall testing
efforts.

● At best it comprises your confirmatory testing efforts,
but you must also be concerned about independent
testing efforts which go beyond this.

86

86TSK05/04/22

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

87TSK05/04/22

Test Driven Development
Myth
● TDD doesn't scale

Reality
This is partly true, although easy to overcome. TDD scalability issues include:
1) Your test suite takes too long to run. This is a common problem:

– First, separate your test suite into two or more components. One test suite contains the tests for the new
functionality that you're currently working on, the other test suite contains all tests. You run the first test suite
regularly, migrating older tests for mature portions of your production code to the overall test suite as
appropriate. The overall test suite is run in the background, often on a separate machine(s), and/or at night.

– Several levels of test suite -- development sandbox tests which run in 5 minutes or less, project integration tests
which run in a few hours or less, a test suite that runs in many hours or even several days that is run less often.

2) Not all developers know how to test.
● That's often true, so get them some appropriate training and get them pairing with people with unit testing skills.

3) Everyone might not be taking a TDD approach.
– Taking a TDD approach to development is something that everyone on the team needs to agree to do.

● they either need to start
● they need to be motivated to leave the team
● team should give up on TDD.

88

88TSK05/04/22

2.2-Economics of Testing
Testing Creates Value or Not?
● Reduction of business risk
● Ensuring time to market
● Control over the costs

 Reduction of business risk

By assuring that the application functionality
meets the business objectives

By decreasing of application failure and
downtime

By assuring the interoperability of the
information systems

By assuring required performance of the
applications

 Ensuring time to market

By managing the overall software
development lifecycle

By facilitating the need for diversified
competences

By managing the complex relationships of
the development organization, customer
business processes and technology

Control over the costs
By utilizing testing tools along the product

lifecycle
By utilizing project management practices

and tools
By maximizing the return on investments

through best practices in testing & QA

89

89TSK05/04/22

ROI of Testing
● Investment to testing (resources, tools, testing

environments)
● Defect related costs

– Development (lost data, RCA, fixing, building, distribution)
– Business (down-time, loss of customers, lost profit, damage

to corporate identity)
● Cost savings (investment to testing decreases defect

related costs)
● ROI = Cost savings – Investment to testing

ROI = Return On Investments
 Investments to testing
Costs connected with testing activity:
 People (testers, test analysts, test developers, test managers)
 Test tools (test management tools, test-running tools, performance tools, etc.)
 Test environments (exact copy of the production system – can include many expensive servers with

operating systems, drivers, applications, databases)
We can save these costs by not doing testing.
 Defect related costs
Fixing found defects brings direct costs in development but bad quality of software brings indirect costs

in the business.
Examples of development costs:
 Restoring lost data
 Route Cause Analysis
 Fixing the defects
 Building new release, patch, emergency fix
 Distribution to customers, replacing the system
Examples of business costs:
 System that doesn’t work cannot generate profit
 Loss of customers that run over to the competition
 Late delivery => delayed sales => lost profit
 Damage to corporate identity
 Cost savings
The overall costs can be controlled by investing to testing.
+ROI - cost savings are greater than investments to testing (when testing process is mature and stable)
-ROI – cost saving are less than investments to testing (for first projects, first releases, etc.)

90

90TSK05/04/22

Time-to-market

Time

Cost

Support cost

Revenue

Time-to-market

Time-to-profit

Time-to-market – Poor testing

In most organizations, the pressure to get
products to market as quickly as possible is
intense. Application development time frames
that once took years are now compressed to
months. For Web applications, the advent of
Internet time has led to development cycles
measured in days and weeks. As a result,
many organizations are looking for ways to
streamline the development process in order
to meet increasing market pressures and
make decisions related to product quality
based on some notion that the product is
good enough.

91

91TSK05/04/22

Time-to-profit
Cost

Time

Support cost

Revenue

Time-to-market

Time-to-profit

Time-to-profit – Good testing

Time-to-profit represents the time from when a
product is released to the break-even point –
the point at which the revenue stream
generated by sales of the product exceeds
the cost of maintaining and supporting the
product. When the software development
organization is focused solely on time-to-
market goals, the quality of the product
frequently suffers. Releasing a low-quality
products usually results in higher
maintenance and support costs and unhappy
customers. The break-even point occurs
much later (if at all). Alternatively, if the
software development organization is geared
towards achieving time-to-profit goals, the
quality of the product is usually much better,
thus reducing overall maintenance and
support costs. Lower maintenance and
support costs means happier customers. The
break-even point occurs much sooner, which
means higher profits.

92

92TSK05/04/22

0.1 x

1 x

10 x

100 x

Requirements Design Testing Maintenance

Cost of finding and
correcting fault

Product Lifecycle Phase

Early Test Design

This picture shows what happens to the costs
when faults are found during different
development phases. As you can see the
costs increases dramatically for faults found
during field use.

A good way to find faults is to design tests
Faults in specifications are often found while

analyzing specifications during test design. If
test design starts early those faults will be
found early.

Most important faults are found first
Faults in requirements specifications are the

most important ones since they will affect the
system design and will be built in to the
system during each stage of the
development. This type of faults are very
expensive to fix if they are found late.

Faults are not built in
All found faults should be corrected and will

therefore not be implemented, i.e. major
requirements faults will not be built in to the
next stage.

Prevents fault multiplication
Early test design reduces the risk for fault

multiplication.
Found faults can lead to changed

requirements
All changes of requirements shall be made as

early as possible to reduce the amount of
rework needed.

93TSK05/04/22

Cost of defect
Scenario 1: A defect is found in the requirements specification in the early test
development phase
● Requirements specification is modified and revised/inspected
● Ensuring that everything is included in the baseline intended for development

Scenario 2: Customer discovers a serious defect during normal use
● Finding the reason for the failure
● Analyzing the problem/side effects of the defect/fix the defect?
● Fix defect in code and corresponding specification
● Documentation modification, revision/inspection
● Testing the fixed defect on several levels
● Regression testing
● Ensuring that all affected customers get the new version of the system/product

94TSK05/04/22

The cost of poor testing
● Testing is expensive!

– Compared to what?
● Low product/system quality

– Why should people buy it?
– Long term reputation, why should people buy any

product/system from this company?
– Valuable resources have to spend time fixing defects in the

old product/system instead of contributing to the creation of
a new high quality product/system

● Much more expensive to fix the defect later

95

95TSK05/04/22

2.3-Test Planning
Purpose of Test Planning
● Plan: To plan, control, co-ordinate and follow up all

activities within the testing workflow.
● Control: To give directions on how testing should be

performed, which means to specify which test strategies,
processes, methods, tools and templates to be used.

● Co-ordinate: To co-ordinate and give continuous feedback
to the workflows that provide input for the test planning,
and to the workflows that use the output.

● Follow up: To create conditions for controlled adjustments
of unforeseen events.

The purpose of the test planning is:
 To plan, control, co-ordinate and follow up all activities within the

testing workflow.
 To give directions on how testing should be performed, which

means to specify which test strategies, processes, methods,
tools and templates to be used.

 To co-ordinate and give continuous feedback to the workflows
that provide input for the test planning, and to the workflows that
use the output.

 To create conditions for controlled adjustments of unforeseen
events.

96

96TSK05/04/22

Test Strategy

Master Test Plan

System Test Plan
Component
Test Plan

Acceptance
Test Plan

Company level

Project level

Test Planning Levels

Company level
Many companies have a documented test

strategy, i.e. a separate test strategy
document or a Master Test Plan on company
level.

Project level
Depending on project size and complexity, the

test planning can be divided into a hierarchy
of test plans, e.g. one high level test plan
(Master Test Plan) and some more detailed
test plans (Component Test Plan, System
Test Plan, Acceptance Test Plan). The
division can follow test areas, test stages or
specific aspects of testing. The picture above
is an example of a test plan hierarchy. The
Master Test Plan is a comprehensive
description of all testing that will be done in
the project. It refers to the other test plans
where each test stage is described.

97

97TSK05/04/22

Test Plan Contents (ANSI/IEEE 829-1998)
1.Test plan identifier
2.Introduction
3.Test items
4.Features to be tested
5.Features not to be tested
6.Approach (strategy)
7.Item pass/fail criteria
8.Suspension criteria and resumption requirements

1. Test plan identifier
The test plan must be uniquely identified.
2. Introduction
Summarise the software items and features to be tested. References to project authorization, Project

Plan, Quality Plan, Configuration Management Plan, relevant policies and standards shall be
specified. References to higher level test plans shall also be included, if applicable.

3. Test items
Identify test items including their version/revision. Supply references to available test item

documentation, such as requirement specifications, design specifications, users guide, operations
guide, installation guide, etc.

4. Features to be tested
Identify all software features and combinations of features to be tested and associated test design

specifications.
5. Features not to be tested
Identify features and combinations of features that will not be tested. Specify the reasons why they will

not be tested.
6. Approach (strategy)
Describe the overall approach to testing. Identify groups of features and specify the chosen test

approach that will ensure adequate testing for each group. Specify major activities, techniques and
tools. Specify the minimum degree of the desired test comprehensiveness and how to determine
when the testing effort is sufficient. Identify techniques to be used to trace requirements. Identify
significant constraints.

7. Item pass/fail criteria
Specify the criteria to be used to determine whether each test item has passed or failed testing.
8. Suspension criteria and resumption requirements
Specify the criteria used to suspend all testing or parts of the testing activity described in this test plan.

Specify testing activities that must be repeated when testing is resumed.

98

98TSK05/04/22

Test Plan Contents (ANSI/IEEE 829-1998)
9.Test deliverables
10.Testing tasks
11.Environmental needs
12.Responsibilities
13.Staffing and training needs
14.Schedule
15.Risks and contingencies
16.Approvals

9. Test deliverables
Identify the test documents, i.e. test plan, test design specifications, test case specifications, test procedure

specifications, test item transmittal reports, test logs, test incident reports and test summary reports to be
delivered. Test tools may also be included

10. Testing tasks
Identify all testing task, e.g. test planning, test specification, test execution, test configuration

management. Identify all dependencies between tasks and special skills needed.
11. Environmental needs
Specify the necessary test environment, both the physical characteristics of the facilities including the

hardware, the communications and system software, the mode of usage and any other software or
supplies needed to support the test. Specify the level of security that must be provided. Identify test
tools and any other needs (e.g. office space, phones, white-boards).

12. Responsibilities
Identify the groups responsible for managing, designing, preparing, executing, witnessing, checking and

resolving issues. Identify the groups responsible for providing the test items and the environmental
needs.

13. Staffing and training needs
Specify test staffing and skills needed. Identify training possibilities.
14. Schedule
Include test milestones identified in the software project schedule as well as all item transmittal events.

Define any additional test milestones needed. Estimate the time required for each task. Specify the
schedule for each testing task and test milestone. For each testing resource (i.e. facilities, tools and
staff), specify its periods of use.

15. Risks and contingencies
Identify the high-risk assumptions of the test plan. Specify contingency plans for each (e.g. delayed

delivery of test items might require increased night shift scheduling to meet the delivery date).
16. Approvals
Specify the names and titles of all persons who must approve this plan. Provide space for the signatures

and dates.

99

99TSK05/04/22

2.4-Component Testing
● Component Testing
● First possibility to execute anything
● Different names (Unit, Module, Basic, … Testing)
● Usually done by programmer
● Should have the highest level of detail of the testing

activities

The objective of component (unit, module)
testing is to find bugs in individual
components (units, modules) by testing them
in an isolated environments. Component
testing is the first dynamic testing activity in
the development life cycle. Traditionally (and
most practically) component testing have
been performed by programmers. One major
reason for this is that component testing
tends to require knowledge of the code which
is why developers are well suited for this.
Unfortunately component testing is often
viewed more as a debugging activity than as
a testing activity.

Mature ladder:
Developers are checking their own modules

with little or no documentation (they are blind
for their own faults)

Buddy checking of modules by peer
developers who didn’t develop the modules
(a good compromise)

Planned activity, design of test cases,
recording of test results and qualified
decision about test completion criteria

100

100TSK05/04/22

Component
Test

Planning

Component
Test

Specification

Component
Test

Execution

Component
Test

Recording

Component
Test

Completion?

BEGIN

END

Fix component test plan and repeat

Fix component test specification and repeat

Fix component test specification and repeat

Fix component and repeat

Component Test Process (BS 7925-2)

 Component Test Planning
The component test planning contains two phases. In the first phase the overall project test strategy (generic) and the

project test plan (project specific) are defined. The project test strategy includes test case selection methods,
documentation, entry and exit criteria as well as the component test process itself. The project test plan contains
information of the scope of the project, the resources needed and how to apply the strategy in the current project.
The second phase of the planning deals with components individually. For each component a separate
component test plan is produced (to list the specific test case design techniques, the test measurement
techniques, the tools including stubs and drivers and the test completion criteria that apply to the specific
component).

 Component Test Specification
Component test specification is the activity of applying the test design techniques specified in the component test plan

to the information in the design specification, producing a number of test cases. The test cases should be
documented in the component test case specifications. Each test case should also have a unique name and
contain enough detailed instructions on how to perform the test case and a reference to the requirement that is
tested by that test case.

 Component Test Execution
During component test execution, the test cases are executed on the actual module, preferable in the priority order.

However, things might happen during the execution of the test cases which may force deviations from the
planned order of execution. This is normal and quite all right as long as the deviations are conscious choices.

 Component Test Recording
During the execution of test cases, test results are produced. Basically there are two types of results: logs and

pass/fail results. A log is just a chronological list of events that took place during the execution. The second type
of result is the result of comparing the actual and the expected output. After a fault is located it usually pays off to
investigate where the fault was first introduced in the design process and it is a good practice to correct the fault
in all documents that contain the fault. A component test report is the document which contains a summary of all
results of the second type.

 Component Test Completion?
Based on the information in the component test reports, the specified exit criteria in the test strategy and/or the test

plans, and the current time budget, the decision whether or not to continue testing, can be performed. Here there
are also several options:

 Enough coverage has been obtained and quality of test object is OK => component testing can be
ended and the component delivered to the next level of testing (usually to component integration
testing).

 All test cases have been executed but enough coverage has not yet been achieved => more test cases
have to be designed and executed to increase the coverage.

 Time is out but the quality of the test object is too low => negotiate with project stakeholders to get
more time to test and to correct faults (this is however typically NOT the responsibility of the test sub-
project).

101

101TSK05/04/22

Component Testing Check List
● Algorithms and logic
● Data structures (global and local)
● Interfaces
● Independent paths
● Boundary conditions
● Error handling

● Algorithms and logic:
● - Have algorithms and logic been correctly implemented?
●

● Data structures (global and local):
● - Are global data structures used?
● - If so, what assumptions are made regarding global data?
● - Are these assumptions valid?
● - Is local data used?
● - Is the integrity of local data maintained during all steps of an algorithm’s

execution?
●

● Interfaces:
● - Does data from calling modules match what this module expects to

receive?
● - Does data from called modules match what this module provides?
●

● Independent paths:
● - Are all independent paths through the modules identified and exercised?
●

● Boundary conditions:
● - Are the boundary conditions known and tested to ensure that the module

operates properly at its boundaries?
●

● Error handling:
● - Are all error-handling paths exercised?
●

102

102TSK05/04/22

2.5-Component Integration Testing
● Prerequisite

– More than one (tested and accepted) component/subsystem
● Steps

– (Assemble components/subsystems)
– Test the assembled result focusing on the interfaces between

the tested components/subsystems
● Goal

– A tested subsystem/system

The objective of integration testing (integration testing in the small according to BS 7925-1) is to
find bugs related to interfaces between modules as they are integrated together. Integration
testing can be performed at any level in the development process where two or more parts
(SW and/or HW) are to be assembled into something bigger. However, when the complete
systems are to be integrated, the usual terminology is “system integration testing”. The
starting point of an integration testing activity is two or more parts that have already been
tested on their own.

According to some people both the actual assembling of the parts and the following tests are
part of the component integration testing. Other people only consider the actual testing as
the component integration testing.

Even though all parts have already been tested separately we still want to test the assembled
part. There are several reasons for this:

 One module can have an adverse effect on another
 Sub-functions, when combined, may not produce the desired major function
 Individually acceptable imprecision in calculations may be magnified to

unacceptable levels
 There might be interface problems between two or more of the parts
 Timing problems (in real-time systems) are not detectable by component testing
 Resource contention problems are not detectable by component testing

103

103TSK05/04/22

Strategies
● Big-bang
● Top-down
● Bottom-up
● Thread integration
● Minimum capability

integration

GUI

Messaging logicCMS logic

Email
formatter

SMS gatewayFile access ORM

REST
connector

DB driver
Email

sender

• Big-Bang: Assemble all components at once
• Top-Down: Start from the top, adding one

new component at a time, e.g.:
• Step 1: A + B
• Step 2: A + B + C
• Step 3: A + B + C + D, etc.

• Botton-Up: Start from the bottom, adding one
new component at a time, e.g.:

• Step 1: H + E
• Step 2: H + E + I
• Step 3: H + E + I + B, etc.

• Thread Integration: Use some order of
processing to determine the order of
integration, e.g. a specific user transaction,
an interrupt, etc.

• Minimum Capability Integration: Base the
order of integration on which parts of the
system that contain the most basic
functionality.

104

104TSK05/04/22

Stubs and Drivers

A

CB

D E

A

B

D-E stub

Driver A

B

D E

• A stub is a small piece of code which is used
to simulate a component that is lower in the
calling hierarchy. The stub has the same
interface as the component it replaces, but
the stub has no (or very limited) intelligence.
Its only purpose is to make sure the calling
component can continue to execute even
after the call.

• A driver is a piece of code which is used to
control the execution of one of more
components. Usually the driver uses one of
the existing interfaces of a module but
sometimes, special interfaces are created in
a module to allow drivers to be connected.

Problems: Both stubs and drivers are software
and thus need maintenance and
configuration management. Neither stubs nor
drivers work like the real code. Test results
may not be trusted completely.

105

105TSK05/04/22

Strategies
Big-Bang Integration
+ No need for stubs or drivers
- Hard to locate faults, re-testing after fixes more extensive
Top-Down Integration
+ Add to tested baseline (easier fault location), early display of
“working” GUI
- Need for stubs, may look more finished that it is, often crucial
details left until last
Bottom-Up Integration
+ Good when integrating on HW and network, visibility of details
- No working system until last part added, need for drivers and stubs

 Big-Bang Integration (Everything at once)
It looks as if this is an easy way of integrating but in reality this is not the case. The major

reason for this is the difficulty in locating faults. Since nothing is proven to work everything
should be suspected every time a failure has been observed. Adding to this is also the “no
faults in my code” syndrome. However, when most modules have already been integrated
or if we have the lucky situation that after about 50% modules have been integrated without
serious problems, then big-banging the rest might be an option to consider.

 Top-Down Integration (Start from top and add one at a time)
A not so obvious advantage with this approach is that after the first few modules have been

integrated, the integration can be performed in parallel. The worst disadvantage is that
performance critical parts of the system tend to be integrated last since they generally exist
closest to the hardware, far away from the user interface. Faults in performance critical
parts of the system often cause architectural changes, which take time and thus should be
discovered as quickly as possible.

 Bottom-Up Integration (Start from bottom and add one at a time)
With bottom-up integration several teams can start integrating different parts of the system

independently of one another. As integration progresses, it will be more are more serialized.
The worst problem however with this strategy is the extensive need for stubs and drivers.

106

106TSK05/04/22

Strategies
Thread Integration
+ Critical processing first, early warning of performance
problems
- Need for complex drivers and stubs
Minimum Capability Integration
+ Read working (partial) system early, basic parts most
tested
- Need for stubs, basic system may be big

 Thread Integration (Choose order based on execution)
Thread integration is of much benefit if the amount of stubs and drivers can be kept to a

minimum. This is the case only if the software architecture actually reflect the threads or
tasks that the system is to perform. The most popular way of partitioning a system into
modules is grouping similar functionality into the same module. The effect of such a
partitioning from a thread/task perspective is that the same task may require the
involvement of many modules, while each one of these modules performs a small part of
many tasks. In such a situation thread integration is not recommended.

 Top-Down Integration (Start from top and add one at a time)
A not so obvious advantage with this approach is that after the first few modules have been

integrated, the integration can be performed in parallel. The worst disadvantage is that
performance critical parts of the system tend to be integrated last since they generally exist
closest to the hardware, far away from the user interface. Faults in performance critical
parts of the system often cause architectural changes, which take time and thus should be
discovered as quickly as possible.

 Minimum Capability Integration (Basic functionality first)
Which are the necessary components for our system to be able to perform the most basic

functionality it is designed to do? Suppose we are building a client/server application. The
communication between the client and the server could then be considered a basic
functionality… To get this to work we need operating systems on both the client and the
server, communication software in both ends, some rudimentary application with a user
interface on the client and finally some type of processing application, and possibly a
database engine on the server. This is really a lot!

107

107TSK05/04/22

Integration Guidelines
● Integration plan determines build order
● Minimize support software
● Integrate only a small number of components at a time
● Integrate each component only once

As have been seen in the previous slides there
really is no silver bullet in integration. No
strategy will solve all problems. What usually
happens is that several strategies are
combined into a custom designed strategy
that hopefully will work for the particular
integration problem it is meant to solve.

A key activity here is integration planning. One
part is to decide on the order in which the
modules should be integrated and delivered.
Another part is to make sure that there is
enough back-up resources for unexpected
events. This is particularly important during
integration since many activities have to be
performed serially, without possibilities for
concurrent work. Therefore, the effect of a
delay in almost any integration activity will
hurt the planned finish date.

Risk analysis and risk minimization are
important planning activities. Some general
rules of thumb to keep the risks down are
listed in the slide.

108

108TSK05/04/22

2.6-System Testing (functional)
Functional System Testing
● Test of functional requirements
● The first opportunity to test the system as a whole
● Test of E2E functionality
● Two different perspectives:

– Requirements based testing
– Business process based testing

System testing is often divided into two
categories, functional system testing and
non-functional system testing. The non-
functional tests are as important as the
functional tests but they are often not as
clearly specified as the functional
requirements and may therefore be harder to
test. Functional correctness is of course a
pre-requisite for non-functional testing.
System testing is usually performed by
independent testers (departments).

Functional requirement: “Requirement that
specifies a function that a system or system
component must perform” (ANSI/IEEE Std.
729/1983). Functional system testing is
probably the first opportunity to test the
system as a whole. Parts of the functionality
have been tested in earlier test phases but
now whole functions are tested (end to end
functionality).

109

109TSK05/04/22

2.6-System Testing (functional) (2)
Requirements Based Testing
● Test cases are derived from specifications
● Most requirements require more than one test case

Business Process Based Testing
● Test cases are based on expected user profiles
● Business scenarios
● Use cases

An example of requirements-based testing is
when test cases are derived from the user
requirements specification and the system
requirements specification (as used for
contracts).

There are usually one or more positive
(correctness of the functionality as described
in the specifications) and negative (opposite
of the requirements – when they render an
error message or exception) test cases.

Business process-based testing comes from
using the system:

Test cases are based on expected user
profiles

To define the expected user profiles it can be
useful to analyze the usage of old similar
systems and interview users.

Business scenarios
A business scenario describes what happens

in the system during a typical business
transaction, e.g. a customer makes a
withdrawal using an automatic teller
machine.

Use cases
Use cases are often used in object-oriented

development (RUP). They can be used as
basis for test cases since they describe the
use of the system from a business
perspective.

110

110TSK05/04/22

2.7-System Testing (non-functional/system)
What is Non-Functional System Testing?
● Testing non-functional requirements
● Testing the characteristics of the system
● Types of non-functional tests:

– Load, performance, stress
– Security, usability
– Storage, volume,
– Installability, platform, recovery, etc.
– Documentation (inspections and reviews)

The types of non-functional tests mentioned
here are the ones that are mentioned in the
syllabus. There exist more types and the
types mentioned here can have different
names.

111TSK05/04/22

Efficiency Testing
● Generic term „Performance testing“

– [ISTQB] The process of testing to determine the
performance of a software product.

– [Rex Black] Testing to evaluate the degree to which a system
or component accomplishes its designated functions, within
given constraints, regarding processing time and throughput
rate.

112TSK05/04/22

Efficiency Testing – Advanced Software Testing Vol. 3
● Load testing
● Stress testing
● Scalability testing
● Resource utilization testing
● Endurance or soak testing
● Spike testing
● Reliability testing
● Background testing
● Tip-over testing

113TSK05/04/22

Load testing
● A type of performance testing conducted to evaluate the

behavior of a component or system with increasing load (e.g.,
numbers of parallel users and/or numbers of transactions) to
determine what load can be handled by the component or
system.

● Typically, load testing involves various mixes and levels of load,
usually focused on anticipated and realistic loads.

● The loads often are designed to look like the transaction
requests generated by certain numbers of parallel users. We can
then measure response time or throughput. Some people
distinguish between multi-user load testing (with realistic
numbers of users) and volume load testing (with large numbers
of users), but we’ve not encountered that too often.

114TSK05/04/22

Stress testing
● A type of performance testing conducted to evaluate a system

or component at or beyond the limits of its anticipated or
specified workloads or with reduced availability of resources
such as access to memory or servers.

● Stress testing takes load testing to the extreme and beyond by
reaching and then exceeding maximum capacity and volume.

● The goal here is to ensure that response times, reliability, and
functionality degrade slowly and predictably, culminating in
some sort of “go away I’m busy” message rather than an
application or OS crash, lockup, data corruption, or other
antisocial failure mode.

115TSK05/04/22

Scalability testing
● Takes stress testing even further by finding the

bottlenecks and then testing the ability of the system to
be enhanced to resolve the problem.

● In other words, if the plan for handling growth in terms
of customers is to add more CPUs to servers, then a
scalability test verifies that this will suffice.

● Having identified the bottlenecks, scalability testing can
also help establish load monitoring thresholds for
production.

116TSK05/04/22

Resource utilization testing
● Evaluates the usage of various resources (CPU, memory,

disk, etc.) while the system is running at a given load.

117TSK05/04/22

Endurance or soak testing
● Running a system at high levels of load for prolonged

periods of time. A soak test would normally execute
several times more transactions in an entire day (or
night) than would be expected in a busy day to identify
any performance problems that appear after a large
number of transactions have been executed.

● It is possible that a system may stop working after a
certain number of transactions have been processed due
to memory leaks or other defects. Soak tests provide an
opportunity to identify such defects, whereas load tests
and stress tests may not find such problems due to their
relatively short duration.

118TSK05/04/22

Spike testing
● The object of spike testing is to verify a system’s stability during a

burst of concurrent user and/or system activity to varying degrees of
load over varying time periods. Here are some examples of business
situations that this type of test looks to verify a system against:
– A fire alarm goes off in a major business center and all employees evacuate.

The first alarm drill completes and all employees return to work and log into
an IT system within a 20-minute period.

– A new system is released into production and multiple users access the
system within a very small time period.

– A system or service outage causes all users to lose access to a system. After
the outage has been rectified, all users then log back onto the system at the
same time.

– Spike testing should also verify that an application recovers between
periods of spike activity.

119TSK05/04/22

Reliability testing
● Testing the ability of the system to perform required

functions under stated conditions for a specified period
of time or number of operations.

120TSK05/04/22

Background testing
● Executing tests with active background load, often to

test functionality or usability under realistic conditions.

121TSK05/04/22

Tip-over testing
● Designed to find the point where total saturation or

failure occurs. The resource that was exhausted at that
point is the weak link. Design changes (ideally) or more
hardware (if necessary) can often improve handling and
sometimes response time in these extreme conditions.

122TSK05/04/22

Efficiency testing and SDLC (1)
● During the development phases, from requirements

through implementation, static testing should be done
to ensure meaningful requirements and designs from an
efficiency viewpoint.

● During unit testing, performance testing of individual
units (e.g., functions or classes) should be done. All
message and exception handling should be scrutinized;
each message type could be a bottleneck. Any
synchronization code, use of locks, semaphores, and
threading must be tested thoroughly, both statically and
dynamically.

123TSK05/04/22

Efficiency testing and SDLC (2)
● During integration testing, performance testing of collection

of units (builds or backbones) should be performed. Any
code that transfers data between modules should be tested.
All interfaces should be scrutinized for deadlock problems.

● During system testing, performance testing of the whole
system should be done as early as possible. The delivery of
functionality into test should be mapped so that those
pieces that are delivered can be scheduled for the
performance testing that can be done.

● During acceptance testing, the performance of the whole
system in production should be demonstrated (after making
sure it is going to work with earlier testing, right?).

124

124TSK05/04/22

Load Testing
”Testing conducted to evaluate the compliance of a system
or component with specified work load requirements” –
BS 7925-1
● The purpose of the test, i.e. can the system:

– handle expected workload?
– handle expected workload over time?
– Perform it’s tasks while handling expected workload?

● Load testing requires tools
● Load testing is used e.g. to find memory leaks or pointer

errors

Can the system handle expected workload
over time?

The purpose of load testing is to verify that the
system can handle the required load during a
long time without problems. The types of
faults that can be found during these tests
are for instance memory leaks.

Can the system perform it’s tasks while
handling expected workload?

To verify this, functional testing is performed
while having background load equivalent to
the expected workload.

Load testing requires tools
Tools will be needed, e.g. for load generation,

test running, test monitoring and analysis.

125

125TSK05/04/22

load

t

response time

Break point

Load Testing

Load testing could be called also as a stability
testing, because this testing is runned under
specified work load for hours or even for
days, to find out if there are problems e.g.
memory usage.

126

126TSK05/04/22

Performance/Scalability Testing
”Testing conducted to evaluate the compliance of a system
or component with specified performance requirements”
– BS 7925-1
● The purpose of the test, i.e. can the system:

– handle required throughput without long delays?
● Performance testing requires tools
● Performance testing is very much about team work

together with database, system, network and test
administrators

Can system handle required throughput without
long delays?

Primary goal of performance testing is to verify
that the system can handle the acceptable
system performance. The types of faults that
can be found during these tests are for
instance bottlenecks.

Performance testing requires tools
Tools will be needed, except others, e.g. for

generating time/load graphs.

127

127TSK05/04/22

Break point

throughput

t

response time
Performance Testing

The target of performance testings are to find
out the point, when the system starts to
suffer, i.e. response time rises and system
doesn’t respond anymore to user actions.

128

128TSK05/04/22

Stress/Robustness Testing
● ”Testing conducted to evaluate the compliance of a

system or component at or beyond the limits of its
specified requirements”

● The purpose of the test, i.e.:
– Can the system handle expected maximum (or higher)

workload?
– If our expectations are wrong, can we be sure that the system

survives?
● Should be tested as early as possible
● Stress testing requires tools

Can the system handle unexpected workload?
The purpose of stress testing is to verify that

the system can handle exceptional
performance or operational situation without
problems. The system is exposed to
maximum (or higher) workload short-time.

Stress testing requires tools
Tools will be needed, e.g. for load generation,

test running, test monitoring and analysis.

129

129TSK05/04/22

load

t

response time

Break point

Stress Testing

In stress testing we continually reload and
reduce load to find out possible memory
leaks or bottlenecks.

130

130TSK05/04/22

Performance process planning
● Analyze and design of performance tests (co-operation of more expert

teams)
● Obtaining information on how the system will be used

– The number of users with different profiles
– Business processes
– Typical user tasks (scripts)
– Dynamic schedule for virtual users (scripts)

● Implementation of performance tests (scripts, scenarios)
● Run performance tests and monitor different parts of the information

system (LAN, servers, clients, databases, etc.)
● Analyze the results and get feedback to development with some

suggestions
● Tune the system until the required performance is achieved

Analyze and desing: setting the goals of
performance testing, specification of
expected botlenecks, setting performance
requirements (measurable, comparable,
clearly defined, realistic), definition of
performance metrics (response time, hits,
throughtput, resource utilization, etc.), gather
the information about how the software is
being used

Implementation: test scripts are developed
for each user’s task, measuring of
transactions is added, parameters are set,
test scenarios are scheduled (virtual users
are started, processed and terminated in
different timescales), load generators are
parametrized

Execution: running performance tests and
monitoring the system

Analyze:Results are analyzed:
respose time of the transaction
hits per sec (web server)
throughput [kbits/sec]
monitoring resources (CPU, memory,

network)
performance graph (response time vs.

number of VU)
Tuning: changing of system parameters to

achieve better performance, sometimes the
system must be redesigned or extended
(number of CPU’s, size of the memory, etc.)

131

131TSK05/04/22

Security Testing
“Testing whether the system meets its specified security
objectives” - BS 7925-1
● The purpose of security tests is to obtain confidence

enough that the system is secure
● Security tests can be very expensive
● Important to think about security in early project phases
● Passwords, encryption, firewalls, deleted

files/information, levels of access, etc.

There are different types of security problems:

Examples of security tests
 Password
Is it possible to get access to the system without entering the correct password? Are all

necessary parts of the system really password protected as specified?
 Firewalls
It is possible to force the firewall?
 Deleted files/information
Are dynamically used resources physically cleared from information or only logically cleared? Is

it possible to recreated deleted files?
 Levels of access
It is possible to get access to information from a higher security level than the actual access

level should permit?

132

132TSK05/04/22

Usability Testing
“Testing the ease with which users can learn and use a
product” – BS 7925-1
● How to specify usability?
● Is it possible to test usability?
● Preferable done by end users
● Probably their first contact with the system
● The first impression must be good!

The real problem of usability testing is the
subjectivity of users.

How can we know if the system is usable?
Does the GUI follow available standards?
Is the order for entering data logical?
Are the default values reasonable?
Are messages from the system, e.g. error

messages, understandable?
Does the system have a consistent behavior?
Is it easy to convert data from an old system to

the new one?
Is the online help logical?
Does it work for both experienced and novice

users?

133

133TSK05/04/22

Storage and Volume Testing
Storage Testing
“Testing whether the system meets its specified storage
objectives” – BS 7925-1
Volume Testing
“Testing where the system is subjected to large volumes of
data” – BS 7925-1
● Both test types requires test tools

Volume testing measures the database
behavior under stress.

Both storage and volume testing requires tools
since big volumes of data is needed. Dummy
data can be used to fill for example a
database.

The system can be scaled down to test what
happens when the specified limit is
reachable.

Example:
The maximum volume of the database that the

system can access is 20 Mb. 19.9 Mb is filled
with dummy data. What happens when more
data is added?

134

134TSK05/04/22

Installability Testing
“Testing concerned with the installation procedures for the
system” – BS 7925-1
● It is possible to install the system according to the

installation procedure?
● Are the procedures reasonable, clear and easy to

follow?
● Is it possible to upgrade the system?
● Is it possible to uninstall the system?

Installability testing is often as much testing of
instructions/documents as testing of the
system.

It’s connected with the configuration testing:
Are data (files, database tables) installed and

populated correctly?
Are data consistent after upgrade

procedure?
Are data correctly transformed after applying

upgrade procedure?
Is it possible to uninstall the system?
Things to check while testing this is that all files

belonging to the uninstalled system are
removed and that everything else is restored
(e.g. previous version of the system). Another
interesting thing to test is to install the system
again.

135

135TSK05/04/22

Platform (Portability) Testing
“Tests designed to determine if the software works
properly on all supported platforms/operating systems”
● Are Web applications checked by all known and used

browsers (Internet Explorer, Firefox, Chrome, Opera, …)?
● Are applications checked on all supported versions of

operating systems (MS Windows 9x, NT, 2000, XP, 10)?
● Are systems checked on all supported hardware

platforms (classes)?

Platform (portability) testing is based on user
specification of hardware and software for
which the system was designed and
developed. The testing (at least sanity check)
must be performed on all environments.

136

136TSK05/04/22

Recovery Testing
“Testing aimed at verifying the system’s ability to recover
from varying degrees of failure” – BS 7925-1
● Can the system recover from a software/hardware

failure or faulty data?
● How can we inject realistic faults in the system?
● Back-up functionality must be tested!

The biggest problem with recovery testing is
how to generate faults that causes a
recovery. A power cut is easy to simulate but
it is hard to simulate faulty data without
affecting the rest of the system.

If commands exist to initialize recovery/restart,
they must be tested. What happens to the
ongoing transactions during a recovery? Are
the transactions and the information about
the transactions handled correctly? Are any
transactions lost or destroyed and, in that
case, do we know that?

If back-up functionality for the system exists, it
must be tester:

Manual procedures, documentation, where is
the back-up data stored?

How can we be sure that the system works
OK after a back-up?

137

137TSK05/04/22

2.8-System Integration Testing
Purpose
● Integrate and test the compete system in its working

environment
– Communication middleware
– Other internal systems
– External systems
– Intranet, internet
– 3rd party packages
– Etc.

Many computer systems interact with other
computer systems in one way or another.
Integrating the system in its working
environment is therefore an important activity.
Naturally the type of integration depends
among other things on what type of system
we are building and what type of interaction
with other systems we are talking about.

System integration testing is called integration
testing in the large (BS 7925-1).

Some examples of surrounding systems that
may be candidates for integration with the
own system are:

Communication middleware – whenever or
system should be connected to standard
networks

Internal systems – other systems located
within the same company, e.g. billing, stock,
personnel, overnight batch, branch offices,
other companies, …

External systems – other systems located
outside the company, e.g. other banks, stock
exchange, news agencies, suppliers,
retailers, …

Intranet/internet – e.g. can different web-
browsers handle your web-pages?

3rd party packages – e.g. CORBA
implementations, database engines,
operating systems, …

138

138TSK05/04/22

2.8 - System Integration Testing - Strategy
● One thing at a time

– Integrate with one other system at a time
– Integrate interfaces one at a time

● Integration sequence important
– Do most crucial systems first
– But mind external dependences

Just like in component integration testing, big
bang integration seldom pays off. The same
applies for system integration testing. Fault
localization is harder, and the re-testing after
fault fixes are more expensive. The “one
thing at a time” strategy can be applied both
on system and interface level, but depends
as been previously mentioned on what type
of system we are working with.

Another similarity with component integration
testing (and testing in general) is that we
want to integrate the most important systems
(execute the most important test cases) first.
The two main reasons are:

If testing has to be aborted prematurely we
have performed the most important activities

If faults exist in important parts of the system
we want to find them early since the removal
of these faults may take time and overthrow
the roll-out plans

A complication with system integration testing
is that we are sometimes dependent on
external parties. For instance integration
testing with the stock exchange systems can
hardly be performed during hours of
operation and integration with systems in
remote countries may cause problems with
time zones, etc.

139TSK05/04/22

Systems Integration Testing - Impact on Planning
● Resources

– Human, tools, equipment, time
● Collaboration

– External resources
– Resources for communication

● Project timeline
– What is the impact of the integration plan on the overall

project plan?

140

140TSK05/04/22

2.9-Acceptance Testing
What is Acceptance Testing?
“Formal testing conducted to enable a user, customer or
other authorized entity to determine whether to accept a
system or component” – BS 7925-1
● User Acceptance Testing
● Contract Acceptance Testing
● Alpha and Beta Testing

Acceptance testing is similar to system testing,
except that customers are present or directly
involved. Acceptance testing can be a repeat
of (or usually a subset of) the same tests
used for system testing or can employ tests
developed entirely by customers. In the latter
case, it would be prudent to ask your
customer for those tests in advance so that
you can run as many of them as possible as
part of you system testing activity.

Alpha and Beta testing is applied for large-
scale products usually used by general
public. Prerelease versions are provided to
sub subset of the future customers.

141

141TSK05/04/22

3 – Static Testing Techniques
● Reviews and the test process
● Types of reviews
● Static analysis

QA testing techniques can be divided into 2
groups:

Static Testing Techniques
When no code is executed, e.g.:
Review (informal, walkthrough, peer review,

inspection), usually performed manually on
documents

Static analysis (usually supported by tools for
analyzing the code), usually tool supported
analysis of code

Dynamic Testing Techniques
When the code is executed, usually test cases

are applied, e.g.:
Black-box (functional)
White-box (structural)
Error-Guessing

142

142TSK05/04/22

3.1-Reviews and the Test Process
Why perform Reviews?
● Cost effective
● Comparison:

● Problem prevention
● Involve members early
● Effective learning

Test execution Rigorous review
Incident report 0.5h Persons 4

Debugging, fixing 1h Reviewing 7h

Rebuilding, delivery 0.5h Meetings 3h

Re-testing and regression 1h

Reporting 0.5h No. of faults found 11

Total 3.5h Total 40h

x11

Cost effective
It is simpler and cheaper to correct faults early

because:
Fewer people involved
Less travel needed
Faster test execution
Less time required for maintenance
Less debugging needed
Problem prevention
Find the faults before they are implemented
Reduce the risk of misunderstanding
Will the product become testable?
Involve members early
Project members will bet a common view of the

project when involved in reviews
Effective learning
When reviewing you get a better knowledge

about both the product and the project

143

143TSK05/04/22

What to Reviews?
● Requirement Specifications
● Functional Specifications
● Design Specifications
● Code
● User’s Guide
● Test Plan
● Test Specification (Test Cases)

Each development phase is a translation from previous phase and it creates a work product that can be tested to see
how successful the translation is. At the early stage of the development lifecycle is the majority of all defects
(about 50% of all defects comes only from user requirements) and a review process should prevent this defect
migration. The cost of defect migration to the next stage is much higher than finding defect in the phase where it
was introduced. At the next stage, it can cost an order of magnitude more and an order of magnitude more again
at the stage after that. The cost is maximized if the error is detected after the product is shipped to the customer
and minimized if it is detected in the phase where it was introduced.

 Requirement Specifications
The purpose of the requirements phase is to ensure that the users’ needs are properly understood before translating

them into design. In Requirement Specifications the purpose, scope and performance of the required deliverable
are defined. Acceptance testing is performed against user requirements.

 Functional Specifications
The functional design is the process of translating user requirements in to the set of external interfaces. In Functional

Specification the scope, characteristics and performance criteria of the system in terms of hardware and
software, that meet the user requirements, are defined. System Testing is performed against Functional
Specifications.

 Design Specifications
The internal design is the process of translating the system requirements into a detailed set of data structures, data

flows, and algorithms. In Design Specifications the most appropriate physical solution, positioning against
existing architecture and applications to meet the agreed system requirements are specified. Component Testing
is performed against the internal design (Architectural Design, Module Design Specifications, Database Schema,
etc.).

 Code
Coding is the process of translating the internal design specification into a specific set of code. We are checking:
 Data reference errors
 Data declaration errors
 Computation errors
 Comparison errors
 Control flow errors
 Interface errors
 Input/Output errors
 Portability
 …
 User’s Guide
Every software product that is delivered to a customer consists of both the executable code and the user manuals. A

product’s documentation is no less important than its code, because its quality is a significant factor in the
success or failure of a product. From the point of view of the user, if the manual says do something, and the user
follows these instructions and it doesn’t work, it doesn’t really help that the code is in fact right.

144

144TSK05/04/22

Requirement
Specifications Acceptance Test

Functional
Requirements System Test

Design
Specifications Component Test

1

Re
vie

w

2

Re
vie

w

3

1 2 3

1

Re
vie

w

2

Re
vie

w

3

1

Re
vie

w

2

Re
vie

w

3

Plan Prepare Perform

Review
Review

Review

Reviews in the Test Process

The most important review should be held in
the beginning of the project (in the
specification and design phases).

Plan, prepare and perform (1-3 steps in the
picture above) are the phases of test
development and execution.

When to review?
As early as possible
When there is anything that is meaningful to

review.
Often
Because it is easier to review small documents

or parts of documents than to review a big
document. Therefore the review should be
held often and give fast feedback to the
authors.

Cost of inspection is typically 5 – 15 % of
development budget and you ought to plan
for this. That is half day a week.

145

145TSK05/04/22

3.2-Types of Review
Review Techniques
● Informal review
● Walkthrough
● Technical (peer) review
● Inspection

Goals and Purposes
● Verification
● Validation
● Consensus
● Improvements
● Fault finding

Review Techniques
 Informal review
An informal review (buddy checks) is better that none review, provided it is performed by someone else

than the author and its objective is to detect defects.
 Walkthrough
A walkthrough is a formal review where the author explains his/her thoughts when going through the

document. It could be more or less formal.
 Technical (peer) review
A technical review is a review made by technical experts (colleague, peer). It could be more or less

formal.
 Inspection
An inspection is a group review quality improvement process for written materials. It consists of two

aspects: product (document itself) improvement and process improvement (of both document
production and inspection). The central “event” in this method is an inspection meeting at which
defects in the product under review are discovered and discussed.

Goals and Purposes
Depending on the goals and the purposes, different review techniques are most suitable.
 Verification
The goal is to check that the reviewed document is correct. Are we building the system right?
 Validation
The goal is to check that the reviewed document is correct according to customer needs. Are we building

the right system?
 Consensus
The purpose is to achieve a common view.
 Improvements
The purpose is to find improvement suggestions. One of the outputs from a review is to find technical

improvements, improvements to development – and to the review process.
 Fault finding
The purpose is to find faults. The most important output are the faults found.

146

146TSK05/04/22

How to Reviews?
● Split big documents into smaller parts
● Samples
● Let different types of project members review
● Select a suitable review type

Split big documents into smaller parts
It is more efficient to split the document into

smaller parts. The reviewer can then manage
to review the whole part and the remaining
parts of the document can be reviewed by
other reviewers.

Samples
This is one way to reduce the effort of

reviewing a large document. E.g. you can
pick out some of the most important pages or
pick out every tenth page of the document
and call for a formal review. Every reviewer
are reviewing the same pages.

Let different types of project members review
Different people find different things because

they have different views.
Select a suitable review type
What is the purpose of the review?

147

147TSK05/04/22

Informal Review
● Undocumented
● Fast
● Few defined procedures
● Useful to check that the author is on track

An informal review (buddy checks) is better that none review, provided it is performed by
someone other than the author and its objective is to detect defects. However, simply giving
a document to someone else and asking them to look at it closely will turn up defects we
might never find on our own.

 Undocumented
Undocumented review process.
 Fast
You cover the whole document. Many pages per hour.
 Few defined procedures
Since the informal review is undocumented, the defined procedures for how the review shall be

carried out is usually few (or non at all). The normal situation is that no entry criteria are
enforced, no roles are defined, no required skills are required and the agenda is informal.

This sometimes lead to much discussions and meetings that are held for hours resulting in low
productivity. This is the main danger with informal reviews.

 Useful to check that the author is on track
It gives feedback to the author about the document and checks that it proceeds in the right way.

It may help the author to gather information, find the requirements and evaluate
implementation ideas, when this cannot be achieved by other means, such as the study of
source documents, requirements modelling, developers’ meetings, etc.

148

148TSK05/04/22

Formal Review
● Planning
● Documented
● Thorough
● Focused on a certain purpose

Different types of reviews could be more or
less formal. Some of the following properties
should be included.

Planning
Time for reviews should be included in the

project plan. Each review is rigorously
planned.

Documented
The review process is documented. Here you

find specified rules about the review. So the
review tasks should be possible to run in the
same way from one time to another. The
more rules are specified for the review, the
more formal it is.

Thorough
The document which is being reviewed is

checked against other documents to verify
that it is correctly derived from specifications
and standards.

• Focused on a certain purpose
The reviewer reviews the document in advance

and from a specific view.

149

149TSK05/04/22

Walkthrough
● The author explains his/her thoughts when going

through the document
● The author well prepared
● Dry runs
● Listener (from peer group) unprepared
● Consensus and selling it

A walkthrough is a formal review where the
author explains his/her thoughts when going
through the document. It could be more or
less formal. A company that has regular
walkthroughs may have made their own rules
for walkthroughs. This has to be seen as a
formal walkthrough. The disadvantage of
walkthrough is that a review tends to be less
objective when the author is the producer.

The author well prepared
The author knows the subject well and is

prepared for questions.
Dry runs
Dry run is a manual execution.
Example 1: Pretend to be a computer and

manually walk through the execution of a
program or a scenario.

Example 2: Practice demonstration.
Consensus and selling it
Often the purpose is to achieve consensus with

the listener or peer group.

150

150TSK05/04/22

Technical (Peer) Review
● Find technical faults / solution
● Without management participation
● Found faults and proposed solutions get documented
● Technical experts

A technical review is a review made by
technical experts (colleague, peer). It could
be more or less formal. An example of a
technical review is the CCB (Configuration
Control Board) where problem reports are
investigated. One of their purpose are to
decide if the problem / fault that is found
should be corrected now, later or not at all.

Find technical faults /solution
The purpose is to find the best technical

solution.
Without management participation
Easier for some people to contribute in the

meeting if the management do not
participate. Management often does lack the
technical depth.

Found faults and proposed solutions get
documented

New proposals on how to proceed the
development are written down and are
presented to the product owner.

151

151TSK05/04/22

Inspection
● Defined adaptable formal process

– Checklists
– Rules
– Metrics
– Entry/Exit Criteria

● Defined Roles
● Defined Deliverables
● Fagan and Gilb/Graham

An inspection is a group review quality improvement process for written materials. It consists of
two aspects: product (document itself) improvement and process improvement (of both
document production and inspection). The central “event” in this method is an inspection
meeting at which defects in the product under review are discovered and discussed.

 Defined adaptable formal process
Defined rules and checklists govern the work in an inspection. Metrics are collected for quality

evaluation of both the inspected object and the inspection process itself. If metrics indicate
potential improvements in the process, this is possible to an adaptation mechanism built-in
in the process. Entry and exit criteria are enforced on the inspected object to allow for good
and stable quality in the inspection process.

 Defined Roles
Each participant in the review can have one or more roles in the process (moderator, author,

reviewer, manager, review manager).
 Defined Deliverables
The inspected (improved?) object is the most important delivery but there are other types of

deliverables as well (discovered faults/problems, updated documents, process improvement
proposals, consensus).

 Fagan and Gilb/Graham
There are two well known inspection processes one from Fagan and one from Gilb/Graham,

see reference list.

152

152TSK05/04/22

Inspection Process
● Planning
● Overview (kick-off) meeting
● Preparation (individual)
● Review meeting
● Editing
● Follow-up
● Metrics
● Process improvements

 Planning
The inspection leader often makes the view plan. The review plan includes when, what and how to review, who should

perform the review in what roles, etc.
 Overview (kick-off) meeting
The overview meeting is generally held one week before the review meeting to give the participants enough time to

conduct the preparation.
Before the overview meeting entry criteria are enforced on the inspected object to see that is meets minimal quality

standards required for the inspection to be worthwhile, e.g. that spell checker has been used.
During the overview meeting, the participants are given the inspection object, they are informed of their roles,

available time, applicable checklists, etc.
 Preparation (individual)
Self-study document. How to review, should be explained by the rules of the inspection process.
 Review meeting
At the start of the review meeting entry criteria for the participants are enforced, i.e. have the participants performed

the expected tasks.
Problems found are logged but not examined (discussions should be taken afterwards to reduce time consumption).

The protocol also includes time consumption for meetings as well as individual preparation. This information is
later used for evaluation of the results.

 Editing
When the problems have been solved or explained, the author corrects the document.
 Follow-up
To check that the corrections are made and the statistics are logged (how many faults found, how much time spent).

This is done by the inspection leader.
 Metrics
Metrics are recorded and the results are then used for process improvements or delivery decisions. Delivery decisions

are taken based on the results of the inspection compared with predefined exit criteria. If a stable inspection
process is used, the inspection effectiveness can be calculated, which in turn may provide means for estimating
the number of remaining faults in the inspected document. The acceptable number of remaining faults in the
document may be part of the exit criteria.

 Process improvements
 Feedback to the development process. Education? Lack of decisions?
 Feedback to the review process. Was the time optimally spent?

153

153TSK05/04/22

Inspection - Roles and Responsibilities
● Moderator
● Author
● Reviewer / inspector
● Manager
● Review responsible / review manager / inspection

leader

Moderator
A moderator trained in the inspection technique

conducts the meeting. This role exists only
during the meeting.

Author
The author of the document under review is

usually responsible for the investigation of
the discovered problems and for carrying out
the necessary changes.

Reviewer / inspector
The reviewers main responsibility is preparing

themselves for the review meeting, i.e.
searching for faults and unclear issues while
using the allocated time for this task.

Manager
The main responsibility of the manager is to

provide resources (time as well as people
and process) for reviewing.

Review responsible / review manager /
inspection leader

Sometimes there is a dedicated role for
managing the review process in a company.
Some of the issues usually included in this
role are: metrics responsibility, process
ownership, overall planning of reviews,
education of moderators and reviewers, etc.

154

154TSK05/04/22

Inspection - Pitfalls
● Lack of training
● Lack of documentation
● Lack of management support

Lack of training
People don’t have enough knowledge in the

review technique. Mentoring and training in
review techniques are possible solutions.

Lack of documentation
The review process is poorly documented
The entry criteria are weak
Source documents are not approved
Lack of management support
Too little time is allowed to spend on reviews.

Possible solutions on this problem could be:
Ask him/her when he/she wants the

problems to be discovered. Explain that the
cost increases during the development time.

Include an estimated time for reviews in the
time plan. Check according to earlier projects
how much time were spent on reviews.

This is risk analysis! Note that the right
decision might be to omit the review.

155

155TSK05/04/22

3.3. Static Analysis
Static Analysis
“Analysis of a program carried
out without executing the
program” – BS 7925-1
● Unreachable code
● Parameter type mismatches
● Possible array bound

violations
● Faults found by compilers
● Program complexity

Fault
Density

Complexity

Unreachable code
Part of a code that you can’t reach, e.g.

uncalled functions or procedures. Also called
dead code.

Parameter type mismatches
E.g. a variable declared with one type is sent to

a procedure, but the procedure expects a
variable of another type.

Possible array bound violations
Trying to access an element index outside the

boundary value of the array.
Faults found by compilers
Fault types found by compilers depend first of

all on the language – what is legal in it. For
example, data type mismatches, missing
files, possible division by 0, ranges without
stop value, misuse of variables.

Program complexity
There are tools that can measure the

complexity of a program. It also presents the
percentage of loops, IF-statements, etc. High
complexity often causes problems, but
extremely complex programs are often given
to the most skilled people, who are aware of
the difficulties and thus makes an extra effort.
Therefore the fault intensity could be lower
for these programs.

156

156TSK05/04/22

A

BC

D

Static Analysis
● % of the source code changed
● Graphical representation of code properties:

– Control flow graph
1: (A) int n = read_num();
2: (A) if(n % 2 == 0){
3: (B) System.out.println(n + " is even.");
4: (C) } else {
5: (C) System.out.println(n + " is odd.");
6: (D) }

– Call tree
– Sequence diagrams
– Class diagrams

Data Flow Analysis

Labs

% of the source code changed
Some tools can analyse and tell how many %

of the source code have been changed and
which parts that have been changed => input
to test case generation.

Graphical representation of code properties
Depends on development tools features.

157

157TSK05/04/22

● Considers the use of data (works better on sequential code)
● Examples:

– Definitions with no intervening use
– Attempted use of a variable after it is killed
– Attempted use of a variable before it is defined

if(b > c){
 a=3;
 a=5;
 System.out.println(a);
}

a=3;
if(a < 3){
 b=7;
 System.out.println(b);
}

Note: Not to be confused with data flow testing
which is a dynamic test case selection
method.

Considers the use of data
How are the variables used through the code?
Definitions with no intervening use
IF B > C THEN A = 3;
 A = 3; IF A < 3 THEN
 A = 5; B = 7;
 Print A; Print B;
END; END;
Attempted use of a variable after it is killed
For example an attempt to read a variable

outside its scope.
Attempted use of a variable before it is

defined

158

158TSK05/04/22

A

BC

D

Labs

Static Metrics
● McCabe’s Cyclomatic complexity measure

M = E − N + 2P
E = number of edges
N = number of nodes
P = number of graph components

● Lines of Code (LoC)
● Fan-out and Fan-in
● Nesting levels

 McCabe’s Cyclomatic complexity
Is defined as the number of decisions in a program or control flow graph + 1.
 Lines of Code (LoC)
Lines of code. It’s a common measurement of the size of a program.
 Fan-out and Fan-in
Fan-out is the amount of modules a given module calls. Modules with high Fan-out are often found in the upper part of

the call tree.
Fan-in is the amount of modules that call a specific module. Modules with high Fan-in are often found in the lower part

of the call tree.
If a module has both high fan-in and fan-out, consider to redesign it.
 Nesting levels
For example many IF-statements nested into each other get a deep nesting level. This means that the code is difficult

to understand. It is even worse when the cyclomatic complexity is also high.
One nesting level:
IF X > 5 THEN
 PRINT “BIG”;
ELSE
 PRINT “SMALL”;
ENDIF;

Who nesting levels:
IF X > 5 THEN
 IF X < 10 THEN
 PRINT “BIG UNIT”;
 ENDIF;
ELSE
 IF X != 0 THEN
 PRINT “SMALL UNIT”;
 ENDIF;
ENDIF;

159

159TSK05/04/22

4-Dynamic Testing Techniques
● Black and White box testing
● Black box test techniques
● White box text techniques
● Test data
● Error-Guessing

This part deals with dynamic testing techniques
– methods that use executable test cases.
These techniques are further divided into two
groups (white-box and black-box testing
techniques).

160

160TSK05/04/22

4.1-Black- and White-box Testing
● Strategy

– What’s the purpose of testing?
– What’s the goal of testing?
– How to reach the goal?

● Test Case Selection Methods
– Which test cases are to be executed?
– Are they good representatives of all possible test cases?

● Coverage Criteria
– How much of code (requirements, functionality) is covered?

A good way of dealing with a testing problem is
to first clarify the purpose of testing, then to
define a goal and finally to develop a strategy
for how to reach the goal.

Once the goal has been defined, a test case
selection strategy can be constructed. The
obvious strategy would be to test everything,
but due to infinite possibilities of choosing
input this strategy is simply not feasible. Thus
we need to carefully select the test cases that
are to be executed. These test cases should
be good representatives of all the possible
test cases. To simplify the selection there
exists a large number of test case selection
methods, most of them are associated with
coverage criteria to determine when to stop
testing.

Coverage is a measurement of how much has
been done compared to the total amount of
work.

161

161TSK05/04/22

Test Case Selection Methods
● White-box / Structural / Logic driven

– Based on the implementation (structure of
the code)

● Black-box / Functional / Data driven
– Based on the requirements (functional

specifications, interfaces)

Test cases for dynamic execution are usually
divided into two groups depending on the
source of information used for creating the
test case.

White-box
Test cases are based on information about the

implementation of the test object (structure of
the code). The inputs of white-box test cases
are generated from the implementation
information (from the code). The testing is
based on the program logic.

Black-box
Test cases are aimed at testing the functionality

of the test object. The inputs of black-box test
cases are taken either from the requirements
or from a model created from the
requirements. Testing is based on inputs and
respective outputs.

When the input of a test case is determined,
the next step is to define the expected output.
All test cases always take the expected
output from the requirements for that
particular input to find out how the object
under test should react on that input.

162

162TSK05/04/22

White-box

Black-box

Component test Comp. Integration test System test Acceptance test

Importance of Test Methods

The two types of test cases are used a little bit differently in the development lifecycle. White-
box test cases are mostly used in the early test phases of the development lifecycle and
are of less usage higher up in the testing hierarchy.

There are two reasons for this:
1. The most important is that most white-box methods require extensive knowledge of the

code and other parts of the implementation. Later test phases are usually performed by
dedicated test specialists with neither deep implementation knowledge nor access to this
information.

2. The other reason for not using white-box test case selection methods in later test stages is
related to coverage. White-box test cases are usually more fine grained than black-box test
cases. Fine grained test case selection methods require a large number of test cases in
order to reach high coverage.

Black-box testing techniques are used throughout the development lifecycle. The main
advantage with black-box testing techniques is that they only depend on the requirements,
which means that test cases can be prepared before the implementation is complete.

Both methods are important. If only white-box testing would be performed, some requirements
are not tested (performance requirements). On the other hand if only black-box test cases
are used, some parts of the code might remain untested (special features called when a
certain value is entered in a certain cell).

163

163TSK05/04/22

Measuring Code Coverage
● How much of the code has been executed?
● Code Coverage Metrics:

– Segment coverage
– Call-pair coverage

● Tool Support:
– Often a good help
– For white-box tests almost a requirement

Code Coverage =
Executed code segments/call-pairs
All code segments/call-pairs

Code coverage metrics respond the question – How much of the code is being executed?
There are usually 2 metrics:

 Segment coverage
A segment is a set of program statements that are executed unconditionally or executed

conditionally based on the value of some logical expression. 85% is a practical coverage
value.

 Call-pair coverage
A call pair is an interface whereby one module invokes another. Call-pair coverage is especially

useful integration testing to ensure that all module interfaces are exercised. 100% is a
practical coverage value.

As already has been mentioned, white-box testing techniques use implementation information
to derive the input part of the test cases. Most often some aspect of the code, for instance
the source code statements, is used for this purpose. Even with quite small programs, the
task of keeping track of which statements that have already been tested and which
statements that yet remain to be tested is quite difficult. The solution to this problem is to
use a tool. There are a large number of commercial code coverage tools available for this.
They all work in the same manner: before the source code of the object to be tested is
compiled, the code is instrumented by adding extra instructions at strategic places in the
original code. This is done by the tool.

The source code with the extra instructions is then compiled as usual and test cases are then
executed in the normal way. The added instructions continuously log the progress of the
testing and from the results of the logging instructions the tool can calculate which parts of
the code that have been executed. Obviously the extra inserted instructions consume
execution resources thus distorting performance measurements, so this type of tool is not
appropriate during system testing.

Nevertheless, the use of such tools increase both the quality and the productivity of the testing
in the earlier test phases.

164

164TSK05/04/22

Requirements Based Testing
● How much of the product’s features is covered by TC?
● Requirement Coverage Metrics:

● What’s the test progress?
● Test Coverage Metrics:;

Requirement Coverage =
Tested requirements
Total number of requirements

Test Coverage =
Executed test cases
Total number of test cases

The basic for all black-box testing is the
requirements.

The simplest but still structured way of creating
test cases is to write one test case for each
requirement. The main drawback with this
approach is that most requirements require
more than one test case to be tested
thoroughly, and different requirements
require a different amount of test cases. In
this case we can create the coverage matrix
that tracks requirements to test cases and
vice versa. This feature is usually included in
test management tools.

Requirement Coverage responds the question:
How much of the product’s features is
covered by test cases?

Test Coverage responds the question: What’s
the test progress?

165

165TSK05/04/22

Creating Models
● Making models in general

– Used to organize information
– Often reveals problems while making the model

● Model based testing
– Test cases extracted from the model
– Examples

● Syntax testing, State transition testing, Use case based testing
– Coverage based on model used

A more elaborate way of creating black-box
test cases is to transform a set of
requirements into a model of the system and
derive the test cases from the model instead
of directly from the requirements.

In most model-based testing techniques there
are well defined coverage criteria which are
simple to calculate and interpret.

The main drawbacks with models are limited
scope and validation. Often the purpose of
the model and the modeling technique used,
limits the scope of the model. For instance a
syntax graph only captures the syntax of a
language. The semantic of that language
must be covered somewhere else. The result
is that several models need to be developed
and used in order to get a reasonable
coverage of the system under test.

The other problem with models is that errors
might be made when constructing the model
so care must be taken to validate the model
against the requirements.

However, a bonus with the model approach is
that the structured nature of the model often
fives the maker of the model a good overview
of the system, discovering mistakes and
discrepancies among the requirements.

166

166TSK05/04/22

Black-box Methods
● Equivalence Partitioning
● Boundary Value Analysis
● State Transition Testing
● Cause-Effect Graphing
● Syntax Testing
● Random Testing

Cause-Effect Graphing
A model based method, which relates effects

with causes through Boolean expressions.
The main focus is on different combinations
of inputs from the equivalence classes.
Cause-effect graphing is a way of doing this
whilst avoiding the major combinatorial
problems that can arise.

Syntax Testing
A model based method, which focuses on the

syntax or rules (how different parts may be
assembled) of a language (used during
implementation). This method generates
valid and invalid input data to a program. It is
applicable to programs that have a hidden
language that defines the data. Syntax
generator is needed.

Random Testing
A model based method, which puts the end-

used of the system in focus and based on
usage profiles randomly selects test cases.
This is an example of statistical method
where standard deviation is measured.

167

167TSK05/04/22

Equivalence Partitioning
● Identify sets of inputs under the assumption that all

values in a set are treated exactly the same by the
system under test

● Make one test case for each identified set (equivalence
class)

● Most fundamental test case technique

Equivalence class partitioning is one of the
most basic black-box testing techniques. The
underlying idea is that the input domain can
be divided into a number of equivalence
classes. The characteristic of an equivalence
class is the assumption that all values
belonging to that class are handled in exactly
the same manner by the program.

If this assumption is true, then it would suffice
to select one single test case for each
equivalence class, since multiple test cases
from the same equivalence class would
repeat the same test.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested equivalence classes by the total
number of equivalence classes.

The workflow when using equivalence
partitioning is to analyze the specification and
try to identify all likely equivalence classes.
When doing this it is important to remember
that there may be dependencies between
different input variables. The next step is to
check that the whole input domain has been
covered, i.e. every possible input value
belongs to exactly one equivalence class.
The final step is to choose one
representative value form each equivalence
class to form the test case for that
equivalence class.

168

168TSK05/04/22

Negative
withdrawal

Even 10 less or
equal than 200

Uneven 10 less
than 200

More than 200

Enough money in
account

1. Withdrawal
refused

2. Withdrawal
granted

3. Withdrawal
refused

4. Withdrawal
refused

Not enough money
in account

5. Withdrawal
refused

6. Withdrawal
refused

7. Withdrawal
refused

8. Withdrawal
refused

16
8

invalid valid invalid

9 10 200 201

Amount to be
withdrawn

invalid

0-10

Equivalence Partitioning (Example)

Example: “A withdrawal from an ATM (Automatic Teller Machine) is granted if the account
contains at least the desired amount. Furthermore, the amount withdrawn must be an even
number of 10 EUR. The largest amount that can be withdrawn is 200 EUR.”

By analyzing the requirements we find several different independent dimensions to this
problem:

 Is there enough money in the account?
 Is the desired amount an even 10-number?
 Is the desired amount outside the correct 0-200 range?
One way to organize the information is to make a table as above. Each cell in the table

represents an equivalence class, which means that there should be eight test cases to
solve this testing problem with equivalence partitioning.

In this example one could argue that negative withdrawal is not technically possible, and even if
it was possible, the amount of money in the account would be irrelevant.

This discussion illustrates two difficult questions: how much should we really test? And which
tests are most important?

Mostly this boils down to a matter of taste. Our view is that it is better to include too much when
designing test cases that to miss vital functionality. Test cases should however always be
assigned a priority based on importance to the end user and importance to future testing.

High priority test cases above could be 2, 3, 4 and 6.
Medium priority test cases above could be 7 and 8.
Low priority test cases above could be 1 and 5.

169

169TSK05/04/22

Boundary Value Analysis
● For each identified boundary in input and output, create

two test cases. One test case on each side of the
boundary but both as close as possible to the actual
boundary line.

Boundary Value Analysis is a refinement of
equivalence class partitioning. Instead of
choosing any representative from each
equivalence class, interest is focused around
the boundaries of each class. The idea is to
select one test case for each boundary of the
equivalence class. The properties of a test
case is thus that is belongs to a defined
equivalence class and that it tests a value
that it is preferable on, or at least reasonably
close to one of the boundaries of the
equivalence class.

The main reason why boundaries are important
is that they are generally used by
programmers to control the execution of the
program, for instance through if- or case-
statements. Since the boundaries are being
built into the program, this is also where
mistakes are likely to happen

Not that every boundary will be tested twice
since there are two different equivalence
classes on the two sides of the border, and
that there well be a test for that boundary in
both these equivalence classes.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested boundaries by the total number of
boundaries.

170

170TSK05/04/22

invalid valid invalid

2 3 8 9
Temperature

8

3

Input:
+20,000
+8,0001
+8,0000

+3,0000
+2,9999
-20,000

Expected Output:
red light
red light
green light

green light
red light
red light

Boundary Value Analysis (Example)

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

171

171TSK05/04/22

Boundary Value Analysis - Comparison
● Error detection on common mistakes:

● Number of test cases (one dimensional) BVA = 2*EP

Requirement Mistake in impl. EP BVA

A < 18 A < =18 No Yes

A < 18 A > 18 Yes Yes

A < 18 A < 20 Maybe Yes

Which is better, Equivalence Partitioning (EP)
or Boundary Value Analysis (BVA)?

The answer depends on what we mean by
better. Test cases made by BVA will catch
more types of errors, but on the other hand
there will be more test caes, which is more
time consuming.

If you do boundaries only, you have covered all
the partitions as well:

Technically correct and may be OK if
everything works correctly

If the test fails, is the whole partition wrong,
or is a boundary in the wrong place – have to
test mid-partition anyway

Testing only extremes may not give
confidence for typical use scenarios
(especially for users)

Boundaries may be harder (more costly) to
set up

172

172TSK05/04/22

Conditions Valid
Partition

Tag Invalid
Partition

Tag Valid
Boundary

Tag Invalid
Boundary

Tag

Test Objectives?

● For a thorough approach: VP, IP, VB, IB
● Under time pressure, depends on your test objective

– minimal user-confidence: VP only?
– maximum fault finding: VB first (plus IB?)

173

173TSK05/04/22

State Transition Testing
● Model functional behaviour in state machine
● Create test cases

– A) Touching each state
– B) Using each transition (0-switch coverage)
– C) For every possible chain of transition (n-switch coverage)

● Coverage
– Depends on sub-strategy

State machine based testing is a quite useful model based black-box testing technique, since
any type of functionality that can be represented as a finite state machine can be tested
using this technique.

The first step when using state machine testing is to construct the model itself. Sometimes,
state machines are used by designers and constructors as implementation tools. In those
cases, the state machines can of course be used directly. Otherwise the state machine
model has to be constructed based on the requirements by the testers.

Often during construction of the state machine models, faults are found. One of the key
properties with a state machine is that all input types can occur regardless of the state of
the machine. If a state machine model previously has not been drawn, there are almost
always disregarded combinations of state and input, which are very easily discovered when
building the model.

When the model is finished, the next step is to construct test cases from it. There are several
different strategies. The simplest and least powerful is to cover each state in the model at
least once. As soon as there are more than one way of reaching a particular state, state
coverage will most likely leave some transitions untested. A more elaborate strategy is
therefore to focus on the transitions between the states. 0-switch coverage requires one
test case for each possible transition in the model. 1-switch coverage requires a test case
for every possible pair of consecutive transitions and finally n-switch coverage requires a
test case for every possible n-1 consecutive transitions in the model.

174

174TSK05/04/22

Lamps Off White On

Blue On

Green On

Red On

Reset

Reset

Reset

Reset
Reset

System On

Blue Key

Blue Key

Blue Key

Blue Key

Green Key Green Key

Green Key

Green Key

Red KeyRed Key

Red Key

Red Key

Red Key

Blue Key

Green Key

State Transition Testing (Example)

Example:
 Four keys, four lamps
 After the start, all lamps are off
 A colored key turns “its” lamp on, if all lamps are off
 Next colored key turns the white lamp on and the colored off
 The Reset key turns the white lamp off and resets the system

There are 5 states.
To determine how many transitions there are, it is helpful to calculate the number of transitions out from

each state (in our case there are 4 transitions):
(5*4 + 1) = 21 transitions (0-switch)
(5*4*4 + 4) = 84 pairs of transitions (1-switch)
It’s easy to understand that ‘time-outs’, common is real-time applications, will make it even more

advanced.
Create test cases:
 A) touching each state
 5 test cases – sufficient for such a simple system
 B) using each transition (0-switch coverage)
 21 test cases – if the white lamp did not turn on after the green lamp, it is necessary to use “each

transition” to catch this fault
 C) using every possible pair of transitions (1-switch coverage)
 84 test cases – if the Reset key does not work after the red lamp and the blue key (but works after all

other keys), finding this fault requires trying “all pairs of transitions”
To discover a fault which, for example, causes the system to hang after a thousand loops, still another

strategy is required.
The number of tested inputs is another dilemma. Should all possible inputs be tried in each state? The

strategy described here do not answer this question.

175

175TSK05/04/22

4.3-White-Box Test Techniques
● Test case input always derived from implementation

information (code)
● Most common implementation info:

– Statements
– Decision Points in the Code
– Usage of variables

● Expected output in test case always from requirements!

Labs

When creating white-box test cases the basis
in the implementation. The input part of the
test case is derived from the implementation.

Commonly used implementation properties
include code structure and how variables are
used in the code. Less common but
nevertheless interesting implementation
properties are call-structures and
process/object interactions.

Regardless of the white-box test method
chosen, expected output is always extracted
from the requirements and not from the
implementation itself.

176

176TSK05/04/22

Labs

White-box Test Methods
● Statement Testing
● Branch/Decision Testing
● Data Flow Testing
● Branch Condition Testing
● Branch Condition Combination Testing
● Modified Condition Testing
● LCSAJ Testing

 Statement Testing
The idea with statement coverage is to create enough test cases so that every statement in the

source code has been executed at least once
 Branch/Decision Testing
The idea with decision coverage is to execute every single decision in the code at least twice

(both possible outcomes of the decision should be executed in order to reach full decision
coverage)

 Data Flow Testing
Test cases are designed based on variable usage within the code
 Branch Condition Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes
 Branch Condition Combination Testing
A test case design technique in which test cases are designed to execute combination of

branch condition outcomes
 Modified Condition Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes that independently affect a decision outcome
 LCSAJ Testing
Linear Code Sequence And Jump (LCSAJ) – Select test cases based on jump-free sequence

of code. It consists of the following three items: the start of the linear sequence of
executable statements, the end of the linear sequence, and the target line to which control
flow is transferred at the end of the linear sequence.

177

177TSK05/04/22

Labs

Control Flow Graphs
public void doAirconditioning() {

 double temp = readTemperature();

 Aircondition airCondState = null;

 if(temp <= 15) {

 airCondState = Aircondition.HEATING;
 }

 else if(temp >= 25) {

 airCondState = Aircondition.COOLING;
 }

 airCondState.execute();

}

temp = readTemperature();
airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

This is a small piece of code, which
implements the temperature regulation. The
function “adjust_temperature” is called
without arguments. The first thing it does is to
read the current temperature, and then
depending on the value, either the heater is
switched on, the cooler is switched on, or the
system is left untouched. The global variable
control holds the current setting of the heater
and cooler.

To the right the is the corresponding control
flow graph. To aid the understanding of the
control flow graph strategic parts of the code
may be inserted in the diamonds and boxes.

McCabe’s cyclomatic complexity measure: No.
of diamonds + 1 (2 + 1 = 3) – it says that the
more decisions there are in a piece of code,
the more complex this piece of code is.

Statement Coverage =< Decision Coverage =<
McCabe’s Measure (3)

178

178TSK05/04/22

Labs

Statement Testing
● Execute every statement in the code at least once

during test case execution
● Requires the use of tools

– Instrumentation skews performance
● Coverage

Statement Coverage =
Executed statements

Total number of statements

Statement coverage is a fundamental white-
box testing technique. This idea of statement
coverage is to create enough test cases so
that every statement in the source code has
been executed at least once.

The workflow when using statement coverage
is to first execute all existing black-box test
cases that has been created while monitoring
the execution. This monitoring is in all but the
simplest test cases performed with tool
support. When all black-box test cases have
been executed, the tool can report which
parts of the code that remain untested. The
idea is now to construct new test cases that
will cover as many of the remaining
statements as possible. Start with the part of
the code that should be reached, walk
backward in the code to determine the values
of the input variables required to reach the
desired part of the code. With the specified
values of the input variables, check the
specification for the expected results, and
execute the new test case while monitoring.

One common mistake is to take the expected
result from the code itself. This will result in a
test case that well always succeed, which of
course is not the intention with testing.

179

179TSK05/04/22

Labs

Statement Coverage
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

temp = readTemperature();
airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

When creating test cases for statement
coverage we can make use of the control
flow graph. We know the statement coverage
requires statements in the code to be
executed. We also know that the boxes and
the diamonds represent all the statements in
the code.

By following the two blue arrows through the
code we cover all the diamonds and all the
boxes are covered and thus we have
statement coverage (according to the relation
with McCabe measure there should be three
or less test cases and in this case two were
enough).

By examine the relation we can now also
deduce that in the optimal choice of test
cases, number of test cases for decision
coverage should be either two or three:

Statement Coverage (2) =< Decision Coverage
=< McCabe’s Measure (3)

180

180TSK05/04/22

Labs

Branch/Decision Testing
● Create test cases so that each decision in the code

executes with both TRUE and FALSE outcomes
– Equivalent to executing all branches

● Requires the use of tools
– Instrumentation skews performance

● Coverage

Decision Coverage =
Executed decision outcomes
2 * Total number of decisions

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

181

181TSK05/04/22

Labs

Branch/Decision Testing
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

182

182TSK05/04/22

Labs

Path Coverage
● Coverage for all possible paths through code (all

combinations of decisions)
● Code with cycles

– Test all possible number of iterations → not possible
– Recommendation: 0 iteration, 1 iteration, n iteration

● Coverage

Path coverage =
number of tested paths
2^numberOfDecisions

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

183

183TSK05/04/22

Labs

Path Coverage
public void adjustTemperature2() {

 double temp1 = readTempeSensor1();

 double temp2 = readTempeSensor2();

 Aircondition acUnit1State = null;

 Aircondition acUnit2State = null;

 if(temp1 <=15) {

 acUnit1State = Aircondition.HEATING;

 }

 if(temp2>=25) {

 acUnit2State = Aircondition.COOLING;

 }

 acUnit1State.execute();

 acUnit2State.execute();

}

temp1 = readTempeSensor1();

temp2 = readTempeSensor2();
acUnit1State = null;

acUnit2State = null;

temp1 =< 15

temp2 >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

184TSK05/04/22

Data flow coverage
01: public QResult quadratic(double a,
double b, double c) {

02: double disc = b*b - 4*a*c;

03: QResult r = new QResult();

04: if(disc < 0) {

05: r.isComplex = true;

06: } else {

07: r.isComplex = false;

08: }

09: if(!r.isComplex) {

10: r.r1 = (-b + Math.sqrt(disc))/(2*a);
11: r.r2 = (-b - Math.sqrt(disc))/(2*a);
12: }

13: return r;

14: }

line category
definition c-use p-use

1 a,b,c
2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2
4 disc
5 r.isComplex
6

7 r.isComplex
8
9 r.isComplex

10 r.r1 a,b,disc
11 r.r2 a,b,disc
12

13
 r.isComplex

, r.r1, r.r2

14

Labs

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

184

185TSK05/04/22

Data flow coverage
line category

definition c-use p-use
1 a,b,c
2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2
4
5 disc
6 r.isComplex
7
8 r.isComplex
9

10 r.isComplex
11 r.r1 a,b,disc
12 r.r2 a,b,disc

13
 r.isComplex,

r.r1, r.r2
14

Labs

Pairs
definition → use variables

Start → end c-use p-use
1→2 a,b,c
1→11 a,b,c
1→12 a,b
2→5 disc
2→11 disc
2→12 disc
3→10 r.isComplex

3→13
r.isComplex,

r.r1, r.r2
6→10 r.isComplex
6→13 r.isComplex
8→10 r.isComplex
8→13 r.isComplex
11→13 r.r1
12→13 r.r2

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

185

186TSK05/04/22

Branch Condition Testing
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

Case A B C

1 FALSE FALSE FALSE

2 TRUE TRUE TRUE

Labs

Každý oberand podmínky se musí provést pro
hodnotu true i false.

186

187TSK05/04/22

Modified condition/decision coverage
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

• Test all combinations of
bools operands A, B, C

Labs

Case A B C

1 FALSE FALSE FALSE

2 TRUE FALSE FALSE

3 FALSE TRUE FALSE

4 FALSE FALSE TRUE

5 TRUE TRUE FALSE

6 FALSE TRUE TRUE

7 TRUE FALSE TRUE

8 TRUE TRUE TRUE

Každý oberand podmínky se musí provést pro
hodnotu true i false.

187

188TSK05/04/22

Modified condition/decision coverage
Case A B C Output
A1 FALSE FALSE TRUE FALSE
A2 TRUE FALSE TRUE TRUE

Case A B C Output
B1 FALSE FALSE TRUE FALSE
B2 FALSE TRUE TRUE TRUE

Case A B C Output
C1 FALSE TRUE TRUE TRUE
C2 FALSE TRUE FALSE FALSE

Case A B C Output
1 (A1,B1) FALSE FALSE TRUE FALSE

2 (A2) TRUE FALSE TRUE TRUE
3 (B2,C1) FALSE TRUE TRUE TRUE

4 (C2) FALSE TRUE FALSE FALSE

Labs

Modified Condition Decision Testing and Coverage
Modified Condition Decision Coverage (MCDC) is a pragmatic compromise

which requires fewer
test cases than Branch Condition Combination Coverage. It is widely used in

the development of
avionics software, as required by RTCA/DO-178B.
Modified Condition Decision Coverage requires test cases to show that each

Boolean operand (A, B
and C) can independently affect the outcome of the decision. This is less than

all the combinations (as
required by Branch Condition Combination Coverage).
For the example decision condition [A or (B and C)], we first require a pair of

test cases where
changing the state of A will change the outcome, but B and C remain constant,

i.e. that A can
independently affect the outcome of the condition:

188

189TSK05/04/22

Linear Code Sequence and Jump (LCSAJ)

Cvičení

1.int main (void) {

2. int count = 0, totals[MAXCOLUMNS], val
= 0;

3. memset (totals, 0, MAXCOLUMNS *
sizeof(int));

4. count = 0;

5. while (count < ITERATIONS) {

6. val = abs(rand()) % MAXCOLUMNS;

7. totals[val] += 1;

8. if (totals[val] > MAXCOUNT) {

9. totals[val] = MAXCOUNT;

10. }

11. count++;

12. }

13. return (0);

14.}

LCSAJ
Block Start End Jump

to

1 1 5 13

2 1 8 11

3 1 12 5

4 5 5 13

5 5 8 11

6 5 12 5

7 11 12 5

8 13 13 −1

http://en.wikipedia.org/wiki/
Linear_code_sequence_and_jump

189

190

190TSK05/04/22

4.4-Test Data
Test Data Preparation
● Professional data generators
● Modified production data
● Data administration tools
● Own data generators
● Excel
● Test automation tools (test-running tools, test data

preparation tools, performance test tools, load
generators, etc.)

 Professional data generators
 Data generator controlled by syntax and semantics
 Stochastic data generator
 Data generator based on heuristic algorithms
 Combination of previous methods
 Modified production data
The data must be degraded (omitting sensitive data) before using as test data. The advantage

is that we have test data that are close to real production data. The disadvantage is that
data must be modified to have all combinations needed for test cases.

 Data administration tools
E.g. File-AID/Data Solution (Compuware), RC Extract (CA), Startool/Comparex (Serena),

Relational Tools for Servers (Princeton Softech), detailed knowledge of DB structure and
links is needed. Tools are ready for it’s sometimes difficult and laborious.

 Own data generators
Development resources are needed, suitable when combining with Excel. Sophisticated data

can be generated which are tailored to the needs of test cases.
 Excel
DB tables are stored in Excel, SQL scripts generate DB structures tailored to the needs of test

cases. The initial data has to be stored manually – laborious.
 Test automation tools
E.g. WinRunner, QuickTest Pro, LoadRunner, SilkPerformer, etc. Data can be generated during

nights, test data can be stored to database, Excel or text files. Tools are often expensive.

191

191TSK05/04/22

What Influences Test Data Preparation?
● Complexity and functionality of the application
● Used development tool
● Repetition of testing
● The amount of data needed

Complexity and functionality of the
application

It directly influences the range of testing,
mutual linking and the amount of test data
(financial systems must be tested in more
details than registration systems).

Used development tool
In case of using test automation tools, the

development environment must be
compatible with used test tools.

Repetition of testing
The efficiency of using test automation tools is

higher the higher repetition of the same test
cases (regression testing) is (valid not only
for test data preparation but also for test
execution.

The amount of data needed
Small data records are prepared by simple

tools (Excel, SQL scripts). Bigger data
records are prepared by automation tools.

192

192TSK05/04/22

Recommendation for Test Data
● Don’t remove old test data
● Describe test data
● Check test data
● Expected results

Don’t remove old test data
Create test data archive for future use.
Describe test data
Create your own information system from

metadata describing content, form and
effectiveness of test data.

Check test data
Test data must be error free.
Expected results
Don’t underestimate time needed for setting

expected results for generated test data.

193

193TSK05/04/22

4.5-Error Guessing
● Not a structured testing technique
● Idea

– Poke around in the system using your gut feeling and
previous experience trying to find as many faults as possible

● Tips and Tricks
– Zero and its representations
– “White space”
– Matching delimiters
– Talk to people

Error guessing is not a structured testing method since it does not rely on any particular
procedure or algorithm. Nevertheless it might be useful as a complement to ordinary
methods.

The idea behind error guessing is to exploit the knowledge gathered by the testers from
previous testing work. Often experienced testers, support staff and sometimes end-users
have a feel for where there might be problems in the system. Error guessing is thus a test
activity in which knowledgeable testers are let loose in the system without no other
instructions than to find faults. The main advantage with this approach is that faults are
often found that have escaped the traditional testing methods, since experience and
intuition are major components of error guessing. The two main disadvantages with this
approach is that is requires both testing and domain knowledge to work well and although
complex faults often are found, this approach does not produce any test coverage results,
and thus cannot be used to increase the confidence in the product. Even if this method
lacks formal procedures documentation of each test case is still required.

Zero and all representations of zero are good candidates for test cases. Common
representations of zero are NULL-pointers and the empty list. In many cases “zero” is a
legal input but tends to be forgotten during implementation since algorithms usually are
constructed for non-zero values.

Another tip while error guessing is to exchange similar characters for one another. This is most
apparent when testing input that can contain space-characters. The notion of “white-space”
includes all characters that are represented on the screen by one or more spaces. Example
are space, tab, back-tab, and sometimes new-line and cash-return.

For input where matching delimiters, e.g. parentheses are required try unmatched variants,
especially at the end of the input.

Often the most efficient way to start an error guessing session is to interview people. Designers
can give helpful hints on where they were having problems while designing and
implementing. Users can explain how the system is really used and support people often
have good ideas on where problems were residing in previous releases of the system.

194

194TSK05/04/22

5-Test Management
● Organizational structures for testing
● Configuration management
● Test Estimation, Monitoring and Control
● Incident Management
● Standards for Testing

195

195TSK05/04/22

5.1-Organization Structures for Testing
● Developer’s test their own code
● Development team responsibility (buddy testing)
● Tester(s) in the development team
● A dedicated team of testers
● Internal test consultants providing advice to projects
● A separate test organization

 Developer’s test their own code
+ The developer knows the code best. The developer can fix found faults.
 Subjective assessment. If a requirement is misunderstood by the developer, the

misunderstanding will remain after test. Reluctance to change from a constructive to a
destructive attitude, it is hard to destroy own work.

 Development team responsibility (buddy testing)
+ At least some independence. Testing is done on friendly terms within the team (“buddy).
 Focus is on development, not on test. Lack of testing skills. Only a development view of the

tested system.
 Tester(s) in the development team
+ Independent view of the software. Resources dedicated for testing, part of the team, the

same goal.
 Lack of respect, lonely, thankless task. One tester – one view.
 A dedicated team of testers
+ Dedicated for testing! Specialized in testing, adds objectivity and consistency to testing.
 Lack of product implementation details. May be confrontational.
 Internal test consultants providing advice to projects
+ Highly expertised in testing. Can use experiences from earlier projects for better planning and

control. Can assure consistency of testing across several projects.
 No authority, only provide advice. Someone else has to do the testing.
 A separate test organization
+ Highly expertised in testing. Independent of company internal politics.
 Lack of company and product knowledge. Expertise gained outside the company.

196

196TSK05/04/22

Organization Structures for Testing - Independence
● Who does the Testing?

– Component testing – developers
– System testing – independent test team
– Acceptance testing – users

● Independence is more important during test design than during test
execution

● The use of structured test techniques increases the independence
● A good test strategy should mix the use of developers and

independent testers

A development organization testing its own code is worse than a surgeon operating on himself.
At least the surgeon has vital interest in the result.

The development organization gets paid for delivering a specific product on time. The quality of
the product is rarely specified. Testing jeopardizes the possibility to deliver on time.

 Independence is more important during test design than during test execution
Tests can be executed by almost anyone as long as they are well specified. It is hard for a

developer to be objective while designing tests of software produced by himself/herself. I.e.
if the amount of time available for independent testes is small, spend that time on test
design, preferably of high level tests (e.g. system test level).

 The use of structured test techniques increases the independence
A certain amount of independence can be achieved by using structured testing techniques

since it is the technique used, not the tester, that decides what to test.
 A good test strategy should mix the use of developers and independent testers
Low level tests (component tests, component integration tests) are preferably done by

developers in combination with the use of structured testing techniques. The developers
know the code best and with the use of testing techniques they will probably find most of
the faults that should be found during component testing and they can provide fast
debugging. Higher level tests should be done by independent testers to increase the
objectivity and reduce the risk for misunderstood requirements, etc.

197

197TSK05/04/22

Specialist Skills Needed in Testing
● Test managers (test management, reporting, risk analysis)
● Test analyst (test case design)
● Test automation experts (programming test scripts)
● Test performance experts (creating test models)
● Database administrator or designer (preparing test data)
● User interface experts (usability testing))
● Test environment manager
● Test methodology experts
● Test tool experts
● Domain experts

198

198TSK05/04/22

5.2-Configuration Management
What Configuration Management includes?
● Identification of configuration items
● Configuration control:

– Hardware
– Software
– Documents
– Methods
– Tools

● Configuration Status Accounting
● Configuration Audit

Configuration management is a discipline applying technical and administrative direction and
surveillance to: identify and document the functional and physical characteristics of a
configuration item, control changes to those characteristics, record and report change
processing and implementation status, and verify compliance with specified requirements.

Symptoms of poor configuration management:
 Confusion
Not knowing which the actual/latest version of a configuration item is. Unable to match source

and object code. Unable to identify which version of a compiler that generated the object
code. Unable to identify the source code changes made in a particular version of the
software. Not knowing which version of the system that is delivered to a specific customer.

 Recurrence of bugs
Defects that were fixed suddenly reappear.
 Conflicting changes
Simultaneous changes made to the same source module by multiple developers and some

changes lost. Simultaneous changes that is not consistent done to different parts of the
system.

 Unauthorized changes
Undocumented features suddenly appear. Tested features suddenly disappear.

199

199TSK05/04/22

Configuration Identification
● Identification of configuration items (CI)
● Labelling of CI’s

– Labels must be unique
– A label usually consists of two parts:

● Name, including title and number
● Version

● Naming and versioning conventions
● Identification of baselines

Identify all parts that need to be controlled. What is the smallest part to be configuration
managed?

The configuration identification shall reflect the product structure.
All configuration items must be labelled. Use a standard for naming and versioning. If your

company does not have a standard, define one!
What is a baseline?
 A snapshot of a configuration at a certain point in time.
 A way to measure where in the development cycle a system really is.
Why baselines?
 A stable point from which new projects (or releases) can be developed.
 To roll back to if changes have caused big problems.
 Possibility to recreate the configuration of the system.
 A base for testing.
 A base for supporting.
 A starting point for more formalized control.
Examples of baselines: functional baseline, design baseline, development baseline, product

baseline.

200

200TSK05/04/22

Change Control Procedure

Submit

Analysis

Verify

Impl.

Decision

Change
InitiationClose

Reject

Approve

Configuration Management - Configuration Control
● Version management
● Establishment of

baselines
● Change control

Configuration control is formal and structured handling of items, their configuration and
changes. According to the foundation syllabus configuration control is the maintenance of
the CI’s in a library and maintenance of records on how CI’s change over time.

 Version management
Managing work in parallel by using file locking (check in/check out), branching and merging in a

structured way.
 Establishment of baselines
 Contents
 Quality
 Deviations
 Decision
 Change control
Who is authorized to make decisions regarding changes? Often a Configuration Control Board

(CCB) is used for that purpose. A change control procedure must be defined to be able to
handle changes in a controlled way. Incident reports can be handled in the same way.

201

201TSK05/04/22

Configuration Status Accounting
● Recording and reporting information describing

configuration items and their status
Information strategy

● To whom?
– Project manager, design, development,

test, release manager, etc.
● When?

– CCB and project meetings.
– Milestones, baselines, releases, etc.

● How?
– CM tool, incident tracking tool
– Logs, configuration records, reports
– www, bulletin board, release notes, etc.

● What?
– What changes are made in the latest

release?
– Which corrections/changes are

planned for the next maintenance
release?

– Which incident reports are still open?
– What is the current status of CI xyz?
– What is the status of incident report

123 and who is currently appointed
user?

●

 What?
Status accounting shall make it possible to answer questions like:
 What changes are made in the latest release?
 Which corrections/changes are planned for the next maintenance release?
 Which incident reports are still open?
 What is the current status of CI xyz?
 What is the status of incident report 123 and who is currently appointed user?
 Etc.
 To whom?
 Project manager, design, development, test, release manager, etc.
 When?
 CCB and project meetings.
 Milestones, baselines, releases, etc.
 How?
 CM tool, incident tracking tool
 Logs, configuration records, reports
 www, bulletin board, release notes, etc.

202

202TSK05/04/22

Configuration Audit
● Configuration auditing is a pre-release

action.
● Often performed by a group of people

representing:
– Project management, configuration

management, test, system engineering,
product management, design.

● The following areas could also be
represented:
– customer, production, quality,

installation/maintainability, safety, logistics.
● Maturity

– Are the configuration items mature enough?
– Are they tested?
– What was the result of the tests?
– Are they any incident reports that are still

open?

● Completeness
– Does all planned configuration items exist?
– Are they stored in the right place?
– Do they have the right version number?

● Compliance with requirements
– Are all requirements fulfilled?

● Integrity
– Is the source secure?
– Is it possible to recreate a specific version

of the product and its development
environment (don’t forget the test
environment!)?

● Accuracy
– Are the requirements valid, i.e. is the

product what the customer wanted?

Configuration auditing is a pre-release action, often performed by a group of people
representing project management, configuration management, test, system engineering,
product management, design. The following areas could also be represented, depending on
the situation: customer, production, quality, installation/maintainability, safety, logistics.

 Maturity
Are the configuration items mature enough? Are they tested? What was the result of the tests?

Are they any incident reports that are still open?
 Completeness
Does all planned configuration items exist? Are they stored in the right place? Do they have the

right version number?
 Compliance with requirements
Are all requirements fulfilled?
 Integrity
Is the source secure? Is it possible to recreate a specific version of the product and its

development environment (don’t forget the test environment!)?
 Accuracy
Are the requirements valid, i.e. is the product what the customer wanted?

203

203TSK05/04/22

Configuration Management and Testing
What should be configuration managed?
● All test documentation and testware
● Documents that the test documentation is based on
● Test environment
● The product to be tested

Why?
● Tracebility

A strong implementation and understanding of CM enables the possibility to establish
traceability between:

 Test documentation and product versions
 Executed test cases and version of test environment used
 Incident reports and software/hardware configurations
 Test cases and requirements
 Etc.
 CM can be very complicated in environments where mixed hardware and software

platforms are being used, but sophisticated cross-platform CM tools are increasingly
available.

204

204TSK05/04/22

5.3-Test Estimation, Monitoring and Control
Test Estimation
● Why does this happen time after time?
● Are we really that lousy in estimating test?
● What can we do to avoid situations like this?

Test estimation is to calculate the effort required to perform the activities specified in the high
level test plan in advance. The reason for doing that is the same as for all planning, i.e. to
be able to control the progress and to be better prepared to reschedule when something
unexpected occurs. The test manager may have to report on deviations from the
project/test plans such as running out of time before completion criteria achieved.

Test estimation is estimation, done in advance, of the effort required to perform activities
specified in the high-level test plan. Rework must also be planned for.

Often testing must be interrupted before the planned completion criteria are fulfilled due to lack
of time.

205

205TSK05/04/22

Estimation - Rules of Thumb
● Lines of the source code

– 1 TC per 30-50 lines of the source code (high-risk SW products)
– 1 TC per 100-150 lines of the source code (medium-risk SW products)
– 1 TC per 500-1000 lines of the source code (low-risk SW products)

● Windows (Web-pages) of the application
– 3-5 TC’s per window (low-risk SW products)
– 10-15 TC’s per window (medium-risk SW products)
– 20-30 TC’s per window (high-risk SW products)

● Degree of modifications

Degree of modifications Degree of Testing
5% 5%

10% 25%

15% 50%

20% 100%

 Lines of the source code
 1 TC per 30-50 lines of the source code (high-risk SW products)
 1 TC per 100-150 lines of the source code (medium-risk SW products)
 1 TC per 500-1000 lines of the source code (low-risk SW products)
 Windows (Web-pages) of the application
 3-5 TC’s per window (high-risk SW products)
 10-15 TC’s per window (medium-risk SW products)
 20-30 TC’s per window (low-risk SW products)
 Degree of modifications
Degree of modifications Degree of Testing
 5% 5%
10% 25%
15% 50%
20% 100%

206

206TSK05/04/22

Test Estimation Activities
● Identify test activities
● Estimate time for each activity
● Identify resources and skills needed
● In what order should the activities be performed?
● Identify for each activity

– Start and stop date
– Resource to do the job

This is no different from estimating any job.
If possible, base your estimation on history from earlier projects:
 The expected number of faults to be found.
 Time to write and report incidents.
 Time from incident reporting until the fault is fixed
 Etc.

Estimation is dependent of:
 The project size.
 The number of features/characteristics to be tested, i.e. the scope of testing.
 The complexity of the product/system.
 Quality objectives.
 The expected quality of the system when delivered to test (low quality = more testing).
 The size and complexity of the test environment.
 The usage of tools.

207

207TSK05/04/22

What Makes Estimation Difficult?
● Testing is not independent

– Quality of software delivered to test?
– Quality of requirements to test?

● Faults will be found!
– How many?
– Severity?
– Time to fix?

● Test environment
● How many iterations?

Testing is not independent
 For example, if the quality of the software delivered to test is poor, this will strongly affect

the test plan since more testing will be needed.
 Late deliveries.
 Missing functionality in delivered software.
 Important to be flexible and adjust the testing to the current situation.
Faults will be found!
 Unplanned deliveries due to the need to fix found defects.
 Re-testing and regression testing is needed.
Test environment
 Limited access to the test environment.
 Test environment unstable.
 Parts of the test environment that are out of our control could be delivered late,

malfunctioning, etc.
How many iterations?
 Iterations are based on the test plan which can change during software development
 Only 1-2 iterations can be planned in details
 Plan iterations only for fixing found defects in the later stage

208

208TSK05/04/22

Time

Number of
test cases

Planned test cases

Delivery date

Tests passed

Tests run
Tests planned

Monitoring Test Execution Progress
No deviations from plan
High quality?

– Few faults found
● Tests good enough?

Is the software quality necessarily high because we do not find many faults?

Scenario 1, low quality of tests:
The quality of the tests can be poor due to lack of testing skills or because no testing

techniques are used.
Actions to prevent this scenario from happening:
 Use structured testing techniques.
 Use a test strategy based on risks.
 Use a test coverage criteria.
 Review/Inspect test specifications before writing test instructions or test scripts to make

sure that all necessary tests are included and that the right things are tested.
Possible actions if it happens:
 Stop test execution until the quality of the tests has been improved by adding tests using

testing techniques and experienced testers.

Scenario 2, high quality of tests:
A well defined strategy for using testing techniques in the different test phases has been used.

Inspections showed that the quality of the tests were good. Congratulations to a successful
software development project!

209

209TSK05/04/22

Time

Planned test cases

Delivery date

Tests passed

Tests run
Tests planned

Number of
test cases;

Monitoring Test Execution Progress
Problems possible to observe
● Low quality

– Software
– Tests

● Test entry criteria
● Easy tests first

Why is it hard to get the test cases passed? The big difference between the number of test
cases run and the number of test cases passed indicates low quality of either software or
tests (or both), probably in combination with a poor test entry criteria.

Low quality of software or tests
Stop testing until the faults are fixed/the quality of tests are improved. Reallocate resources for

debugging/fault fixing and/or improvements of tests.
Test entry criteria
If the test entry criteria is poor, change the criteria. Don’t accept software tat does not fulfill the

criteria.
Easy tests run first

The difference between the number of planned test cases and the number of run test cases
may be caused by executing the easy (the less time consuming) tests first. All the
complicated test cases (the ones that have the highest probability of revealing serious
problems) are still waiting to be executed.

210

210TSK05/04/22

Time

Planned test cases

 New delivery
 date

Tests passed

Tests run
Tests planned

Number of
test cases

 Old delivery
 date

Action
taken

Monitoring Test Execution Progress
● Changes made to improve

the progress

Actions are taken to improve the test progress. Despite that it is obvious that the testing will not
be ready before the delivery date. This will affect the time plan for the whole project.
Probably the delivery date will have to be changed.

What if all tests are not executed before the delivery date?
 What are the risks of not running the tests?
 What are the severity of outstanding faults?
 Is it possible to continue testing after release?

211

211TSK05/04/22

Test Control
What to do when things happen that affects the test plan:
● Re-allocation of resources
● Changes to the test schedule
● Changes to the test environment
● Changes to the entry/exit criteria
● Changes to the number of test iterations
● Changes to the test suite
● Changes of the release date

Things will happen that affects the test plan! We all know that testing is not independent, it is closely
connected to development and in addition, it is the activity that comes last in the software
development process (at least the test execution). The better prepared we are the easier it is to
control the test activities and any unforeseen events.

Re-allocation of resources
Re-sources can be moved from one activity to another, more resources may be needed, etc.

Changes to the test schedule
For example, if a test object is delivered to test later than planned, that might affect the order in which the

tests can be executed, and therefore the schedule must be changed. The estimated time for each
test activity can also be changed if the estimation does not agree with the actual time needed.

Changes to the entry/exit criteria
If the entry criteria to test/re-test is too weak, i.e. the quality of the software delivered to test is poor, it

can be changed. The exit criteria from test can also be changed if it shows not to be appropriate.
This will affect the test schedule.

Changes to the number of test iterations
If more defects are found that expected, this will enforce more re-testing and regression testing and also

the number of test iterations planned. This number is also changed when a functionality planned is
moved to next iterations.

Changes to the test suite
Test suite (set of test cases) is prepared during implementation phase. When the software is delivered to

test, it can be found out that more test cases have to be developed.
Changes of the release date
Even if we take actions to eliminate the difference between the test plan and the reality, we cannot fully

avoid changes of the release date. This must be communicated to customers by professionals with
some explanations.

212

212TSK05/04/22

5.4-Incident Management
What is an Incident?
Any significant, unplanned event that occurs during testing
or any other event that requires subsequent investigation
or correction.
● Differences in actual and expected test results
● Possible causes:

– Software fault
– Expected results incorrect
– Test was not performed correctly

● Can be raised against code and/or documents

Other common names for incident reports are trouble reports, error reports, problem reports,
etc.

Incident shall be logged when someone other that the author of the product under test performs
the testing. That is not always true, sometimes also the author logs incidents. It depends on
the test process, the development process, the size of the project, etc.

It is easy to miss or forget important information if incidents are not reported immediately when
they occur. Valuable time for debugging/fault fixing will also be lost if the incidents are
reported later, therefore incidents shall be reported as soon as possible.

Detailed description of the incident is important for developers to reproduce the fault and to
speed up the fixing of the fault

213

213TSK05/04/22

Incident Information
● Unique ID of the incident report
● Test case ID and revision
● Software under test ID and revision
● Test environment ID and revision
● Name of tester
● Expected and actual results
● Severity, scope and priority
● Any other relevant information to reproduce or fix the

potential fault

Describe the incident and the environment as carefully as possible. Don’t forget to include the
version of test case, software under test and the test environment (e.g. for Web applications
specify Web browser and its version).

To make sure that the provided information is sufficient, ask someone else to check the incident
report before you submit it!

Severity – indicates the importance to users.
 High – if the system crashes or is unusable. It has significant impact on the functionality.

Prevents usage of the application.
 Medium – if a workaround is available. It does not have a great effect on the functionality

but is quite obvious as well as disturbing to the user. Usage of the application is limited.
 Low – cosmetic problems (≠ usability!). Presents a small problem, but does not affect the

functionality. In many instances, this represents a change to the user interface or in
documentation .

Priority – indicates the urgency to fix the fault.
 High – stops further testing or testing is heavily hindered. Requires immediate actions.
 Medium – stops some tests, other tests can proceed. Solution is implemented in the next

release.
 Low – possible to proceed. Solution is planned for next or any other release or not

implemented at all.

Note that a fault that stops further testing and therefore has high priority can have low severity.

214

214TSK05/04/22

Incident Tracking
● At any time it must be possible to see the current status

of reported incidents, e.g.:
– New
– Open, Re-open
– Wait, Reject, Fixed
– Included to build
– Verified
– Closed

Incidents should be tracked from discovery through the various stages to their final resolution.
They have different states, e.g.:

New - the defect has been found and reported to some defect management tool by a tester.
Open – the defect manager assigns the defect to a developer for analysing the cause of the

defect.
Wait – the defect cannot be fixed, some information is missing
Reject – the defect was not accepted, no corrections are needed (misunderstanding, defect in

test case or test data, problem was not reproduced, defect caused by hardware, back end
or network problems, etc.).

Fixed – the defect was fixed, it is ready for testing.
Included to build – the build/configuration manager includes the files with the corrections (the

fix) to the next internal build.
Verified – the fix was successfully tested (accepted by the tester).
Re-open – the fix was not done properly or produced side effects (rejected by the tester).
Closed – the fix was delivered to an official release.

215TSK05/04/22

Incident Management

Incidents should be tracked from discovery through the various stages to their
final resolution. They have different states, e.g.:

New - the defect has been found and reported to some defect management
tool by a tester.

Open – the defect manager assigns the defect to a developer for analysing the
cause of the defect.

Wait – the defect cannot be fixed, some information is missing
Reject – the defect was not accepted, no corrections are needed

(misunderstanding, defect in test case or test data, problem was not
reproduced, defect caused by hardware, back end or network problems,
etc.).

Fixed – the defect was fixed, it is ready for testing.
Included to build – the build/configuration manager includes the files with the

corrections (the fix) to the next internal build.
Verified – the fix was successfully tested (accepted by the tester).
Re-open – the fix was not done properly or produced side effects (rejected by

the tester).
Closed – the fix was delivered to an official release.

215

216

216TSK05/04/22

5.5-Standards for Testing
Types of Standards for Testing
● QA standards

– States that testing should be performed
– ISO 9000

● Industry-specific standards
– Specifies the level of testing

● Railway signalling standard
● DO 178b, Software Considerations in Airborne Systems and Equipment

Certification

● Testing standards
● Specifies how to perform testing

QA standards
 ISO 9000
Industry-specific standards
 Railway signalling standard (many different standards exist, often national)
 DO 178b, Software Considerations in Airborne Systems and Equipment Certification
Testing standards
 BS 7925-1, Vocabulary of Terms in Software Testing
 BS 7925-2, Software Component Testing. Give guidelines for the most common test

documents and test activities. Includes six black box and seven white box test methods.
 IEEE Std. 829/1998, Standard for Software Test Documentation
 IEEE Std. 1008/1987, Standard for Software Unit Testing
 IEEE Std. 1012/1998, Standard for Software Verification and Validation
Ideally testing standards should be referenced from the other two.

217TSK05/04/22

Types of Standards for Testing
● Testing standards

– Specify how performe testing
● BS 7925-1, Vocabulary of Terms in Software Testing
● BS 7925-2, Software Component Testing Standard. Specifies guidelines for the most

common documents in testing and testing activities. Includes 6 black-box and 7 white-box
testing methods.

● IEEE Std. 829/1998, Standard for testing documentation
● IEEE Std. 1008/1987, Standard for unit testing
● IEEE Std. 1012/2016, IEEE Standard for System, Software, and Hardware Verification and

Validation

● ISO/IEC/IEEE 29119 Software Testing (1-5) replace:
– IEEE 829 Test Documentation
– IEEE 1008 Unit Testing
– BS 7925-1 Vocabulary of Terms in Software Testing
– BS 7925-2 Software Component Testing Standard

http://www.testingstandards.co.uk/bs_7925-1.ht
m
http://www.testingstandards.co.uk/bs_7925-2.ht
m

217

http://www.testingstandards.co.uk/bs_7925-1.htm
http://www.testingstandards.co.uk/bs_7925-1.htm
http://www.testingstandards.co.uk/bs_7925-2.htm
http://www.testingstandards.co.uk/bs_7925-2.htm

218

218TSK05/04/22

6 - Test Tools
● Types of CAST tool
● Tool Selection and Implementation

219

219TSK05/04/22

6.1-Types of CAST Tools
● Requirements Tools
● Static Analysis Tools
● Test Design Tools
● Test Data Preparation Tools
● Test-running Tools
● Test Harness & Drivers
● Performance Test Tools
● Dynamic Analysis Tools
● Debugging Tools
● Comparison Tools
● Test Management Tools
● Coverage Tools

CAST = Computer Aided Software Testing
Various types of test tool functionality are available (see the list above) depending on what

functionality we need. In industrial reality, there is seldom one-to-one mapping between a
“tool” and a “functionality”. For example, the comparison functionality may sometimes be
implemented in a separate “comparison tool”, but more often this comparison will be a part
of a test-running tool.

Large, complex systems often have more input/output interfaces and attributes to measure,
than is supported by any single tool. A common situation is that a number of different test-
running tools are used. Another tool, a test harness controls them, or one of the tools is
given the role of test harness and controls the other tools.

220

220TSK05/04/22

Requirement Tools
● Tools for testing requirements and requirement

specifications:
– Completeness
– Consistency of terms
– Requirements model: graphs, animation

● Traceability:
– From requirements to test cases
– From test cases to requirements
– From products to requirements and test cases

● Connecting requirements tools to test management tools

Requirements engineering is not part of testing, so the tools used for gathering, analysis, and
structuring of requirements do not belong to this chapter. However, these tools often provide
automated support for traceability, which is important for testing. Examples of requirement
management tools: Analyst Pro/ Goda Software, Doors/Telelogic, Caliber/Borland,
Gatherspace/Gatherspace.com, RequisitePro/IBM Rational, SpeeDEV RM/SpeeDEV,
SteelTrace/SteelTrace and TeamTrace/WA Systems.

 Tools for testing requirements and requirements specifications
Requirement specifications themselves have to be tested for completeness, consistency, etc.

This is most often done using reviews and inspections. For formal modelling methods,
automated verification is available. Automated validation of the requirements is harder.

 Traceability
Mapping between requirements and test cases is needed to verify that all requirements are

correctly implemented, to identify all affected test cases when a requirement is changed, to
know what requirements are affected in case that a test case fails. The set of all
requirements can be divided into subsets for product versions, customer deliveries or
increments. For a given product version or increment, applicable sets of test cases can be
then easily generated in accordance with the requirements. The requirement management
tools support this too.

 Connecting requirements tools to test management tools
For test management purposes, the connection between test management tools and

requirement management tools should be automated. Test reports shall seamlessly
translate into lists of verified/not verified requirements, and lists of requirements shall
seamlessly generate suits of test cases. A manual intervention makes this process less
reliable. Test management tools nowadays include requirement management functionality
(e.g. Quality Center/Mercury).

221

221TSK05/04/22

Static Analysis Tools
● Testing without running the code
● Compilers, more advanced syntax analysis
● Data flow faults
● Measuring complexity and other attributes
● Graphic representation of control flow
● How to use static analysis?

● https://sonar.cs.vsb.cz
● Sonar Lint for Eclipse
● https://www.sonarqube.org
● https://en.wikipedia.org/wiki/MISRA_C

Static analysis is testing without running, but by examining the code. Typically, it is performed on the
source code. It can help to find faults earlier (that dynamic analysis can), or more easily (a fault in
the source code may be easier to localize using static analysis than it can be found from its
consequences, i.e. after dynamic testing), or warn for possible faults and bad design (data analysis).
Examples of static analysis tools: Cantata/IPL, CMT++/Testwell, LDRA Testbed/LDRA,
Logiscope/Telelogic and Prevent/Coverity.

 Compilers, more advanced syntax analysis
Compilers perform a lot of static analysis, especially when warnings are not disabled. Further, for many

high-level languages, more advanced static analysis can be performed. These tools discover data
flow faults, identify unreachable code and parameter type mismatches, warn for possible array
bound violations, ranges without stop value, etc.

 Data flow faults
A number of data flow faults exist. Some of them (e.g. undefined variable) may prevent the creation of

executable code, some (e.g. not using a declared variable at all) may be harmless, some (e.g. using
a variable before it has been assigned a value) may be disastrous.

 Measuring complexity
McCabe’s cyclomatic complexity index, Lines Of Code, etc. are metrics that can be calculated using

static analysis tools. Some tools can calculate other metrics, like the amount of changed code,
nested levels, call trees, the number of times a particular routine is called by other routines, etc.
These measures do not directly discover faults, but may point at badly designed areas and help
when prioritizing test cases.

 Graphic representation of control flow
Static analysis tools (even some compilers) are able to produce a graphic representation of control flow.
 How to use static analysis
The results of static analysis are less reliable for object oriented system, distributed systems and real-

time systems. In such systems a lot of information is not available until the program is executed,
which makes static analysis less efficient. Static analysis may discover faults earlier and more
cheaply than dynamic testing, but it does discover all faults that dynamic testing does.

https://sonar.cs.vsb.cz/
https://www.sonarqube.org/

222

222TSK05/04/22

Test Design Tools
● Most “demanding” test automation level
● Types of automated test generation:

– Test scripts from formal test specifications
– Test cases from requirements or from design specification
– Test cases from source code analysis

Automated test case design and automated test case generation are potentially very powerful
techniques of quality assurance. They are however seldom practiced, as using automated
test case design requires formal, high-integrity requirements and design specifications. On
the other hand, this subject is extensively covered by academic research. Examples of
automated test case design tools: Automated Test Designer/AtYourSideConsulting,
GUITAR/University of Maryland, TAU TTCN Suite/Telelogic.

 Test scripts from formal test specifications
Automated test script generation. Design and description of test cases must have been done

manually, then tool support is used for the generation of actual test script code. “Capture”
activity of capture-playback tools may be treated like a special case of automated test script
generation.

 Test cases from requirements or from design specification
There are formal languages for the description of requirements and system design, from which

test cases can be generated automatically. The specification is either held in a CASE tool
repository or in the tool itself.

 Test cases from source code analysis
This method is commonly used for the generation of stubs (replacement code for missing

subroutines) or drivers (code that invokes tested routines). Note that expected outcomes
must not be generated from code, otherwise a “self-fulfilling prophecy” will be created.

223

223TSK05/04/22

● Tools for test data preparation
● Used as pre-execution tools
● Preparing input data and/or expected outcomes
● Tools that produce data to populate databases, registers,

etc.
● Tools that fetch data from existing test database
● Special cases:

– “Capture” part of C/R-tools
– Bad testware architecture: “embedded” test data
– Data-driven automated test execution

Test Data Preparation Tools

Tools for test data preparation extract or create data for use in tests. The test data is generated mainly
from requirement and design specifications.

 Used as pre-execution tools
The test data is prepared before the test execution starts.
 Preparing input data and/or expected outcomes
The test data that is prepared before the test execution are the inputs and the expected outcomes: the

actual outcomes are produced by the tested system after the input has been fed to the application.
 Tools that produce data to populate databases, registers, etc.
They can deal with a wide range of different file and database formats, that’s why conversions are often

needed.
 Tools that fetch data from existing test database
In many situations, test data (both input data and expected outcomes) is available, but its format must be

changed. The translation from one to another data format may be done by conversion tools, often
written specifically for this purpose.

 “Capture” part of C/R-tools (“Capture/Playback” tools)
Input data is captured (mouse movements and clicks, keyboard activity, etc.), and expected outcome

data is logged and archived (typically, hard-coded into the test script). Expected outcomes are
typically GUI-outputs, like GUI-objects and their states, text, graphical objects and their attributes.

 Bad testware architecture: “embedded” test data
A common error is placing test data (prepared manually or generated automaticall) “hard coded” in test

scripts and programs, which causes poor maintainability. This is one of the common errors when
using capture-replay tools.

 Data-driven automated test execution
Test data, if not hard coded in test program code, can be fetched by the test execution program from a

file and applied.

224

224TSK05/04/22

Test-running Tools
● Tools that feed inputs and to log and compare outcomes
● Examples of test-running tools:

– “Playback”-part of C/R-tools
– For character-based applications
– For GUI (GUI objects, Bitmaps)

● External or built-in comparison (test result evaluation)
facility

● Test data hard-coded or in files
● Commonly used for automated regression
● Test procedures in programmable script languages

Test-running tools (also called test executors, “Capture/Playback”: C/R-tools), are the tools
which apply the inputs, capture real outcomes and compare them with expected outcomes.
An on-line input generator is thus typical part of a test-running tool, sometimes a compare
toll is invoked, and possibly, the test running-tool has some test harness functionality.
Examples of test-running tools: AutoTester One/AutoTester, CAPBAK/Software Research,
QACenter/Compuware, QuickTest/Mercury, Robot/IBM Rational, SilkTest/Seque, and
WinRunner/Mercury.

The procedures are typically written in a programmable script language (like C, VisualBasic,
Perl), whereas test cases, input data and expected results may be held in separate test
repositories.

 “Playback” part of C/R-tools
It runs previously generated test scripts, applying previously captured inputs and comparing

test outcomes (typically, GUI outputs) with expected outcomes.
 For character-based applications
“Capture-Playback” facilities for dumb-terminal applications. The tools simulate terminal

keystrokes and compares screen responses with those previously captured. Old-fashioned,
simple but powerful. Receives actual outcomes by sequentially recording output stream
from the tested application.

 For GUI (GUI objects, Bitmaps)
Used for WIMP (Windows Icon Mouse Pointer) interfaces. Applies inputs as mouse movements

and keystrokes, and compares the GUI objects (windows, fields, buttons and other
controls), their state and timing with expected outputs. Even bitmaps can be captured and
compared to actual bitmaps.

 External or built-in comparison (test result evaluation) facility
The running of tests requires the ability to generate inputs, to capture outcomes and to compare

actual with expected outcomes. These abilities are common functions of one and the same
test tool, but other solutions are also possible.

 Test data hard-coded or in files
What inputs to send and what expected outcomes to compare actual ones with, is defined in

data either stored in script files (hard-coded) or in separate data files.
 Commonly used for automated regression
For regression testing, test-running tools are the best candidates as regression test cases are

repeated very often. The ROI (return-on-investment) is the most effective.
 Test procedures in programmable script languages
Such procedures or scripts are like other software programs: they can be edited and changed,

debugged, executed, archived and re-used. Some tools use graphical languages for the
test script programming.

225

225TSK05/04/22

Test Harnesses & Drivers
● Test driver: a test-running tool without input generator
● Simulators and emulators are often used as drivers
● Harness: unattended running of many scripts (tools)

– Fetching of scripts and test data
– Actions for failures
– Test management

 Test driver: a test-running tool without input generator
Typically test-running tools stimulate test object through an input interface. The test driver

invokes routines and simulates them by internal parameter passing interfaces. Often,
drivers are custom-written tools.

 Simulators and emulators are often used as drivers
When the target execution platform is not available, testing is often performed in a simulated

environment. Simulators and emulators may be able to control execution directly by loading
and execution directly by loading and executing the program, or may act as input
generators. Emulators simulate HW.

 Harness: unattended running of many scripts (tools)
An exact borderline between test harness and test-running tool “from below”, and between test

harness and test management tool “from above”, is not defined. Typically, a test harness is
like a “super test-running tool”, controlling perhaps a few test-running tools. Test harness
can be used to run groups of existing automated test scripts. Its typical activities are:

 Fetching of scripts and test data: matching right versions
 Actions for failures: reset, continue, invoke another script if previous script failed?
 Test management: reporting, incident reports

226

226TSK05/04/22

Performance Test Tools
● Tools for load generation and for tracing and measurement
● Load generation:

– Input generation or driver stimulation of test object
– Level of stimulation
– Environment load

● Logging for debugging and result evaluation
● On-line and off-line performance analysis
● Graphs and load/response time relation
● Used mainly for non-functional testing… but even for

“background testing”

Load generation tools are used for the execution of load, performance and/or stress/robustness testing. However, they
need not necessary be dedicated “load tools”. A tool that acts as an input generator for functional testing
(generating inputs for functional test cases – one at a time), may often be used as a load generator as well
(generating a lot of inputs in order to verify performance attributes of the system). Producing load is only half of
the story. System responses must be captured, measured, analyzed and compared to the expected outputs. The
number of executed transactions are logged. Many performance testing tools provide graphs of load against
response times. The most important result from the performance testing is finding bottlenecks in the system.
Examples of performance test tools: LoadRunner/Mercury, Performance Center/Mercury, QACenter Performance
Edition/Compuware, SilkPerformer/Segue and Vantage/Compuware.

 Input generation or driver stimulation of test object
Systems can be loaded either through their ordinary input channels (like sending many http-requests to a Web server),

or through the “backdoor” (using ways not normally available to users in operational conditions). Beside inputs,
load can be CPU-cycles, memory usage, data volume in a database, additional processes, etc. Load can apply to
any resources present in the system.

 Level of stimulation
For example, the performance testing of a client/server system and a Web-application have much in common. The

load for testing may be created all the way from the client side (by running an input generator on one or multiple
copies of the client application), or between client and server (e.g. generator of http-requests for the Web-server
or SQL requests for a database server application), or “inside” the system (e.g. between Web-server and
database application).

 Environment load
The test environment used for performance testing must have the same parameters as a real production system. The

load generators are often separated from this environment so as the results are not degraded by the generators
themselves.

 Logging for debugging and result evaluation
Like for tracing, data is recorded in a buffer. The difference is in the goal rather than in the technique: the data is

gathered specifically for test outcome evaluation, not “in case a failure occurs”, as is the case with tracing.
Hardware tools are commonly used for tracing and logging, as they do not influence the behavior of the test
object and are often faster.

 On-line and off-line performance analysis
Performance analysis may be made on-line in a monitoring-like way, or done off-line by the analysis of test logs. This

depends on the amount of data logged, which often prevents to do the analysis on-line. If the goal is monitoring
the production system, we prefer on-line measuring tools.

 Graph and load/response time relation
The greater load (throughput per unit of time), the longer response delay. The actual test is whether or not the

maximum required throughput can be achieved before the maximum allowed delay is passed.
 Used mainly for non-functional testing… but even for “background testing”
Load generators and measurement tools are naturally used mostly for non-functional testing of performance attributes,

but may also be used for the test of error handling (stress testing – what happens if the load is too much?) or for
background (long duration) test – repeating some functional tests with a “typical” load in the background for many
days.

227

227TSK05/04/22

Dynamic Analysis Tools
● Run-time information on the state of executing software
● Hunting side-effects
● Memory usage (writing to “wrong memory)
● Memory leaks (allocation and de-allocation of memory)
● Unassigned pointers, pointer arithmetic

● https://visualvm.github.io/

Examples of dynamic analysis tools: BoundsChecker/Compuware, Cantata/IPL,
GlowCode/Electric Software, WinTask/UniBlue.

 Hunting side-effects
The expected outcome of a test case is one or just a few, but there can be an infinite variety of

“unexpected” (i.e. wrong) outcomes. The tested application – besides doing what is
expected of it – must not do anything else.

For example, a routine must not change any other memory contents than its own variables.
However, consequences of such a fault may be far-away (in time) and not at all immediately
visible. Dynamic analysis is a set of testing techniques that specialize in looking for faults
not immediately visible from the analysis of the expected outcomes.

 Memory usage
If a routine by mistake writes its data over another routine’s memory area, the result is a

“dynamic fault”, i.e. the fault which is not permanently present in the executable code. Such
faults may be captured using the operating system’s own memory control mechanisms.
Sometimes finding them requires the usage of special tools.

 Memory leaks
Faults in the handling of dynamic memory are common, but their immediate effects are hardly

visible. Only after prolonged execution do they cause a failure, when no more memory is
available. There are tools able to identify and localize such “memory leaks”, i.e. situations
when not all allocated memory is returned when de-allocated.

 Unassigned pointers, pointer arithmetic
The pointer is a variable that contains the address of a memory area (often dynamic memory).

If a memory address is not assigned to the pointer (or the memory address is wrong, e.g.
the address of dynamic memory which have already been de-allocated), writing to such
address is the disaster.

228

228TSK05/04/22

Debugging Tools
● “Used mainly by programmers to reproduce bugs and

investigate the state of programs”
● Used to control program execution
● Mainly for debugging, not testing
● Debugger command scripts can support automated

testing
● Debugger as execution simulator
● Different types of debugging tools

 Used to control program execution
Executing programs line-by-line, halting execution, setting and examining program variables,

etc.
 Debugger command scripts can support automated testing
Most debug tools have the ability to execute commands read from files. Such command scripts

can be useful as low-level test programs (especially for white-box testing).
 Debugger as execution simulator
Debuggers are sometimes available on a simulator platform on a host machine. This facility can

be used for input generation and as test-running tool.
 Different types of debugging tools
 HW-tools (ICE, JTAG, logic analyzer)
 Assembly language level or source language level: for white-box testing, it is important that

debugger understands the source code
 Tools understanding OS, processes, etc.

229

229TSK05/04/22

Comparison Tools
● To detect differences between actual and expected

results
● Expected results hard-coded or from file
● Expected results can be outputs (GUI, character-based

or any other interface)
● Results can be complex:
● On-line comparison
● Off-line comparison

Comparison tools compare actual with expected outcomes. “Comparison tools” are seldom
found as stand-alone applications, instead they are typically built into available test-running
tools.

 Expected results hard-coded or from file
Comparing files or database contents require being able to deal with a range of file and

database formats.
 Expected results can be outputs (GUI, character-based or any other interface)
Outcomes can be outputs, e.g. character screens, GUI objects, bitmap images, and many,

many other. Comparison tools for special interfaces, for the analysis of proprietary protocols
and for the evaluation of test outcomes that require domain knowledge, are often developed
locally and tailored to their applications.

 Results can be complex
For the analysis of complex data, comparison tools often have filtering and masking

capabilities. For textual output, chosen lines or columns of text can be ignored. For GUI
output, some objects or areas of the screen can be ignored.

230

230TSK05/04/22

Test Management Tools
● Very wide category of tools and functions/activities:

– Testware management
– Monitoring, scheduling and test status control
– Test project management and planning
– Incident management
– Result analysis and reporting

Examples of test management tools: DigitalTester/Digital Tester, QADirector/Compuware,
SilkPlan Pro/Segue, TestDirector, QACenter/Mercury and TestManager/IBM Rational.

 Testware management
Tools are concerned with the creation, management and control of test documentation (test

plans, specifications and results).
 Monitoring, scheduling and test status control
Test management tools shall facilitate these activities by providing readable statistics (if

possible presented graphically) on the number of test cases run and passed, trends, risk
levels, etc.

 Test project management and planning
For general management (time, resources, activities, risk management, etc.), ordinary project

management tools are often applicable.
 Incident management
Some commercial test management tools have built-in functionality for incident management.

Normally, separate incident management tools are used.
 Result analysis and reporting
Test management tools must either contain or have access to compete test execution record

information (often stored in a test results database).

231

231TSK05/04/22

Coverage Tools
● Measure structural test coverage
● Pre-execution: instrumentation
● Dynamic: measurement during execution
● Various coverage measures
● Language-dependent
● Difficulties for embedded systems
● Usage: measuring the quality of tests
● Good coverage: only legs are uncovered
●

Coverage tools measure the percentage of the source code covered, i.e. executed at least
once, during the test execution. Examples of coverage tools: Bullseye Coverage/Bullseye
Testing Technology, Cantata/IPL, Code Coverage/DMS, CTC++/Testwell, LDRA
Testbed/LDRA, Panorama/ISA Inc and TCAT C/C++/Software Research.

 Pre-execution - instrumentation
To measure the coverage, the source code must first be instrumented. Additional instructions

are inserted into it.
 Dynamic – measurement during execution
During execution, each time such an extra instruction is executed, the corresponding counter is

incremented. After the execution, by examining the values of the counters it is possible to
determine the coverage and other statistics.

 Various coverage measures
There are many different measures of structural coverage.
 Language-dependent
The coverage measurement requires that the tool understands the language in which the tested

application is written.
 Difficulties for embedded systems
Embedded systems make the measurement of coverage difficult. There may not be enough

space in memory for the instructions added during instrumentation and no source code
information.

 Usage: measuring the quality of tests
The goal of measuring coverage is to measure the quality of tests. During test suit design, tests

shall be added to improve the coverage until the required level is achieved. Note that
structural coverage should be interpreted more cautiously for real-time and for object-
oriented systems that for sequential, one-process systems.

232

232TSK05/04/22

6.2-Tool Selection and Implementation
Which Activities to Automate?
● Identify benefits and prioritise importance
● Automate administrative activities
● Automate repetitive activities
● Automate what is easy to automate (at least at the

beginning)
● Automate where necessary (e.g. performance)
● NOT necessarily test execution!
● Probably NOT test design; do not “capture”
●

 Automate administrative activities
The more a given test-related activity is “clerical” and the less it is “intellectual”, the easier and

more rewarding it is to automate.
 Automate repetitive activities
Automation pays best for repetitive activities. They can be identified as those considered as

“boring” and done very unwillingly.
 Automate what is easy to automate (at least at the beginning)
For the successful introduction of automation, it is best to begin with a small-scale pilot project,

achieve early success and promote it.
 Automate where necessary (e.g. performance)
Most activities can be automated, but some have to be automated, e.g. performance testing or

coverage analysis. These are good entry points for the usage of test tools and test
automation.

 NOT necessarily test execution!
Test tools are not only test-running tools. Automated test execution may be harmful unless

more basic parts of test and surrounding processes are automated.
 Probably NOT test design; do not “capture”
Unless your product and your processes are very mature, and formal design methods in place,

do not automate test design. Automated test case generation using “capture” may look
deceptively easy, but can be very harmful and create a non-maintainable testware
architecture.

233

233TSK05/04/22

Automated Chaos = Faster Chaos
● Automation requires mature test process
● Successful automation requires:

– Written test specification
– Known expected outputs
– Testware Configuration Management
– Incident Management
– Relatively stable requirements
– Stable organization and test responsibility

 Automation requires mature test process
Test process must be mature, systematic and disciplined, otherwise it is not only not going to

work, but make matters even worse. If this condition is not fulfilled, process improvement
must be done before or at least in parallel with test tool introduction. How given tools fit your
test process is at least as important as their functionality when choosing tools.

 Written test specifications
Automation without written specification what to automate may be fun, but seldom successful.
 Known expected outputs
Without them, manual testing is better. The automation of test execution without the automation

of result evaluation will produce mountains of test results to evaluate and a false sense of
security.

 Incident Management
As mentioned before, successful automation of test execution requires that more basic

activities are already automated.
 Relatively stable requirements
Unless the requirements are relatively stable, testware maintenance will soon become a major

issue. The choosing of test tools and building of test environment may not be possible if too
little is known about the test object.

 Stable organization and test responsibility
Test automation is time-consuming and requires careful planning and dedicated resources.

Automation is seldom successful if it uses project resources only. Dedicated line resources
are needed to keep and transfer automation and tool competence between projects.

234

234TSK05/04/22

● What you need now
– Detailed list of technical requirements
– Detailed list of non-technical requirements

● Long-term automation strategy of your organization
● Integration with your test process
● Integration with your other (test) tools
● Time, budget, support, training

Tool Choice: Criteria

 Detailed list of technical requirements
All technical details on the planned scope and goal of the automation project will be needed for

the decision.
 Detailed list of non-technical requirements
The introduction of test tools is not only a technical decision, but business and organizational

decision as well.
 Long-term automation strategy of your organization
Your test tool introduction plans should be synchronized with your company’s overall test

strategy and QA system. If there are non, automation may succeed but anyway become
“shelfware” because of the lack of long-time commitment.

 Integration with your test process
If you do not have one, get one first – then start talking about automation again.
 Integration with your other (test) tools
Using test tools is supposed to save the overall amount of work, not create additional work

because of non-compatible tools. Take into account tool’s integration with your development
and execution platforms. Consider integrated tools offered by some vendors.

 Time, budget, support, training
A complete project plan must be prepared and used for the introduction of test tools and test

automation.

235

235TSK05/04/22

Tool Selection: 4 steps
● 4 stages of the selection process according to ISEB:
● Creation of candidate tool shortlist
● Arranging demos
● Evaluation of selected tools
● Reviewing and selecting tool

236

236TSK05/04/22

Tool Implementation
● This is development – use your standard development

process!
● Plan resources, management support
● Support and mentoring
● Training
● Pilot project
● Early evaluation
● Publicity of early success
● Test process adjustments

 This is development – use your standard development process!
A good and defined development process applies to testware as much as it applies to the

product. Unreliable testware will not provide reliable test results.
 Plan resources, management support
Test automation can save execution time (and resources in the later stage), but requires

resources (for script development) and full management support. Shall not be attempted as
an amateur activity.

 Support and mentoring
Access to support (tool experts and test automation experts) and mentoring for the new test

automation team, is vital for success).
 Training
Most often forgotten or underestimated in test automation projects. Plenty of training is needed,

both for testers and for developers.
 Pilot project
To gather experience, to allow early evaluation, to provide training and to achieve early success

– all that is easier to achieve if automation is started on a narrow front only.
 Early evaluation
After some time into the test automation implementation, evaluate costs and benefits, identify

changes in the test process, perform risk analysis again. This may help put efforts back on
track, and cancel what holds a very poor promise of success.

 Publicity of early success
It is an important step in assuring future resources, diminishing defensive attitudes and going

over from project to line activity.

237

237TSK05/04/22

Pilot and Roll-Out
● Pilot objectives

– Tool experience
– Identification of required test process changed
– Assessment of actual costs and benefits

● Roll-out pre-conditions
– Based on a positive pilot evaluation
– User commitment
– Project and management commitment

238

238TSK05/04/22

Automation Benefits
● Faster and cheaper
● Better accuracy
● Stable test quality
● Automated logging and

reporting
● More complete

regression

● Liberation of human
resources

● Better coverage
● More negative tests
● “Impossible” tests
● Reliability and quality

estimates

 Faster and cheaper
Tools generally work faster, without breaks and 24x7. If the test automation is applied to the

right project and at the right time, less resources are needed – so it is cheaper.
 Better accuracy
Tools can measure what we cannot even see and they make no errors.
 Stable test quality
Tools work in exactly the same way each time, do not get tired, have no personal problems and,

above all, do not get bored.
 Automated logging and reporting
This is the most “clerical” of all test activities, therefore most repetitive and boring. Can be

(partially) automated without automating test execution.
 More complete regression
Faster execution allows for more extensive regression, which in turn supports more flexible

policy for adding functionality, faster fault-fixing, etc.
 Liberation of human resources
Testers are relieved of boring work and free to do what people are best at: intellectual work.
 Better coverage
Testing faster means testing more.
 More negative tests
More testing of “crazy” boundary conditions.
 “Impossible” tests become possible
I.e. tests that require speed or volume not possible for human testers (e.g. load tests).
 Reliability and quality estimates
By performing tests each time in the same way, and performing more regression testing, data

for process analysis and improvement becomes available.

239

239TSK05/04/22

Automation Pitfalls
● More time, money,

resources!
● No test process
● Missing requirements
● Missing test specs
● Missing outcomes
● Poor CM
● Poor incident management
● Defensive attitudes

● Too little regression
● Exotic target system
● Incompatible with other

tools
● Own tools needed
● Much training
● Mobile test lab
● To save late projects

 More time, money, resources!
Automated testing is more expensive than manual. It requires expensive tools, test specialists (developers) and time

to develop test scripts in the development phase. On the other hand the automation is effective if some conditions
are fulfilled.

 No test process
Test process needs to be specified especially when test tools is used.
 Missing requirements
Without having clear requirements we cannot do good automation.
 Missing test spec
Automated testing requires the same test specification (designed test cases) as manual testing.
 Missing outcomes
Expected outcomes are the most important inputs to test case design and test scripts development.
 Poor CM
Testware is like any other software and must be under CM (the version of test scripts must be in compliance with the

version of the system under test).
 Poor incident management
Defects found by test scripts must be reported to development and actions have to be taken. Reporting of incidents

can be automated.
 Defensive attitudes
Sometimes testers or managers feel threatened by the prospect of test automation. Even if you do not agree, they

must not be dismissed. Usually, there is some rationale behind this attitude.
 Too little regression
Unless the amount of regression testing is large enough and testing is repeating >= 3 times, the automation of test

execution may not be profitable, even if it is technically tempting. However, this need not apply to other forms of
automation.

 Exotic target system
Means that no commercial tools are available. Building your own tools is a major undertaking and must be planned

carefully.
 Incompatible with other tools
You may already have tools in place that would not work with your test-running tool. A case for re-consideration.
 Own tools needed
In some cases development of your own tools is inevitable or more effective.
 Much training
If your test team is generally inexperienced, and no experts on test automation are available, trainings and

consultations are needed (both internal, external).
 Mobile test lab
If the mobility of the test lab is very important, adding more instruments may not be feasible.
 To save late projects
Test automation requires more resources and time up-front, and brings about savings in test execution time later on.

Therefore, an attempt to save projects already late by bringing test automation in, is counterproductive.

240

240TSK05/04/22

Automation on Different Test Levels
● Component: stubs and drivers, coverage analysis
● Integration: interfaces and protocols
● System: automated test-running and performance tools
● Acceptance: requirements, installation, usability

The strength of the case for test automation is
not related to the level of testing. However,
different automation goals and techniques
may dominate on different levels, as the
scope and goals for test on different levels
are different.

The amount of white-box testing is greatest in
component testing. The amount of black-box
testing is greater is system than in
component testing, but the difference is not
as distinct as for white-box testing.

	Slide 1
	Slide 2
	Historie
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	1.4-QA Standards - ISO
	1.4-QA Standards – CMMI_clipboard0
	1.4-QA Standards – CMMI (6)
	1.4-QA Standards – CMMI
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	IEEE standards
	BS 7925-1
	ISTQB Glosary
	V&V – Where is truth?_clipboard0
	V&V – Where is truth?
	Slide 63
	Slide 64
	2.1- Modely pro testování (3)_clipboard0
	Slide 66
	Slide 67
	Slide 68
	Modely pro testování (6)
	2.1- Modely pro testování (7)
	2.1- Modely pro testování (8)
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	2.5 - Testování integrace komponent (2)
	2.5 - Testování integrace komponent (3)
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Testování efektivity
	Testování efektivity – Advanced Software Testing Vol. 3
	Load testing
	Stress testing
	Scalability testing
	Resource utilization testing
	Endurance or soak testing
	Spike testing
	Reliability testing
	Background testing
	Tip-over testing
	Efficiency testing and SDLC (1)
	Efficiency testing and SDLC (2)
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	4.3.4 – Testování podmínek skoků (Branch Condition Testing)_clipboard1
	Slide 187
	4.3.6 – Testování změny podmínky_clipboard3
	4.3.7 – Testování LCSAJ (Linear Code Sequence and Jump)_clipboard4
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	5.4 – Managament incidentů (4)
	Slide 216
	5.5 – Standardy pro testování (2)
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240

