

www.vsb.cz

2

10/09/23 SWI 3 2

SWI 3

David Ježek
VŠB – Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science
Department of Computer Science

10/09/23 SWI 3 3

References
● Presentations from Jan Kožusznik
● AIELLO, BOB, 2010. Configuration Management Best

Practices: Practical Methods that Work in the Real
World. 1 edition. Upper Saddle River, NJ: Addison-
Wesley Professional. ISBN 978-0-321-68586-5. Slaids
form jan Kožusznik

10/09/23 SWI 3 4

Six Functional Areas
● Source code management
● Build engineering
● Environment configuration
● Change control
● Release management
● Deployment

10/09/23 SWI 3 5

The Traditional Definition of Configuration
Management

● Configuration identification
● Change control
● Status accounting
● Configuration audit

10/09/23 SWI 3 6

Outline of Configuration Management
● Six functional area of configuration management
● Architecture and Hardware Configuration Management
● Compliance, Standards, and Frameworks

10/09/23 SWI 3 7

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 8

Source Code Management (SCM) - Goal
● "Good one starts with making certain that all of your

source code is safely locked down and no important
source code is lost.”

● Another goal is to help improve the productivity of tour
entire team – it can import the quality of source code by
helping to implement automated testing.

● Provide traceability – one of the most important goal.

10/09/23 SWI 3 9

SCM - Principles
● Code is locked down and can never be lost
● Code is baselined, marking a specific milestone or other point in

time.
● Managing variants in the code should be easy with proper

branching.
● Code changed on a branch can be merged back onto the main

trunk.
● Source code management process are repeatable, agile and lean.
● Source code management provides traceability and tracking of all

changes.
● Source code management best practices help improve productivity

and quality.

10/09/23 SWI 3 10

SCM
● SCM is sometime referred

as software configuration
management and
sometime source code
management.

● Software configuration
management is more
then source code
management.

http://oneettn.tk/configuration-management-software/

10/09/23 SWI 3 11

Configuration Item(s)
● “Source code or another

resulting artifact that
make up the system” -
Configuration
Management (CM)
terminology

http://www.chambers.com.au/glossary/configuration_item.php

12

10/09/23 SWI 3 12

Configuration Identification
● Identification of configuration items (CI)
● Labelling of CI’s

– Labels must be unique
– A label usually consists of two parts:

● Name, including title and number
● Version

● Naming and versioning conventions
● Identification of baselines

Identify all parts that need to be controlled. What is the smallest part to be configuration
managed?

The configuration identification shall reflect the product structure.
All configuration items must be labelled. Use a standard for naming and versioning. If your

company does not have a standard, define one!
What is a baseline?
 A snapshot of a configuration at a certain point in time.
 A way to measure where in the development cycle a system really is.
Why baselines?
 A stable point from which new projects (or releases) can be developed.
 To roll back to if changes have caused big problems.
 Possibility to recreate the configuration of the system.
 A base for testing.
 A base for supporting.
 A starting point for more formalized control.
Examples of baselines: functional baseline, design baseline, development baseline, product

baseline.

10/09/23 SWI 3 13

Why it is important
● It gives the tools and

processes to manage the
configuration items.

http://blogs.wandisco.com/tag/distributed-version-control/

10/09/23 SWI 3 14

Start with Source Control Management
● Identify goals and requirements for a source code

management.
● Organizations often starts by assessing their practice for

securing their code and managing changes, baseline,
releases, including bug-fixes.

● Start with agile and lean approach.

10/09/23 SWI 3 15

Core concepts creating baselines and time machines
● Source Code Management is not only “check in”/”check

out”.
● Creating a baseline – identifying the exact versions of

the code for a specif release. This operation has
synonymous in CM tools – tagging, labeling,
snapshotting.

● Baselines need to be immutable.
● Tag named “PRODUCTION” is “float” with current

baseline of the code that is in production.

10/09/23 SWI 3 16

Core concepts baseline

https://wiki.enterpriselab.ch/edu/workspace:modules:swe:s08:deberli:arbeit

10/09/23 SWI 3 17

Check-in/check-out
● Checkout:
● Reserved X unreserved
● Check-in
● Different tools may use

different terminology:
commit instead check-in.

● 2-phase commit (check-in)
● Concept of a private

sandbox (workspace) is
widely spread. http://betterexplained.com/articles/a-visual-guide-to-version-control/

10/09/23 SWI 3 18

Variant management - branching
● Main branch (often called

trunk/main)
● More working branches:
● Variants in code, different

versions, working on
bugfixes.

● Copybranch vs
deltabranch

http://www.codeproject.com/Articles/431125/Choosing-a-Version-Control-System-A-Beginners-Tour

10/09/23 SWI 3 19

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 20

Build Engineering – Goals
● "It is to be able reliably compile and link your source

code into a binary executable in the shortest possible
time.”

● It includes identifing the exact compile and runtime
dependencies and any other specific technical
requirements, including compiler switches and
dependencies.

10/09/23 SWI 3 21

Principles
● Builds are understood and repeatable.
● Builds are fast and reliable.
● Every configuration item is identifiable
● The source and compile dependencies can be easily

determined.
● Code should be built once and deployed anywhere.
● Build anomalies are identified and managed in an

acceptable way.
● The cause of broken builds is quickly and easily identified

(and fixed).

10/09/23 SWI 3 22

Why it is important
● It helps the development team by providing an accurate

and repeatable way to compile and link the code in the
fastest possible way.

● Agile and Iterative development have highlighted this
issue.

● Getting right build also avoids serious problems.

10/09/23 SWI 3 23

Start with Build engineering
● Start by looking at the existing development build

procedures.
● Job of build engineer is to make build scripts more

reliable and supportable.
● Evaluate existing tools and processes before starting to

improve them.

10/09/23 SWI 3 24

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● A few responsibilities
– The first is that builds must be

established that are
repeatable,

– based on an identifiable
baseline and that all
dependencies are well
understood and controlled.

– Every build consists of and
creates configuration items
(Cis).

– The first task of a build
engineer is to verify that all
executables and essential
scripts, documents, and text
files are clearly identified.

10/09/23 SWI 3 25

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● you need to be able to easily identify the
exact version of anything that gets
created by the build process
– all binaries (intermediate code and runtime

modules)

– all configuration files

– Anything whether they are source, binary,
or configuration files.

● In an ideal world, everything should be
identifiable with an immutable version ID.
In practice, we are used to looking at the
About box in a desktop GUI to see the
version of the product that we are using.
All documentation, including release
notes, tutorials, and tech notes, must
include version identification so that we
know which version of the code they
pertain to.

10/09/23 SWI 3 26

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● The most basic form of this
requirement is to stamp an
executable with an immutable version
ID (and provide an easy procedure to
retrieve the version ID)
– Build systems using a C++ static char

variable with the version ID stamped
into the executable.

– Created JAVA classes to retrieve the
version ID and stamp the version ID
into the manifest of the JAR, WAR, or
EAR file created by the build.

● The key is to make sure that the
version ID can be easily traced back to
the exact version of the source used
to build that executable.

10/09/23 SWI 3 27

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● In some cases, we actually stamped the
executable with the source code
management tool’s version label or tag
used to build the release. Because we
created the build sandbox using this
label or tag (and we locked it in the
repository), we were reasonably certain
that we had all the information that we
needed to be able to reliably rebuild
the baselined release as required.

● In some cases, we also needed to
capture and record the revision of the
repository itself (because tags could not
be easily locked and developers could
conceivably remove the tag and attach
it to another version of the code)—
after the release was already on its way
to QA.

●

10/09/23 SWI 3 28

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● Many builds break because an
environment variable was set in the
developer’s own user account and
then completely forgotten two
months later when the code was
being built for the release to
production, most likely using another
user account.

● It’s not just about source code; all
compile (and runtime) dependencies
must be understood and controlled.
That means that your build scripts
should set all required environment
variables and confirm that all build
dependencies are correctly in place
each and every time the build is
executed.

10/09/23 SWI 3 29

Core concepts
● Version IDs and branding

of executables
● Immutable Version IDSs
● Stamping In a Version

Label or Tag
● Managing Compile

Dependencies
● The independent Build

– All configuration items are
rebuild.

● One of the best ways to
avoid costly mistakes is to
have every release built
independently and from
the very top of the build
structure so that all
configuration items are
completely rebuilt.

● This is often done by a
separate release
management team or by an
automated build process as
in continuous integration
(CI).

10/09/23 SWI 3 30

Core Consideration for Scaling the Build Function
● Selling the independent build

– sell this verification step as being a good way to guarantee (and
literally test) that we did not overlook a compile dependency

● Overengineering the build
● Testing your own integrity
● Organizational choice

– common for build engineering to be part of the QA group
– also communicate with the head of systems administration
– head of the build engineering team be someone who is willing

to communicate issues and, if necessary, stop the build from
being released (pending resolution of important issues)

10/09/23 SWI 3 31

Continuous Integration
● Continuous integration (CI) is a popular best practice

that refers to attempting a build and deploy of code
immediately after a developer commits changes to the
source code repository.

● CI is usually done using a software package that makes it
easier to monitor the source code management
repository for changes and immediately start a build.
The results of the build are posted on a dashboard,
including the most recent changes responsible for any
system outages, including a failed build.

10/09/23 SWI 3 32

Build Tools Evaluation and Selection
● Make – created in 1977 at Bell

Labs
● Ant
● Maven
● Gradle
● Jenkins – continuous integration
● Integrated Development

Environments
● “Build engineers face extra

challenges when developers
know how to build only through
their IDEs”.

● “Application should never built and
deployed to production from within
an IDE” - WHY?

● Static Code Analysis
– A common application of static code

analysis is to identify possible
security vulnerabilities so that they
can be fixed before the code is
released. The build engineer is often
the only person who can assemble all
the code required for a particular
release and successfully build the
entire system with whatever hooks
and modifications are necessary for
the static code analysis.

● Include all your stakeholders in tool
selection process.

10/09/23 SWI 3 33

Making a Good Build Better
● Test-Driven Builds

– Capture also any step that you see developers using troubleshoot the build (e.g.
missing particular JAR)

– building in these tests and creating scripts to automate and check each step of the
build

● Trust, But Verify
● Make build and deployment automation in a way that prevents mistakes from

occurring:
– the cockpit of a plane is designed in such a way as to minimize the likelihood of a

mistake
– Design the build so that each step is easy to understand and follow
– Anticipate what might go wrong and build in tests to verify that the build is successful

● Structure the automation so that one step does not break the whole build
● Use dashboards and reports effectively to communicate build status.

10/09/23 SWI 3 34

The Role of the Build Engineer
● Software development backgrounds and expert

knowledge of the technology and the ability to write
code, including Perl, Python, shell scripts, and XML, to
create reliable and repeatable builds.

● Plays key role in software development effort.
● Know What You Build – an excellent understanding of

relevant build tools and a deep understanding of the
application architecture (relevant technologies)

● Partner with Developers
● “Drafting a Rookie”

10/09/23 SWI 3 35

Establishing a Build Process
● Choose the best practices
● Choose the best tools
● provide training and support
● Establishing Organizational Standards
● Proper use of build tools – naming conventions,

templates

10/09/23 SWI 3 36

Continuous Integration Versus the Nightly Build
● CI – extremely popular, often associated with Agile

development,
● Very often, A nightly build is more then sufficient and

much easier.
● CI – may trigger many extra builds that will fail →

creating unnecessary failed entries on the CI dashboard.
● In some situations, CI causes builds to be executed

before previous one has been completed.
● Always go for the lightest process possible – just-in-time

process improvement

10/09/23 SWI 3 37

Conclusion
● Best practices will help to improve productivity and quality
● Build process should be:
● Automated,
● Traceable,
● Fast
● Kept as simple as possible
● Complex technology - try to break a build into manageable

parts
● Carefully select your tools

10/09/23 SWI 3 38

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 39

Introduction
● It refers to identifying, modifying and managing the

interface dependencies required for the system to
successfully progress from development to QA to
production.

● Often called runtime dependencies.

10/09/23 SWI 3 40

Goal
● "It is to always point to the correct runtime resources,

such as the QA or production database.”
● "Ultimately, it is establishing and maintaining control as

your system makes its way from development to QA to
production"

10/09/23 SWI 3 41

Principles
● Environment configuration dependencies are identified

and well understood.
● Environments can be interrogated for their current

status.(e.g. ports open).
● Code should be build once with environment

configurations changed prior to deployment.
● Environment configurations should be changed in a

controlled and predictable way.
● Environment configurations should be documented and

understood by all parties.

10/09/23 SWI 3 42

Why it is important
● It helps to manage both compile and runtime

dependencies.
● Common mistake: accidentally to specify production DB

when you wanted QA
● It will help release management and deployment.
● Having the flexibility to manage multiple environments

means – it can be rapidly deployed and tested.

10/09/23 SWI 3 43

Start with environment configuration
● Small with environment configuration control – it can

quickly grow.
● By getting your key compile and runtime dependencies

understood and controlled.
● Eliminate hard coding of all dependencies as soon as

possible.

10/09/23 SWI 3 44

Supporting Code Promotion
● The promotion of code throughout the development

lifecycle:
– Development
– Quality assurance (QA) - more security controls
– Production - most secure.

● Environment configuration control helps to make code
promotion predictable and repeatable.

10/09/23 SWI 3 45

Managing configuration
● Configuration of used database.

– „Which database are you using.“
● Configuration of used external resources.

– „Did that trade go through.“
● Using tokens to refer to specific resource.
● Centralizing the environment variable assignment.

– Configuration files
– Configuration database – instantiate all runtime

dependencies during release packaging

10/09/23 SWI 3 46

Practical Approaches to Establishing a CMDB
● Configuration management database – store IT assets –

configuration items
1)Examine the runtime environment and report back the status

of environment configuration values.
2)Contains the predefined environment configurations

● Identify an then control.
● Understanding the environment configuration

10/09/23 SWI 3 47

Change control depends on environment
configuration.

● RFC may impact the runtime environment
● Configuration management system and specialized

configuration management databases help manage
environment configuration

● All environment changes need to be:
– Identified
– Understood
– Controlled

10/09/23 SWI 3 48

Minimize the Number of Controls Required
● Keep environment control process very light in the

beginning
– Too enough controls motivates people to get clever at

bypassing the process.
● Mistakes and errors can provide the motivation for

improving the process

10/09/23 SWI 3 49

Managing Environments
● After software is written it is needed an environment to

host the release of the code.
● It is recommended automation of the process
● Can test without accidental dropping a trade into

production
● A good idea is to have an established procedure to drop

and re-create a test environment from scratch – test db
and any required resources.

10/09/23 SWI 3 50

The Future of Environment Configuration
● Existence of interesting tools and frameworks
● Using of virtualization
● Software as a service, cloud computing.
● Always pilot selected approaches.

10/09/23 SWI 3 51

Conclusion
● Important function (as other disciplines :D)
● Helps to be more productive and avoid a lot of painful

mistakes.
● Helps also to develop higher-quality applications by

facilitating rapid iterative development.

10/09/23 SWI 3 52

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 53

Introduction
● It is the most central function in configuration

management.
● It is also one of the most underutilized and often

misunderstood function.
● 7 types of change control

10/09/23 SWI 3 54

Goal
● “It is carefully manage all changes to the production

environments."
– part is only coordination (very important).
– managing changes to the environment.

● It is essential to control which releases are promoted to
QA and production.

● Can act as the stimulus to all other configuration
management-related functions.

The goal of change control is to carefully manage all changes to the
production

(and usually QA) environments. Part of this effort is just coordination, and that
is very important. But part of this is also managing changes to the

environment
that will impact all the systems in the environment. It is also essential to

control
which releases are promoted to QA and production. Change control can act
as the stimulus to all other configuration management-related functions, too.
This chapter explains how to use change control to manage your configuration
management efforts.

10/09/23 SWI 3 55

Principles
● Changes should be planned and not just last-minute

events.
● Changes should be understandable, including their

downstream impact.
● Authority of approvals for changes should be

established and obtained as appropriate.
● Procedure for emergency changes should be established

to cover emergency incidents.
● Change control should assess and confirm that all

configuration management process are being followed.

10/09/23 SWI 3 56

Why it is important
● It can help you to prevent problems that can be costly.
● It can also drive the entire configuration management

process.

Change control is important because it can help you to prevent problems that
can be costly. Without change control, changes to your production environ-
ment will likely result in serious mistakes that can impact your business in a
significant way. A number of different types of change control can add value

and
help your organization run more efficiently. Change control can also drive your
entire configuration management process. From guarding changes to your

pro-
duction environment to controlling changes to your processes, change control

is
important to your entire application lifecycle.

10/09/23 SWI 3 57

Start with change control
● It is best to start small – consider own goals and

priorities. You need to consider implementing seven
types of change control.

● By establishing a change control board (CCB) to review
and approve all changes to production (or QA) – may
include:
– releases, patches, and runtime configuration changes.

Most people get started with change control by establishing a change control
board (CCB) to review and approve all changes to production (or QA). This
may include releases, patches, and runtime configuration changes. It has

been
my experience that it is best to start small and then add additional controls as
needed based on risk (for example, potential for mistakes). Change control

typi-
cally starts small and then grows as needed. As always, start by considering

your
own goals and priorities. There are seven types of change control that you

need
to consider implementing.

10/09/23 SWI 3 58

The seven types of change control
● A Priori
● Gatekeeping
● Configuration control
● Change advisory board
● Emergency change control
● Process engineering
● Senior management oversight

10/09/23 SWI 3 59

A Priori
● Permission for a change is requested before any actual

change to the code is made.
● RFCs are usually created and reviewed by the respective

CCB
● It usually refers to changes in the code and most often

consist of defining requirements and then actual design of
the system

● The role of CM:
– To track requirements throughout the lifecycle
– confirm that that all requirement were included in a specific

release

Some organizations have a disciplined process whereby permission for a
change

is requested before any actual change to the code is made. I have seen
defense

contractors that had to describe the changes that they want to make and then
await approval from a government agency before actually writing the code that
implemented the change. In this process, requests for change (RFCs) are

usually
created and reviewed by the respective CCB. A priori change control usually
refers to changes in the code and most often consists of defi ning

requirements
and then the actual design of the system. The role of configuration

management
in this case is to track requirements throughout the lifecycle and confirm that
all requirements were included in a specific release. Many organizations have
a regulatory requirement for tracking requirements, and that often includes a
change control function. Tracking source code changes to requirements is im-
portant, but controlling changes to production are essential, too.

10/09/23 SWI 3 60

Gatekeeping
● The most common type
● CCB reviews RFC that will impact production (or QA).
● It usually involves giving authority to promote new release.
● Patches to to existing released reviewed by the CCB.
● It generally evaluates whether risks that RFC could potentially

impact the production
● CCB is responsible for reviewing the RFC and approving or

rejecting the RFC
● CCB will require that all necessary technical experts be

present at the CCB meeting – in the practice it is not practical.

The most common type of change control, and usually the first to be imple-
mented, is “gatekeeping” change control where the CCB reviews RFCs that

will
impact production (or QA). This usually involves giving authority to promote a
new release of the code into production (or QA). Similarly, patches to existing
releases are also reviewed by the CCB. This function generally evaluates

whether
there is a risk that the RFC could potentially impact the production (or QA)
environments. The CCB is responsible for reviewing the RFC and approving
or rejecting the RFC. It is common for the members of the CCB to have ques-
tions about whether the change requested could impact the production (or

QA)
environment. Traditionally, the CCB will require that all necessary technical
experts be present at the CCB meeting—although, in practice, this is often not
practical. The ITIL framework has made popular the use of a change advisory
board (CAB) that consists of experts who can advise on the downstream

impact
of a particular change. I discuss how to set up a CAB and why it might need to
be separate from the CCB later in this chapter. Closely related are

configuration
changes, as discussed in the next section.

10/09/23 SWI 3 61

Configuration control
● Refers to interface (runtime) dependencies only
● RFC involves a configuration change – CCB reviews and

considers the downstream impact.
● Often understanding the interface dependencies often

requires specialized expertise.
● Alternative name configuration control board.

When the RFC involves a configuration change, the CCB reviews and consid-
ers the downstream impact of the configuration change required.

Configuration
changes can have the same impact as a new release. In practice,

understanding
the interface dependencies often requires specialized expertise and should be

reviewed by a board that contains members who possess this expertise. In
this

case, I believe that the governing body should be called a configuration
control

board. However, there is some confusion in the terminology commonly used
today. Many of the industry standards describe the configuration control board
as governing the configuration of a system in terms of the configuration of the
source code itself instead of environment configuration. In these standards, a
configuration of the code refers to a specific set of versions of the source

code.
I believe that this usage is confusing and a relic of days past when configura-
tion control referred to controlling the version of a Cobol program that was
being promoted on a large IBM mainframe computer. Today, we promote a
packaged release that may contain thousands of configuration Items,

including
binaries, XML, and many other artifacts. I believe that it makes more sense to
use configuration to refer to environment configuration and to use terms such

as
baseline or release to refer to a specific set of code versions that are

promoted as
a release. There are many reasons for this. Most releases are packaged, and

the
entire release package is deployed as a complete package. The last thing that

the
administrator deploying the release wants to know about is the specific

versions
of each of the configuration items that make up the packaged release.

However,
in these same situations, environment configurations such as interprocess

com-
munication ports are still managed through the change control process, as

they
should be. So, if you want port 9444 opened on an application server, you

need
to complete a change request and, once approved by the configuration control
board, the data security team will modify the iptables to allow interprocess

com-
munication on port 9444. In my opinion, true configuration control should refer
to interface (runtime) dependencies only.

10/09/23 SWI 3 62

Change advisory board
● ITIL – CAB that acts as an expert resource to the change

management function
● CCB have access to all required experts to effectively

review RCP
● Without the service similar of a group similar to CAB –

not understood changes resulting in mistakes and
system outages.

I have been very impressed by the itSMF’s ITIL framework that places a
strong

focus on configuration management in the ITIL section on transition. I discuss
this further in Chapter 14, “Industry Standards and Frameworks.” ITIL de-
scribes a change advisory board (CAB) that acts as an expert resource to the
change management function. This is the best description that I have seen

that
solves the common problem that the folks involved with the process of change
control might not be the most knowledgeable in terms of all the required tech-
nical details. It is appropriate that the CCB have access to all required experts
to effectively review requests for change and identify any possible

downstream
impacts. Without the services of a group similar to the ITIL CAB, changes

could
be made that are not understood, resulting in mistakes and system outages.

10/09/23 SWI 3 63

Emergency change control
● Emergencies require immediate changes (always occurs)
● CCB cannot meet at any hour of the day or night to

authorize emergency changes – focusing on strict
adherence to the regular process → production system
may being down for an extended period.

● Recommendation: a very senior manager's approval be
required for emergency changes – abuse prevention.

● Discussion after the event to understand why an
emergency change was required in the first place.

There are always times when emergencies require immediate changes. It is
likely

that the CCB cannot meet at any hour of the day or night to authorize
emergen-

cy changes, and focusing on strict adherence to the regular process may
result

in the company production system being down for an extended period of time.
Any successful change control function must include a well-defined process

for
managing emergency changes. I recommend that a very senior manager’s

ap-
proval be required for emergency changes and that there be discussion after

the
event to understand why an emergency change was required in the first place.
I have seen situations in which technology professionals abused the

emergency
change control process to bypass the regular change control process. In this

case,
you will be successful if you have the support of senior management to

ensure
that everyone follows the process in the best way possible.

10/09/23 SWI 3 64

Process engineering
● PE placed under control of a CCB
● CCB also tasked with communication process change to

all affected parties and stakeholders
● Process improvement – organized continuing effort;

process CCB can help to manage the process
engineering effort on an ongoing basis

Organizations establish processes to run their businesses on a day-to-day
basis.

These processes are established, and then the teams affected are expected
to

comply with the process. The processes will sometimes need to be adjusted,
and

this can have wide-ranging impacts on the entire organization. In this case,
the

process engineering should be placed under control of a change control board
that is responsible for reviewing requests for changes to the process. The

CCB
for process is also tasked with communicating process changes to all affected
parties and stakeholders. I believe that the best response to a mistake is to

reex-
amine existing processes and ascertain whether additional process steps are

war-
ranted. Process improvement is an organized continuing effort, and the

process
CCB can help to manage the process engineering effort on an ongoing basis.

10/09/23 SWI 3 65

Senior management oversight
● Provide visibility to senior management and other

stakeholders
● The best way to do is with a dashboard that lists

– The upcoming RFC (including status)
– Pending approvals
– Others.

● Many organizations arrange CCBs in a hierarchical
fashion.

The change control function should provide visibility to senior management
and other stakeholders so that everyone knows the status of upcoming

changes
and also changes that have been completed (whether successfully or not).

The
best way to do this is with a dashboard that lists the upcoming RFCs,

including
their status, pending approvals, and other relevant information. You should
also coordinate these efforts with the project management team, especially if
your organization has a formal project management office (PMO). Some of my
colleagues have pointed out that this function might seem different from the

oth-
ers, and I agree that it is indeed unique. Many organizations arrange their

CCBs
in a hierarchical fashion to ensure that change control has the proper

oversight
and control. This function maintains the topmost organizational oversight from

a process and change control perspective and is normally only used in
larger

organizations.

10/09/23 SWI 3 66

Creating a change control function
● Establishing procedures to review all RFCs and ascertain

potential impacts.
● Acting as gatekeeper.
● Most organizations establish a CCB to review and

evaluate all RFC.
● Many organizations often handle configuration change

control separately from other change control functions.

Change control involves establishing procedures to review all requests for
chang-

es and ascertain whether there are downstream potential impacts that might
or

might not cause a problem. Change control includes acting as a gatekeeper.
In

this regard, the change control function reviews requests for change and
grants

permission or rejects the request for change. Most organizations establish a
CCB

to review and evaluate all requests for changes. We discuss the role of the
CCB

as is commonly described in many industry standards, including those
approved

by ISO, IEEE, and frameworks, including Cobit, ITIL, and the CMMI. I also
suggest that many organizations often handle configuration change control

sep-
arately from other change control functions.

10/09/23 SWI 3 67

Risks
● Don't forget risks.
● Consider in terms of what might be impacted by a

particular change.
● Must take additional steps to mitigate risks.
● Communicate risks to all stakeholders.
● Significant risks communicate to senior management.

Risks are inherent in any major IT effort. The change control process should
always consider risk in terms of what might be impacted by a particular

change.
This might mean that you will need to escalate a particular request for change
to advise others of a problem that could possibly occur. It also might mean

that
you must take additional steps to mitigate risks. It should always mean that

you
communicate risk to all the stakeholders involved with this effort. In particu-
lar, significant risk is one of the items that should be communicated to senior
management. It is common for senior management to be interested in change
control, and you should consider driving the entire process through change

con-
trol, too.

10/09/23 SWI 3 68

Driving the CM process through CC
● Requires considerable

commitment and support
from senior management

● Well-defined CM policy
needed – it spell out the
needed compliance with
configuration directives.

● Reviewing all the steps
required for the release in
detail.

The change control process can drive the entire configuration management ef-
fort by requiring that all requests for change come with all related entry criteria
completed. For example, the RFC to promote the release to QA should also
include reviewing the CM plan to make certain that all the configuration man-
agement functions are completed correctly. Using change control to drive the
CM process requires considerable commitment and support from senior man-
agement. There needs to be a well-defined CM policy that spells out the need
for compliance with all related configuration management directives. Another
example of how change control can drive the release process is reviewing all

the
steps required for the release in detail. The CCB can recommend that the re-
lease process be automated and get release managers to work together

better to compare and share release management best practices, including
script auto-

mation. This can and should include all aspects of configuration management,
including source code management, build engineering, environment

configura-
tion, release packaging, and deployment.

10/09/23 SWI 3 69

Entry/exit criteria
● Entry criteria for the CC meeting – a concise description

of the requested changes.
● Exit criteria – descriptions of the required tests to verify

that the changes are successfully implemented without
impacting the other systems.

The entry criteria for the change control meeting should be a concise
description

of the requested changes. I always require that project managers and
develop-

ment leads provide enough technical details about the change in advance of
the

meeting that other managers can review the request and ascertain whether
there

might be some impact on their own systems. The meeting itself is a
discussion of

possible downstream impacts and whether the change is actually required.
The

important information is provided for review before the meeting, and the other
managers know that they have to participate or else be prepared to handle the
consequences of an unexpected change. The exit criteria are descriptions of

the
required tests to verify that the changes are successfully implemented without
impacting the other systems. I liberally use peer pressure to make this effort a
success.
Implementing a process can sometimes be a tug-of-war between the project
managers and the change management group. The PMs and development

man-
agers will insist that they are too busy with real work to be bothered with fill-
ing out forms and attending meetings. It works a lot better if you can get the
PMs and development managers to view their efforts as being a service to

their
peers instead. I discuss this further in Chapter 10, “Overcoming Resistance to
Change.”

10/09/23 SWI 3 70

After-action review
● Always after the change has been completed.
● Successful – the CCB reviews the completed change and

advises that change is completed.
● Problems occur – the after-action review should facilitate

discussion of what went wrong; CCB should make plans to
avoid problems in the future.

● Discuss problems in an open and honest way.
– essential for organizations to drive out fear

● Focus on prevention from occurring again.
● Mistakes are often the best catalyst for enhancing

organizational processes to prevent mistakes form reoccurring

Change control should always be reviewed after the change has been
completed.

This is important regardless of whether the change was successful. When
RFCs

are completed successfully, the CCB simply reviews the completed change
and

advises that the change is completed. When problems occur, the after-action
re-

view should facilitate an open and honest discussion of what went wrong, and
the CCB should make plans to avoid problems in the future. W. Edwards

Dem-
ing, widely regarded as the one of the great leaders of process and quality im-
provement, noted that it is essential for organizations to drive out fear. This is

es-
pecially true when conducting an after-action review. The team needs to feel

safe
that mistakes and problems can always be discussed in an open and honest

way.
The focus should be on how to prevent the mistake from occurring again. The
after-action review is sometimes called a post-mortem or, in Agile, a

retrospec-
tive. Regardless of the name, it is essential for the organization to discuss

what
went well and what needs to be improved. Mistakes are often the best catalyst

for
enhancing organizational processes to prevent mistakes from reoccurring.

10/09/23 SWI 3 71

Conclusion
● You can drive all of you CM best practices from within

CC
● Start small and implement each of the change control

function as needed.

10/09/23 SWI 3 72

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 73

Introduction
● It is a core function in

configuration management
that focuses on packaging a
system for promotion from
development to QA to
production.

● Often viewed as being a
broad function that may
encompass:
– Source code management
– Build engineering

Release management is a core function in configuration management that fo-
cuses on packaging a system for promotion from development to QA to

produc-
tion. If you are supporting a software production company, “production,” for
you, may be shipping the product to the customer, instead of releasing the

code
to the production (or QA) environment. Whereas release management should
focus on packaging the code created during the build process, release

manage-
ment is, in practice, often viewed as being a broad function that may

encompass
both source code management and build engineering. Release management

in
a corporate IT environment is slightly different from release management for a
software product company—although I have worked in software product com-
panies that still maintained separate QA, integration, and production environ-
ments as if they were a corporate IT environment even while shipping the fin-
ished product to an end user (or pushing changes via an automated

installation
process). In this chapter, we focus on defining release management as a

function
that takes over after the build has been completed and prepares the release

for
deployment into the desired environment. After a release has been created, it
should conform to all the standards set by the release management team. In

this
chapter, we examine these and other best practices related to release

manage-
ment.
This chapter covers the release management functions that include packaging
and configuration identification procedures such as creating immutable

version
IDs and shipping release maps (that can be verified in production). I view the
basic ergonomics of release management as essential, and yet they are

rarely,
if ever, discussed as part of configuration management. This includes avoiding
human error and dealing with too many moving parts. Release management
should also be viewed as coordination and communication, and needs to con-
sider the links to requirements tracking and traceability. The future of release
management will include the use of cryptographic keys to verify that that the
entire release is intact. This chapter is packed with essential information on

the
release management function.

10/09/23 SWI 3 74

Goal
● It is to create and maintain a repeatable process for

packaging a release.
● It must be clearly defined with little or no chance of error

occurring
● It is an automated function that includes creating an

immutable ID – embedded into release package
● It should also coordinate any dependencies that might be

required for the release to successfully deploy.
● It should be completely traceable with a clearly defined

procedure to verify that correct components have been
deployed.

The goal of release management is to create and maintain a repeatable
process

for packaging a release that includes a clear way to identify every component
of

the release. Release management must be clearly defined with little or no
chance

of errors occurring. Generally, release packaging is an automated function that
includes creating an immutable ID that is embedded into the release package
itself. Release management should also coordinate any dependencies that

might
be required for the release to successfully deploy. Finally, release

management
should be completely traceable with a clearly defined procedure to verify that
the correct components have been deployed into a runtime environment.

10/09/23 SWI 3 75

Principles
● Release should be readily identifiable with a immutable version ID.
● Release should be packaged with all the dependencies included.
● Release packaging should be automated and designed to avoid

human error.
● Release management should be fast and reliable to facilitate iterative

development.
● There should be a mechanism to conduct an audit of a release

package to verify all of its configuration items.
● The contents of a release should be well understood, including the

tracking of requirements.
● Release management should be a source of information on the status

of all release, ideally though a release management dashboard.

10/09/23 SWI 3 76

Why it is important
● RM (release management) provides order to the

development process.
● It is first line of defense in making sure that the release

is ready to go.
● It often plays the key role in packaging, coordinating,

and communicating the status of the release.
● RM is the glue that keeps the development process on

track.

10/09/23 SWI 3 77

Start with release management
● Several places where you could start with implementing

a RM function.
– Creating a release calendar and communicating status – RM

is a communications and coordination function.
– Making certain that releases are always packaged in a reliable

way that eliminates any chance of mistakes.
– Priority for start depends on the specific problems solvable

by RM functions.
– Generally, it should be started be ensuring a reliable way to

identify all configuration items and then proceed to automate
a release packaging process.

There are several places where you could start with implementing an RM
func-

tion. Sometimes, you need to focus on creating a release calendar and
commu-

nicating status and, in this context, RM is a communications and coordination
function. I usually start by making certain that releases are always packaged

in
a reliable way that eliminates any chance of mistakes. You might find that you
have specific goals and priorities that will drive where you start with RM. I usu-
ally get called into an organization to solve a specific RM-related problem. In
this context, my performance is judged based on whether I can solve the

specific
problem that is adversely impacting the organization. If you have the luxury of
starting up an RM function without a specific fire to extinguish, I would say that
you should start by ensuring that you have a reliable way to identify all

configu-
ration items (also known as configuration identification) and then proceed to
automate your release packaging process.

10/09/23 SWI 3 78

Release management concepts and practices
Packaging strategies that work

● Ideally every configuration item should have an
embedded immutable version ID that identifies the exact
version of the configuration item deployed.

● Embedded version IDs can be traced back to the version
labels or tags used to baselines.

● Reasonable and practical approach to this effort – it is not
possible to imprint immutable version IDs in every CI

● Package version identification.
● An immutable version ID

A variety of RM concepts and practices are discussed in the following subsec-
tions. The focus of release management should be on ensuring that every

con-
figuration item (CI) has a unique version ID. This means that every binary has

a
unique internal stamp that can tell you the version ID of the CI. It is common

for
developers to proudly point out that the code in the source code management
tool has been baselined using a unique version label, tag, or other identifier.

But
in release management, we have to ensure that all CIs can be identified when
they are no longer solely in the version control repository and are also running
in a production (or QA) environment.

In an ideal world, every configuration item should have an embedded
immutable

version ID that correctly identifies the exact version of the configuration item
de-

ployed. Release packages typically consist of one or more complete
components

that can run as a unit. It is true that there may be other dependencies required
for the release, but one of the roles of RM is to identify these dependencies
and provide a reliable way to manage them. Of course, you want to make sure
that the embedded version IDs can be traced back to the version labels or

tags
used to baseline your source code in the source code repository. I should also
point out that configuration items include all binaries, configuration files, and
documentation—essentially every single piece of code or binary that goes into
a release. Obviously, you need to take a reasonable and practical approach to
this effort. You might not be able to imprint immutable version IDs in every CI.
You should always take a “risk”-based approach to this effort, which means
that you consider what bad thing might happen if you have the wrong version
of a CI running in production. After identifying all of your CIs, the next step is
to package and prepare the release for deployment. Remember that the

packages
themselves also need to be identifiable.

Every release should be delivered as a complete package with a unique and
verifiable version ID embedded in the release package itself. The release

pack-
age should be able to tell you exactly what version has been deployed. It is

not
enough to just have a record of what was deployed at a particular time. I have
seen incidents where the release was deployed correctly and then through hu-
man error some part of the production release was inadvertently replaced with
the wrong version of a runtime component. This should never happen, but in
the real world, it does happen. The RM function should create release

packages
that have an embedded and immutable version ID that can be easily retrieved
with established auditing practices. In Chapter 6, “Deployment,” I describe an
incident that occurred when I was the release manager at a large stock

exchange
where my techniques for creating package IDs helped to triage a situation

where
the world economy was impacted by a change that was made to production
after my release was successfully deployed.

10/09/23 SWI 3 79

Release management concepts and practices
Sending a release map with the release

● A list of all the configuration items that were delivered
as part of a release and developer release notes.

● Includes the size of all configuration items and their
date stamps

● release map = bill of materials
● An immutable version ID – embed ID into binaries –

branding the executable

The packaged release should always contain a list of all the configuration
items

that were delivered as part of a release and developer release notes, product
documentation, and updated help files explaining what is included in the re-
lease. I sometimes call the list of what is included in the release my release

map,
because it shows everything that was deployed, including the size in bytes of

all
configuration items along with their respective date stamps. Some people call
this a bill of materials. We should also note that date stamps and sizes can

actu-
ally be impacted by minor changes or environment issues that do not actually
threaten the integrity of the release. There are more reliable methods that we

dis-
cuss, including the use of cryptographic keys. But still the release package

itself
should always ship with an immutable version ID that can used to trace back

to
the exact version of the source used to build that particular release.

An immutable version ID means that the package can be identified with an ID
that cannot be overwritten either intentionally or by accident. One way to do
this is to embed the version ID into the binary executable at build time.

Embed-
ding version IDs into executables was covered in Chapter 2, “Build Engineer-
ing.” I sometimes call this branding the executable because the objective is to
stamp the binary once and never allow the version ID to be overwritten. If your
release packages and all the configuration items contained in them have

version
IDs, you are much closer to being able to create reliable RM practices.

10/09/23 SWI 3 80

The ergonomics of release management
● Avoiding human error
● Analyze the reasons for the errors.
● Automate the release packaging effort.
● Understanding the technology.
● Tools from build engineering.

10/09/23 SWI 3 81

Release management as coordination
● Communicating the status of a release.
● Don't forget the release calendar
● RM and configuration control.

Release management is also a coordination function in that it helps to
manage

all the tasks and requirements for a successful release. This may involve
coor-

dinating the release itself and all the items that are required for a successful
re-

lease. Part of this effort is ensuring that you communicate the status of a
release

to all affected parties.
5.5.1 Communicating the Status of a Release
I have seen environments where everyone was doing a great job, but just

about
nobody knew that to be the case. The communication within the team was

poor
and almost nonexistent to the management above them. Poor communication
results in considerable frustration and can undermine the effectiveness of the

en-
tire team. The RM process must, at a minimum, provide visibility into the

status
of a release. I always communicate to all stakeholders that a release is

planned,
and more important, when it begins to be deployed. Then, I always broadcast
the completion of the RM process along with success of the required smoke

tests
that we describe in more detail in Chapter 6.
5.5.2 Don’t Forget the Release Calendar
The RM function should also establish a calendar to maintain and

communicate
all the pending releases. In practice, I have found that I usually have two cal-
endars. The first is for planned, scheduled releases, and the second for

tactical
short-term releases that may occur on a pretty frequent basis. It is not easy to
establish these calendars and keep them updated, but again, the RM function

is
essential for the success of any team and you should definitely plan on

spending
the resources necessary to establish and maintain an accurate release

calendar.
In some cases, this can be done by the change control function in support of
release management.
5.5.3 RM and Configuration Control
Release management also involves coordinating changes to the configuration
that can impact the runtime behavior of a system. Changes to configurations
can impact the release just as much as promoting an entirely new release.

Coordi-
nating these dependencies can be complex and is discussed further in

Chapter 4,
“Change Control.”

10/09/23 SWI 3 82

Requirements tracking
● Track requirements from the very beginning of the lifecycle

to the final deployment into production.
● To know exactly what is included with a particular release
● To be certain that they do not miss a requirement.
● Many possible ways:

– A very formal one.
– Simply keep a list of requirements – in the release notes their

delivering and packaging with the completed release is
documented.

● Make sure that QA is kept advised of exactly what will be
included in each release.

Many organizations need to be able to track requirements from the very be-
ginning of the lifecycle to the final deployment into production. This is often
because these organizations have a compliance requirement to know exactly
what is included with a particular release. They also need to be certain that
they do not miss a requirement. This is sometimes done in a very formal way.
Other times, the project manager or development lead will simply keep a list of
requirements and then document them in the release notes that are delivered
and packaged with the completed release. As a release manager, I have often
had to go to the project managers and tech leads to ask for the release notes.

I
also often take a few minutes to make sure that QA is kept advised of exactly
what will be included in each release. Requirements often trigger test cases,

and
some requirements tracking tools interface with test case management

software
to generate test cases from requirements. Developing end-to-end support of

the
software development process is one of the ways that RM adds value to the
organization.

10/09/23 SWI 3 83

Taking release management to the next level
● Many existing industry standards and frameworks

provide guidance.
● Using cryptography to sign the code.
● Operating systems support for release management.
● Linux YUM package manager.
● Improving the RM process
● To be open to continuously improving as needs arise.
● RM should be reviewed as part of change control

function.

10/09/23 SWI 3 84

Conclusion
● Pragmatic and realistic approach to establishing RM best

practices.
● RM process should meet the needs of the organization

in a flexible and reliable way.
● RM process should be:

– fast,
– efficient,
– error free.

10/09/23 SWI 3 85

Six functional areas

● Source code management
● Build engineering

● Environment configuration
● Change control

● Release management
● Deployment

10/09/23 SWI 3 86

Introduction
● It is final step in the code promotion process

10/09/23 SWI 3 87

Goal
● It is to promote a release into production without any

possible problem occurring.
● It should be like turning on a light switch.
● Enable rollback to previous version.
● To know exactly what is in production and immediately

know whether any unauthorized changes have been
made – another goal.

10/09/23 SWI 3 88

Principles
● Promoting a release should be reliable and as simple as

possible.
● Promoting a release should be completely traceable with an

audit log of all changes.
● Only authorized personnel should be involved with

deployment.
● In most organizations, there needs to be a separation of

duties between developers and the team that deploys the
release.

● Any unauthorized changes should be detect immediately.
● There should a well established procedure for checking the

version of a release in production.
● The deployment process should be continuously reviewed

and improved as needed.

10/09/23 SWI 3 89

Why it is important
● You want to make certain you can:

– Reliably promote a release forward
– Take a step back and back out a release that was previously

deployed.
● Done well – deployment should be a “nonevent”.

10/09/23 SWI 3 90

Start with deployment
● Automation to stage a release in a shared depot.
● create reliable automation to promote the release and

back it out
● Keep deployment as simple as possible – it should be

always performed by operations or system
administrations team.

10/09/23 SWI 3 91

Practices
● Staging is key.
● Scripting the release process itself.
● Frameworks for deployment.
● Depot.
● Auditing your release.
● Smoke test.
● Little things matter a lot.
● Communications planning.
● Automation to verify that no changes have taken place.

10/09/23 SWI 3 92

Deployment should be delegated
● It should be the one function that does not stay within

configuration management role.
● Operations team can deploy and fall back to a previous

release as necessary.
● The release management team should help establish

the deployment procedures and delegate their day-to-
day operations.

10/09/23 SWI 3 93

Conclusion
● It should be the smallest of the CM-related functions.

(WHY?)
● Keep the deployment procedure as simple as possible

along with being fully traceable.
● Deployment should be performed by the operations

team using procedures and automation.

10/09/23 SWI 3 94

Architecting the application for CM

10/09/23 SWI 3 95

Introduction
● CM depends on

architecture in a number
of important ways – often
overlooked.

● Achilles’ heel of CM –
when the app changes →
stop working:
– Source code management
– Builds
– Release packaging and

deployment

10/09/23 SWI 3 96

Goal
● It is improve quality and productivity by implementing

CM best practices consistent with the architecture.
● Consider requirements of CM during application design

and implementation:
– Embedded ID
– Rapid and iterative application development.

10/09/23 SWI 3 97

Why it is important
● Architecture is essential:

– CM support team needs understand it.
– CM can provide an essential service to facilitate the development

effort by providing tools and process.
● The architecture influences this because the architecture

defines
– What makes up a deliverable unit
– The communication paths among the units
– Indirectly the directory structure and other structural aspects of

the source code respository
● Modularity leads to decoupling, which adds concurrency to

the development process.

10/09/23 SWI 3 98

Start with architecture
● By evaluating the complexity of the architecture of the

application.
● Get ready to create example programs in many different

language.
● Identification in reciprocity of help between CM and

development.

10/09/23 SWI 3 99

How CM facilitates good architecture
● Good source code management strategies – baselines,

variants – essential for supporting the development of a
robust application architecture.

● The architecture itself may need to be designed for CM.
● Configuration management-driven development may

produce better systems as Test driven development.
● One way is to provide a framework for organizing code

into components, baselines, and snapshot.

10/09/23 SWI 3 100

CM functions support development
● Source code management

– Using to facilitate architecture.
– Training is essential.
– As service

● Provide help to developers to use the tools effectively

● Build engineering as service:
– Developers can rapidly build and test the application.
– Create a number of build machines usable on an “on-demand”

basis.
– Build can be run from a larger machine and then promoted to

the test area.

10/09/23 SWI 3 101

Conclusion
● CM is impacted significantly by the application

architecture.
● Implementing complex architecture is much easier done

with CM best practices.
● CM team needs to communicate its requirements to the

development organization and technology leadership
needs to keep in mind the importance of working with
CM team.

● CMDD

10/09/23 SWI 3 102

Hardware CM

10/09/23 SWI 3 103

Introduction
● It is often overlooked and undervalued.
● HW components need to be version

controlled just like source code.
● Can’t easily check a circuit board into a

source code management tool.
● It often miss easy way to confirm the

version of the hardware component or
the firmware loaded.

● It is needed to have procedure to
perform:
– Configuration identification,

– Change control,

– Status accounting,

– Configuration audits.

10/09/23 SWI 3 104

Goal
● Always to know which version of the hardware

component is in use.
● To be able to track any changes to the hardware and

control changes to the interface and external
dependencies.

● To control environment changes that may impact the
release management process.

10/09/23 SWI 3 105

Why it is important
● Getting the wrong version

of any circuit chip or
hardware could have
disastrous consequences:
– automotive,
– medical instrument,

10/09/23 SWI 3 106

Start with hardware CM
● Similar procedures as for software – Hardware cannot

be checked to GIT(yet:-)).
● Put all design documents under version control as

source code.
● All hardware devices need a version ID(as design

document).
● The design document and hardware device are

configuration items

10/09/23 SWI 3 107

Best practices
● Version control for design specification – it also includes

content of programmable memory.
● Include precise interface – of each component. Changes

should be managed through the change control process.
● Understanding dependencies – change of one

configuration item impacts another.

10/09/23 SWI 3 108

Best practices II
● Traceability:

– All changes should be traced to RFC
– Every production release must include release notes that

indicate exactly what changes are included.
● Deploying changes to the firmware

– Promoting the changes to firmware to be similar to
promoting a release to production.

10/09/23 SWI 3 109

The future of hardware CM
● It deserves more attention.
● Future standards should support it.
● Hardware CM should also include:

– Change control,
– Configuration audits,
– Tracking the evolution

10/09/23 SWI 3 110

Conclusion
● It is often overlooked.
● Many technology professionals do not know to handle

hardware configuration management.
● Technology professionals need to control changes to HW just

like to any other CI.
● Technical issues and requirements must be addressed to

handle promoting firmware changes to hardware.
● Versions of hardware configuration items must be controlled.
● It is also needed to analyze and control the interface

dependencies for hardware configuration items.

10/09/23 SWI 3 111

Tools CM

10/09/23 SWI 3 112

Source code management
● CVS
● SVN
● Team Foundation Version Control
● git
● Mercurial
● Github, Gitlab, Bitbucket – RELATION TO PREVIOUS?

10/09/23 SWI 3 113

Build engineering
● Make
● Ant,
● Maven,
● MSBuild,
● Gradle
● SBT
● Ivy

10/09/23 SWI 3 114

Environment configuration
● Chef, Salt, Puppet, Ansible…
● VMWare, VirtualBox, Parallels Desktop
● Vagrant
● Docker

10/09/23 SWI 3 115

Change control
● Mantis,
● Bugzila
● Redmine
● Jira

10/09/23 SWI 3 116

Release management, deployment
● Continuous integration

– Jenkins,
– Bamboo
– Gitlab CI
– Team Foundation Server

● Continuous quality
– SonarQube
– Squale
– Kalistick
– MetrixWare
– Cast

10/09/23 SWI 3 117

Software Configuration Management Patterns

10/09/23 SWI 3 118

Literature

10/09/23 SWI 3 119

Software configuration management
● SCM practices taken as a whole define how an

organization builds and releases products and identifies
and tracks changes.

10/09/23 SWI 3 120

A workspace
● is a place where a developer keeps all the

artifacts he or she needs to accomplish a
task.

● can be a directory tree on disk in the
developer's working area, or it can be a
collection of files maintained in an abstract
space by a tool.

● is normally associated with particular
versions of these artifacts.

● also should have a mechanism for
constructing executable artifacts from its
contents

● is also associated with one or more
codelines.

● Sometimes is managed in the context of an
integrated development environment (IDE)

For example, if you were developing
in Java, your

● workspace would include
● Source code (.java files) arranged

in the appropriate package
structure

● Source code for tests
● Java library files (.jar files)
● Library files for native interfaces

that you do not build (for example,
.dll files in windows)

● Scripts that define how you
build .java files into an executable

10/09/23 SWI 3 121

A codeline
● is a progression of the set of source files and other

artifacts that make up some software component as it
changes over time.

● Every time you change a file or other artifact in the
version control system, you create a revision of that
artifact.

● contains every version of every artifact along one
evolutionary path.

10/09/23 SWI 3 122

10/09/23 SWI 3 123

10/09/23 SWI 3 124

10/09/23 SWI 3 125

Some development organizations take one of these
extreme positions.
● Speed is essential, so we will worry about quality and

versioning later. Besides, we're small enough that
everyone knows what everyone else is doing.

● Quality is essential. We will work slowly, following
processes to the letter, regardless of how it frustrates
people on the project or reduces productivity. We work
on one release at a time.

10/09/23 SWI 3 126

Consider the number of times you have experienced one
of the following situations in a software organization.
● "We're in a code freeze. No one may check in any code

until the product ships."
● "Just copy the files somewhere. I'll use your version."
● "It works for me! Do you have the correct version of the

code?"
● "We use this tool in development, but builds are done

with another version control tool. Be sure to keep them
in sync!"

10/09/23 SWI 3 127

10/09/23 SWI 3 128

Structure of Patterns
● a title
● a picture
● a context
● the problem
● a detailed problem description
● A short summary of the solution.
● A description of the solution in detail.
● A discussion of unresolved issues

10/09/23 SWI 3 129

The Pattern Language

10/09/23 SWI 3 130

#1 - Mainline
● How do you keep the

number of currently
active codelines to a
manageable set, and
avoid growing the
project's version tree too
wide and too dense?

● How do you minimize the
overhead of merging?

10/09/23 SWI 3 131

● a merge can be messy ● staircase branching – it
can make it hard to
determine where code
originated

#1 – Mainline - II

10/09/23 SWI 3 132

#1 – Mainline - III
● Simplify your Branching Model

– When you are developing a single product release, develop
off of a mainline

The reason for a mainline is to have "a central codeline to act as a basis for
subbranches and their resultant merges". The mainline for a project
generally starts with the code base for the previous release or version. If
you are doing new development, you start with only one codeline, which is
your mainline by definition.

Doing mainline development does not mean "do not branch." It means that all
ongoing development activities end up on a single codeline at some time.

Don't start a branch unless you have a clear reason for it and the effort of a
later merge is greatly outweighed by the independence of the branch. Favor
branches that won't have to be merged often—for example, release lines.

10/09/23 SWI 3 133

Mainline development – advantages
● Having a mainline reduces merging and synchronization

effort by requiring fewer transitive change propagations.
● A mainline provides closure by bringing changes back to

the overall workstream instead of leaving them
splintered and fragmented.

10/09/23 SWI 3 134

#1 – Mainline - IV
● Unresolved Issues

– how to keep the mainline usable when many people are
working on it - ACTIVE DEVELOPMENT LINE

10/09/23 SWI 3 135

#2 - Active Development Line
● How do you keep a

rapidly evolving codeline
stable enough to be
useful?

10/09/23 SWI 3 136

#2 - Active Development Line - II
● Long running tests have mixed value

● A stable, bud dead, codeline

● a very active, but very useless codeline

You can prevent changes from being checked in to the codeline while you are
testing by using semaphores, but then only one person at a time can test
and check in changes, which can also slow progress. Figure 5-2 shows a
very stable but very slowly evolving codeline.

You can go to the other extreme and make your codeline a free-for-all. Figure
shows a quickly evolving but unusable codeline.

Institute policies that are effective in making your main development line
stable enough for the work it needs to do. Do not aim for a perfect active
development line but for a mainline that is usable and active enough for
your needs.

An active development line will have frequent changes, some well-tested
checkpoints that are guaranteed to be "good," and other points in the
codeline that are likely to be good enough for someone to do development
on the tip of the line. Figure shows what this looks like.

10/09/23 SWI 3 137

#2 - Active Development Line - III
● Define your goals

– Institute policies that are effective in making your main development
line stable enough for the work it needs to do.

– Do not aim for a perfect active development line, but rather for a
mainline that is usable and active enough for your needs

● An active, alive, codeline

10/09/23 SWI 3 138

#2 - Active Development Line - IV
● Do an analysis along the following lines

– Who uses the codeline?

– What is the release cycle?

– What test mechanisms do we have in place?

– How much is the system evolving?

– What are the real costs will be for a cycle where things are broken?

● Labeling named stable bases

10/09/23 SWI 3 139

#2 - Active Development Line - V
● Unresolved Issues

– Once you have established that a ‘good enough’ codeline is
desirable, you need to identify the codeline that will be like
this - Codeline Policy

– An individual developer still needs isolation - PRIVATE
WORKSPACE

– When the need for stability gets close - RELEASE-PREP CODE
LINE

– Some long lived tasks may need more stability - TASK
BRANCH

10/09/23 SWI 3 140

#3 – Private Workspace
● How do you do keep

current with a
continuously changing
codeline, and also make
progress without being
distracted by your
environment changing
out from under you?

In Active Development Line, you and other developers make frequent
changes to the code base, both to the modules you are working on and to
modules you depend on. You want to be sure you are working with the
latest code, but because people don't deal well with uncontrolled change,
you want to be in control when you start working with other developers'
changes. This pattern describes how you can reconcile the tension between
always developing with a current code base and the reality that people
cannot work effectively when their environment is in constant flux.

10/09/23 SWI 3 141

● Developing software in a
team environment
involves the following
steps:

● Writing and testing your
code changes

● Integrating your code
with the work that other
people were doing

● You can integrate every change team members
make as soon as they make it. This is the clearest
way to know whether your changes work with the
current state of the codeline. The downside of this
"continuous integration" into your workspace
approach is that you may spend much of your time
integrating, handling changes tangential to your
task. Frequent integration helps you isolate when a
flaw appeared. Integrating too many changes at
once can make it harder to isolate where the flaw is
because it can be in one of the many changes that
have happened since you integrated.

● You can integrate at the last
possible moment. This makes it
simplest for you, the developer,
while you are working, but it means
that you may have many outside
integration issues to deal with,
meaning that it will take longer to
integrate at the end.

10/09/23 SWI 3 142

Isolate Your Work to Control Change
● Do your work in a private

workspace, where you
control the versions of
code and components
you are working on. You
will have total control
over when and how your
environment changes.

● Every team member should
be able to set up a workspace
where there is a consistent
version of the software. A
concise definition of a
workspace is "a copy of all
the 'right' versions of all the
'right' files in the 'right'
directories". A workspace is
also a place "where an item
evolves through many
temporary and inconsistent
states until is checked into
the library".

10/09/23 SWI 3 143

A private workspace
comprises the following:

● Source code you are editing.
● Any locally built components.
● Third-party derived objects that you

cannot or do not wish to build.
● Built objects for all the code in the

system. You can build these yourself, have
references to a shared repository (with
the correct version), or have copies of
built objects.

● Configuration and data that you need to
run and test the system.

● Build scripts to build the system in your
workspace.

● Information identifying the versions of all
the components in the system.

should not contain the following:
● Private versions of systemwide scripts

that enforce policy. These should be in a
shared binary directory so that all users
get the latest functionality.

● Components that are in version control
but that you copied from somewhere
else. You should be able to reproduce the
state of your workspace consistently
when you are performing a task, by
referencing a version identifier for every
component in the workspace.

● Any tools (compilers, and so on) that
must be the same across all versions of
the product. If different versions of the
product require different versions of
tools, the build scripts can address this by
selecting the appropriate tool versions for
a configuration.

10/09/23 SWI 3 144

Coding for mainline development
1)Get up to date. Update the source tree from the codeline you

are working on so that you are working with the current code
and build, or repopulate the workspace from the latest system
build. If you are working on a different branch or label, create a
new private workspace from that branch.

2)Make your changes. Edit the components you need to change.
3)Do a Private System Build (8) to update any derived objects.
4)Test your change with a Unit Test (14).
5)Update the workspace to the latest versions of all other

components by getting the latest versions of all components you
have not changed.

6)Rebuild. Run a Smoke Test (13) to make sure that you have not
broken anything.

10/09/23 SWI 3 145

● If your system is small enough, you can simply get
source and any binary objects for the correct
configuration of all of the product components and
build the entire system. You might also consider getting
the latest code from the MAINLINE (4) and building the
entire system if it does not take too long. This will
ensure that the system that you are running matches
the source code. With a good incremental build
environment, doing this should work rather well,
allowing for, perhaps, the one time cost of the whole
system build.

10/09/23 SWI 3 146

● If you are working on a multiple tasks, you can have
multiple workspaces, each with their own configurations.

● One risk with a PRIVATE WORKSPACE (6) is that developers
will work with old “known” code too long, and they will
be working with outdated code. You can protect yourself
from this by doing periodic Private System Builds and
making sure that changes do not break the build or fail
the SMOKE TEST (13). (The sidebar “Update Your
Workspace to Keep Current”discusses the Workspace
Update in more detail.)

● The easiest way to avoid getting out of date is to do fine
grained tasks

10/09/23 SWI 3 147

Repository Pattern
● To create a PRIVATE

WORKSPACE (6) or to run
a reliable INTEGRATION
BUILD (9) you need the
right components. This
pattern shows you how to
build a workspace easily
from the necessary parts.

10/09/23 SWI 3 148

Workspace consists
Some of the things that you need to build and test a software some of the
things that you need include:

● The source code that you are working with.
● Components that you are not working with, either as source, or library

files.
● Third party components, such as jar files, libraries, dlls, etc. - depending

on your language and platform.
● Configuration files
● Data files to initialize your application
● Build scripts and build environment settings so that you can get a

consistent build
● Install scripts for some components

10/09/23 SWI 3 149

One Stop Shopping
● Have a single point of access, or a Repository, for your code and

related artifacts.
● Make creating a developer workspace as simple and as

transparent as possible.
● Make the mechanism that you use to create a workspace simple

and repeatable.
● You should be able to create a workspace that contains artifacts

from any identifiable revision of the product, including third
party components and built artifacts such as library files.

● The mechanism should also make it easy to determine if there is
a new version of an existing element, or a new component that
you need when you are working on the tip of a development.

10/09/23 SWI 3 150

10/09/23 SWI 3 151

Private System Build
● A PRIVATE WORKSPACE (6)

allows you, as a developer, to
insulate yourself from external
changes to your environment.
But your changes need to work
with the rest of the system too.
To verify this, you need to build
the system in a consistent
manner, including building with
your changes. This pattern
explains how you can check to
see if your code will still be
consistent with the latest
published code base when you
submit your changes.

10/09/23 SWI 3 152

Think Globally by Building Locally
● Before making a submission to source control, build the

system using a Private System Build that is similar to the
nightly build.

The private system build should have the following attributes:
● Be like the INTEGRATION BUILD (9) and product builds as

much as possible, though some details that are related to
release and packaging can be omitted. It should at least use
the same compiler, versions of external components, and
directory structure.

● Include all dependencies.
● Include all of the components that are dependent on the

change. (For example, various application executables.)

10/09/23 SWI 3 153

Integration build Pattern
● Each developer is working in their own

PRIVATE WORKSPACE (6) so that he can
control when he sees other changes. This
helps individual developers make progress,
but people are making independent changes
in many workspaces that must integrate
together, and the whole system must build
reliably. This pattern addresses mechanisms
for helping to ensure that the code for a
system always builds.

● How do you make sure that the code base
always builds reliably?

● Some users of the system may not want,
need, or be able to build the entire code base.
If they are developing software that simply
builds on top of another component then they
worrying about integration build issues will be
a waste of their energy. They really want a
snapshot of the system that they know builds.

●

●

10/09/23 SWI 3 154

Do a Centralized Build
● Be sure that all changes (and their dependencies) are built using a central

integration build process.

This build process should be:
● Reproducible
● As close as possible to the final product build. Minor items, such as how files

are version labeled might vary, but it is best if the Integration Build is the same
as the Product build. At the end of the integration build, you should have a
candidate for testing.

● Automated, or requiring minimal intervention to work. The harder a build is to
run, the more even the best-intentioned teams will skip the process
occasionally. If your source control system supports triggers, you could have
the build run on every check-in.

● A notification or logging mechanism to identify errors and inconsistencies. The
sooner that build errors are identified, the sooner they can be fixed.

10/09/23 SWI 3 155

Third Party Codeline - Pattern
● What is the most effective

strategy to coordinate
versions of vendor code
with versions of product
code?

10/09/23 SWI 3 156

Use the tools you already have
● Create a codeline for third

party code. Build
workspaces and
installation kits from this
codeline.

10/09/23 SWI 3 157

Task Level Commit - Pattern
● An INTEGRATION B UILD (9)

is easier to debug if you
know what went into it.
This pattern discusses how
to balance the needs for
stability, speed, and
atomicity.

● How much work should you
do between submission to
the Version Control
System? How long should
you wait before checking
files in?

●

10/09/23 SWI 3 158

Do One Commit per small-grained task
Example of reasonable change tasks are:
● A problem report (but if the problem is a broad

problem, it may have two or more check ins associated
with it.)

● Changing calls to a deprecated method to use a new API
for an entire system.

● Changing calls to a deprecated method for a coherent
part of the system.

● A consistent set of changes that you accomplished in a
day.

10/09/23 SWI 3 159

Codeline Policy
● When you have multiple

codelines, developers need to
know how to treat each one. A
RELEASE LINE (17) might have
strict rules for how and when to
check things in, but an ACTIVE D
EVELOPMENT LINE (5) might have
less strict rules. This pattern
describes how to establish the
rules for each codeline to suit its
purpose.

● How do the developers know
which codeline to check their code
into, and when to when to check it
in, and what tests to run before
check in?

10/09/23 SWI 3 160

Define the Rules of the Road
● For each branch or codeline, formulate a policy that

determines how and when developers should make
changes. The policy should be concise and auditable.

● The codeline policy explicitly states the rudimentary
policies an organization has about how to conduct
concurrent development and how to manage releases.
Vance says that “a codeline policy defines the rules
governing the use of a codeline or branch” (Vance 1998).
In addition to using naming conventions and meaningful
codeline names, formulate a coherent purpose for each
codeline. Describe the purpose in a clear and concise
policy.

10/09/23 SWI 3 161

Define the Rules of the Road
● The policy should be brief, and should spell out the “rules of the

road” for the codeline, including:
– The kind of work encapsulated by the codeline, such as

development, maintenance, a specific release, function, or
subsystem;

– How and when elements should be checked-in, checked-out,
branched and merged;

– Access restrictions for various individuals, roles, and groups;
– Import/export relationships: the names of those codelines it expects

to receive changes from, and those codelines it needs to propagate
changes to;

– The duration of work or conditions for retiring the codeline;
– The expected activity-load and frequency of integration

10/09/23 SWI 3 162

Some example of policies for include
● Development codeline: interim code changes may be

checked in; affected components must be buildable.
(Wingerd and Seiwald 1998)

● Release codeline: software must build and pass
regression tests before check-in; check-ins limited to
bug fixes; no new features or functionality may be
checked in; after check-in, branch is frozen until entire
QA cycle is completed.(Wingerd and Seiwald 1998)

● Mainline: all components must compile and link, and
pass regression tests; completed, tested new features
may be checked in. (Wingerd and Seiwald 1998)

10/09/23 SWI 3 163

Smoke Test
● An INTEGRATION BUILD (9) or

a PRIVATE SYSTEM BUILD (8)
are useful for verifying
buildtime integration
issues.But even if the code
builds, you still need to check
for runtime issues that can
cause you grief later. This
verification is essential if you
want to maintain a A CTIVE
DEVELOPMENT LINE (5). This
pattern addresses the
decisions you need to make
to validate a build.

10/09/23 SWI 3 164

Smoke Test
How do you know that the system will still work after you
make a change?
● You can write tests that target the most critical or failure

prone parts of the code, but it is hard to develop complete
tests.

● Unstructured and impromptu testing will help you to
discover new problems, but it may not have much of an
effective yield.

● Rapid development and small grained checkins means that
you want the cost of pre-checkin verification to be small.

● The Right Balance

10/09/23 SWI 3 165

Verify Basic Functionality
● Subject each build to a smoke test that verifies that the application

has not broken in an obvious way.
● A smoke test should be good enough to catch “show stopper”

defects, but disregard trivial defects(McConnell 1996). The definition
of “trivial” is up to the individual project, but you should realize that
the goal of a smoke test is not the same as the goal of the overall
quality assurance process.

● A smoke test should be:
– Quick to run, where ‘quick’ depends on your specific situation
– Self scoring, as any automated test should be.
– Provide broad coverage across the system that you care about
– Be runnable by developers, as well as part of the quality assurance

process.

10/09/23 SWI 3 166

Private Versions
● Sometimes you want to rapidly

evaluate a complex change
that may break the system
while maintaining an ACTIVE D
EVELOPMENT LINE (5). This
pattern describes how to
maintain local traceability
without affecting global
history unintentionally.

● How can you experiment with
a complex change and benefit
from the version control
system without making the
change public?

●

10/09/23 SWI 3 167

Private Versions
● A Private History
● Provide developers with a mechanism for check pointing

changes at a granularity that they are comfortable with.
This can be provided for by a local revision control area,
Only stable code sets are checked into the project
repository

● There are many ways to implement this. One way is to have
an entire PRIVATE WORKSPACE (6) dedicated to a task.

● It is important to make sure that developers using Private
Versioning remember to migrate changes to the shared
version control system at reasonable intervals.

10/09/23 SWI 3 168

Release Line
● You want to maintain an

ACTIVE D EVELOPMENT LINE
(5). You have released versions
that need maintenance and
enhancements, and you want
to keep the released code base
stable. This pattern shows you
how to isolate released
versions from current
development.

● How do you do maintence on
released versions without
interfering with your current
development work?

10/09/23 SWI 3 169

10/09/23 SWI 3 170

● You can put your new work on a branch, and ship the mainline. You then can
merge back. This means that most developers need to merge their work;
hopefully the released code won’t change too much over time. You may have
more than one customer, each with variations of the released software; you
may need to keep track of multiple releases that are derived from other
releases. You can model this by the staircase structure in Figure 17-3. This
structure makes it very hard to figure out what code is common among the
releases.

10/09/23 SWI 3 171

Release Line
● Split maintence/release and active development into

separate codelines. Keep each released version on a
release line. Allow the line to progress on its own for
bug fixes. Branch each release off of the mainline.

10/09/23 SWI 3 172

Release-Prep Code Line
● You're finishing up a

release and also need to
start continue
development on the next
release. You want to
maintain an A CTIVE
DEVELOPMENT LINE (5).

● How do you stabilize a
codeline for an impending
release while also
allowing new work to
continue on an active
codeline?

10/09/23 SWI 3 173

Release-Prep Code Line
● There are last minute bugs to fix, details related to

installation and packaging and other last minute details
to tend to. It is best to not do any major new work on
the active development codeline while this clean up is
going on, since you don’t want to introduce any new
problems. You will want to have very restrictive check in
and QA policies during this “clean-up” period.

● One solution is to freeze development on the active
development line until the release stabilizes.

10/09/23 SWI 3 174

Branch instead of Freeze
● Create a release-engineering branch when code is

approaching release quality. Finish up the release on
this branch, and leave the mainline for active
development.

● The branch becomes the release branch.

10/09/23 SWI 3 175

Task Branch
● Handling Long Lived Tasks
● How can your team make

multiple, long term
overlapping changes to a
codeline without
compromising its
consistency and integrity?

10/09/23 SWI 3 176

Task Branch
● Use Branches for Isolation
● Fork off a separate branch for each activity that has

significant changes for a codeline.

10/09/23 SWI 3 177

Semantic Versioning 2.0.0 - https://semver.org/
Given a version number MAJOR.MINOR.PATCH, increment
the:
1)MAJOR version when you make incompatible API

changes
2)MINOR version when you add functionality in a

backward compatible manner
3)PATCH version when you make backward compatible

bug fixes
● Additional labels for pre-release and build metadata are

available as extensions to the MAJOR.MINOR.PATCH
format.

10/09/23 SWI 3 178

Semantic Versioning
1)Software using Semantic Versioning MUST declare a public API. This API could

be declared in the code itself or exist strictly in documentation. However it is
done, it SHOULD be precise and comprehensive.

2)A normal version number MUST take the form X.Y.Z where X, Y, and Z are non-
negative integers, and MUST NOT contain leading zeroes. X is the major version,
Y is the minor version, and Z is the patch version. Each element MUST increase
numerically. For instance: 1.9.0 -> 1.10.0 -> 1.11.0.

3)Once a versioned package has been released, the contents of that version MUST
NOT be modified. Any modifications MUST be released as a new version.

4)Major version zero (0.y.z) is for initial development. Anything MAY change at any
time. The public API SHOULD NOT be considered stable.

5)Version 1.0.0 defines the public API. The way in which the version number is
incremented after this release is dependent on this public API and how it
changes.

10/09/23 SWI 3 179

Semantic Versioning
6) Patch version Z (x.y.Z | x > 0) MUST be incremented if only backward

compatible bug fixes are introduced. A bug fix is defined as an
internal change that fixes incorrect behavior.

7) Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backward
compatible functionality is introduced to the public API. It MUST be
incremented if any public API functionality is marked as deprecated.
It MAY be incremented if substantial new functionality or
improvements are introduced within the private code. It MAY include
patch level changes. Patch version MUST be reset to 0 when minor
version is incremented.

8) Major version X (X.y.z | X > 0) MUST be incremented if any backward
incompatible changes are introduced to the public API. It MAY also
include minor and patch level changes. Patch and minor versions
MUST be reset to 0 when major version is incremented.

10/09/23 SWI 3 180

Semantic Versioning
9) A pre-release version MAY be denoted by appending a hyphen and a series

of dot separated identifiers immediately following the patch version.
Identifiers MUST comprise only ASCII alphanumerics and hyphens [0-9A-
Za-z-]. Identifiers MUST NOT be empty. Numeric identifiers MUST NOT
include leading zeroes. Pre-release versions have a lower precedence than
the associated normal version. A pre-release version indicates that the
version is unstable and might not satisfy the intended compatibility
requirements as denoted by its associated normal version. Examples: 1.0.0-
alpha, 1.0.0-alpha.1, 1.0.0-0.3.7, 1.0.0-x.7.z.92, 1.0.0-x-y-z.--.

10)Build metadata MAY be denoted by appending a plus sign and a series of
dot separated identifiers immediately following the patch or pre-release
version. Identifiers MUST comprise only ASCII alphanumerics and hyphens
[0-9A-Za-z-]. Identifiers MUST NOT be empty. Build metadata MUST be
ignored when determining version precedence. Thus two versions that
differ only in the build metadata, have the same precedence. Examples:
1.0.0-alpha+001, 1.0.0+20130313144700, 1.0.0-beta+exp.sha.5114f85,
1.0.0+21AF26D3----117B344092BD.

10/09/23 SWI 3 181

Semantic Versioning - Precedence refers
● Precedence MUST be calculated by separating the version

into major, minor, patch and pre-release identifiers in that
order (Build metadata does not figure into precedence).

● Precedence is determined by the first difference when
comparing each of these identifiers from left to right as
follows: Major, minor, and patch versions are always
compared numerically.

● Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1.
● When major, minor, and patch are equal, a pre-release

version has lower precedence than a normal version:
● Example: 1.0.0-alpha < 1.0.0.

10/09/23 SWI 3 182

Semantic Versioning - Precedence refers
Precedence for two pre-release versions with the same major,
minor, and patch version MUST be determined by comparing each
dot separated identifier from left to right until a difference is found
as follows:
1) Identifiers consisting of only digits are compared numerically.
2) Identifiers with letters or hyphens are compared lexically in ASCII

sort order.
3)Numeric identifiers always have lower precedence than non-

numeric identifiers.
4)A larger set of pre-release fields has a higher precedence than a

smaller set, if all of the preceding identifiers are equal.
Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha.beta < 1.0.0-
beta < 1.0.0-beta.2 < 1.0.0-beta.11 < 1.0.0-rc.1 < 1.0.0.

10/09/23 SWI 3 183

Other Versioning
Calendar Versioning
● Ubuntu 18.04, for example, was released in April 2018
● Eclipse 2023-06

TeX has an idiosyncratic version numbering system, an unusual feature
invented by its developer Donald Knuth. Since version 3.1, updates have
been indicated by adding an extra digit at the end, so that the version
number asymptotically approaches the number π. As of February 2021,
the version number is 3.141592653.

Code Names
● Debian – Toy Story (hamm, slink, potato, woody, ...)
● Eclipse – (Callisto, Europa..., Helios, Indigo, Kepler, Luna, Mars, Neon

Oxygen, Photon)

10/09/23 SWI 3 184

Versioning
Superstition number 13

● The Office 2007 release of Microsoft Office had an internal version
number of 12. The next version, Office 2010, has an internal version of
14

● Visual Studio 2013 is Version number 12.0 of the product, and the new
version, Visual Studio 2015 has the Version number 14.0

● Roxio Toast went from version 12 to version 14
● Corel's WordPerfect Office, version 13 is marketed as "X3" (Roman

number 10 and "3"). The procedure has continued into the next version,
X4.

Geek culture
● The SUSE Linux distribution started at version 4.2, to reference 42, "the

answer to the ultimate question of life, the universe and everything"

10/09/23 SWI 3 185

Conventional Commits 1.0.0
The Conventional Commits specification is a lightweight
convention on top of commit messages. It provides an easy
set of rules for creating an explicit commit history; which
makes it easier to write automated tools on top of.
● <type>[optional scope]: <description>
●

● [optional body]
●

● [optional footer(s)]
● https://www.conventionalcommits.org/en/v1.0.0/

https://www.conventionalcommits.org/en/v1.0.0/

10/09/23 SWI 3 186

Conventional Commits
1) fix: a commit of the type fix patches a bug in your codebase (this correlates

with PATCH in Semantic Versioning).

2) feat: a commit of the type feat introduces a new feature to the codebase
(this correlates with MINOR in Semantic Versioning).

3) BREAKING CHANGE: a commit that has a footer BREAKING CHANGE:, or
appends a ! after the type/scope, introduces a breaking API change
(correlating with MAJOR in Semantic Versioning). A BREAKING CHANGE
can be part of commits of any type.

4) types other than fix: and feat: are allowed, for example
@commitlint/config-conventional (based on the Angular convention)
recommends build:, chore:, ci:, docs:, style:, refactor:, perf:, test:, and
others.

5) footers other than BREAKING CHANGE: <description> may be provided
and follow a convention similar to git trailer format.

10/09/23 SWI 3 187

Conventional Commits - GitHub
● Merge Commit: Merge branch '<branch name>'
● Revert Commit: Revert "<reverted commit subject line>"

Types
● refactor - rewrite/restructure your code, however does not change any behaviour

– perf - special refactor commits, that improve performance
● style - do not affect the meaning (white-space, formatting, missing semi-colons,

etc)
● test - add missing tests or correcting existing tests
● docs - affect documentation only
● build - affect build components like build tool, ci pipeline, dependencies, project

version, ...
● ops - affect operational components like infrastructure, deployment, backup,

recovery, ...
● chore Miscellaneous commits e.g. modifying .gitignore

10/09/23 SWI 3 188

Conventional Commits
● change - changes the implementation of an existing feature.
● chore - includes a technical or preventative maintenance task that is necessary for managing the

product or the repository, but it is not tied to any specific feature or user story. For example,
releasing the product can be considered a chore. Regenerating generated code that must be
included in the repository could be a chore.

● ci - makes changes to continuous integration or continuous delivery scripts or configuration files.
● deprecate - deprecates existing functionality, but does not remove it from the product. For example,

sometimes older public APIs may get deprecated because newer, more efficient APIs are available.
Removing the APIs could break existing integrations so the APIs may be marked as deprecated in
order to encourage the integration developers to migrate to the newer APIs while also giving them
time before removing older functionality.

● remove - removes a feature from the product. Typically features are deprecated first for a period of
time before being removed. Removing a feature from the product may be considered a breaking
change that will require a major version number increment.

● revert - reverts one or more commits that were previously included in the product, but were
accidentally merged or serious issues were discovered that required their removal from the main
branch.

● security - improves the security of the product or resolves a security issue that has been reported.
● https://medium.com/neudesic-innovation/conventional-commits-a-better-way-78d6785c2e08

https://medium.com/neudesic-innovation/conventional-commits-a-better-way-78d6785c2e08

10/09/23 SWI 3 189

Conventional Commits - GitHub
Scopes - The scope provides
additional contextual
information.
● Is an optional part of the

format
● Allowed Scopes depends

on the specific project
● Don't use issue identifiers

as scopes

Description - The description
contains a concise description of
the change.
● Is a mandatory part of the

format
● Use the imperative, present

tense: "change" not
"changed" nor "changes"
– Think of This commit will

<subject>
● Don't capitalize the first letter
● No dot (.) at the end

10/09/23 SWI 3 190

Conventional Commits - GitHub
Body - The body should include
the motivation for the change
and contrast this with previous
behavior.
● Is an optional part of the

format
● Use the imperative, present

tense: "change" not
"changed" nor "changes"

● This is the place to mention
issue identifiers and their
relations

Footer - The footer should
contain any information about
Breaking Changes and is also the
place to reference Issues that
this commit refers to.
● Is an optional part of the

format
● optionally reference an issue

by its id.
● Breaking Changes should

start with the word
BREAKING CHANGES:
followed by space or two
newlines. The rest of the
commit message is then used
for this.

10/09/23 SWI 3 191

Conventional Commits
● feat: allow provided

config object to extend
other configs

●

● BREAKING CHANGE:
`extends` key in config file
is now used for extending
other config files

● feat!: send an email to
the customer when a
product is shipped

● feat(api)!: send an email
to the customer when a
product is shipped

10/09/23 SWI 3 192

Conventional Commits
● chore!: drop support for

Node 6
●

● BREAKING CHANGE: use
JavaScript features not
available in Node 6.

● docs: correct spelling of
CHANGELOG

● feat(lang): add Polish
language

10/09/23 SWI 3 193

Conventional Commits
● fix: prevent racing of requests
●

● Introduce a request id and a reference to latest request.
Dismiss incoming responses other than from latest request.

●

● Remove timeouts which were used to mitigate the racing
issue but are obsolete now.

●

● Reviewed-by: Z
● Refs: #123

10/09/23 SWI 3 194

Why Use Conventional Commits
● Automatically generating CHANGELOGs.
● Automatically determining a semantic version bump

(based on the types of commits landed).
● Communicating the nature of changes to teammates,

the public, and other stakeholders.
● Triggering build and publish processes.
● Making it easier for people to contribute to your

projects, by allowing them to explore a more structured
commit history.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194

