

www.vsb.cz

2

09/20/23 TSK 2

Software Quality – part: Testing

David Ježek

VŠB – Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

3TSK09/20/23

History

The First
"Computer Bug"
● Moth found

trapped between
points at Relay #
70, Panel F, of
the Mark II

The First "Computer Bug" Moth found trapped
between points at Relay # 70, Panel F, of the
Mark II Aiken Relay Calculator while it was being
tested at Harvard University, 9 September 1945.
The operators affixed the moth to the computer
log, with the entry: "First actual case of bug being
found". They put out the word that they had
"debugged" the machine, thus introducing the
term "debugging a computer program". In 1988,
the log, with the moth still taped by the entry, was
in the Naval Surface Warfare Center Computer
Museum at Dahlgren, Virginia.

While Grace Hopper was working on the Harvard Mark II Computer at
Harvard University, her associates discovered a moth stuck in a relay and thereby
impeding operation, whereupon she remarked that they were "debugging" the system.
Though the term computer bug cannot be definitively attributed to Admiral Hopper,
she did bring the term into popularity. The remains of the moth can be found in the
group's log book at the Smithsonian Institution's National Museum of American History
in Washington, D.C..[1]

3

http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Harvard_Mark_II
http://en.wikipedia.org/wiki/Harvard_University
http://en.wikipedia.org/wiki/Moth
http://en.wikipedia.org/wiki/Relay
http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Smithsonian_Institution
http://en.wikipedia.org/wiki/National_Museum_of_American_History
http://en.wikipedia.org/wiki/Washington,_D.C.

4

4TSK09/20/23

1.1-What is Software Testing (2)
A) Testing is the demonstration that errors are NOT preset in the program?
B) Testing shows that the program performs its intended functions correctly?
C) Testing is the process of demonstrating that a program does what is supposed to
do?
D) Testing is the process of executing a program with the intent of finding errors.

Testing vs. Quality Assurance
● Testing - The process consisting of all lifecycle activities, both static and dynamic, concerned with

planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for purpose and
to detect defects. (ISTQB)

● Quality Assurance - Activities focused on providing confidence that quality requirements will be
fulfilled. (ISTQB)

 Demonstration that errors are NOT present:
If our goal is to demonstrate that a program has no errors, then we will subconsciously be

steered toward this goal; that is, we tend to select test data that have a low probability of
causing the program to fail. On the other hand, if our goal is to demonstrate that a program
has errors, our test data will have a higher probability of finding errors. The latter approach
will add more value to the program than the former.

 Testing shows that the program performs its intended functions correctly:

 Testing is the process of demonstrating that a program does what is supposed to do:
Programs that do what they are supposed to do still can contain errors. That is, an error is

clearly present if a program does not do what it is supposed to do, but errors are also
present if a program does what it is not supposed to do.

Program testing is more properly viewed as the destructive process of trying to find the errors
(whose presence is assumed) in a program. A successful test case is one that furthers
progress in this direction by causing the program to fail. Of course, you eventually want to
use program testing to establish some degree of confidence that a program does what it is
supposed to do and does not do what it is not supposed to do, but this purpose is best
achieved by a diligent exploration for errors.

5

5TSK09/20/23

1.1-What is Software Testing (2)
A) Testing is the demonstration that errors are NOT preset in the program?
B) Testing shows that the program performs its intended functions correctly?
C) Testing is the process of demonstrating that a program does what is supposed to
do?
D) Testing is the process of executing a program with the intent of finding errors.

Testing vs. Quality Assurance
● Testing - The process consisting of all lifecycle activities, both static and dynamic, concerned with

planning, preparation and evaluation of a component or system and related work products to
determine that they satisfy specified requirements, to demonstrate that they are fit for purpose and
to detect defects. (ISTQB)

● Quality Assurance - Activities focused on providing confidence that quality requirements will be
fulfilled. (ISTQB)

Testing is the process of executing a program

with the intent of finding errors.

Glenford J. Myers

 Demonstration that errors are NOT present:
If our goal is to demonstrate that a program has no errors, then we will subconsciously be

steered toward this goal; that is, we tend to select test data that have a low probability of
causing the program to fail. On the other hand, if our goal is to demonstrate that a program
has errors, our test data will have a higher probability of finding errors. The latter approach
will add more value to the program than the former.

 Testing shows that the program performs its intended functions correctly:

 Testing is the process of demonstrating that a program does what is supposed to do:
Programs that do what they are supposed to do still can contain errors. That is, an error is

clearly present if a program does not do what it is supposed to do, but errors are also
present if a program does what it is not supposed to do.

Program testing is more properly viewed as the destructive process of trying to find the errors
(whose presence is assumed) in a program. A successful test case is one that furthers
progress in this direction by causing the program to fail. Of course, you eventually want to
use program testing to establish some degree of confidence that a program does what it is
supposed to do and does not do what it is not supposed to do, but this purpose is best
achieved by a diligent exploration for errors.

6

6TSK09/20/23

What ca be tested
● From testing user requirements to monitoring the

system in operation
● From testing the functionality to checking all other

aspects of software:
– Documents (specifications)
– Design (model)
– Code
– Code+platform
– Production, acceptance
– Usage, business process

 From testing user requirements to monitoring the system in operation:
Testing is not done only once (e.g. with the first version of the product), but it is an continuous

activity throughout product’s entire lifecycle (from user requirements, through system design
and implementation, to monitoring the system in operation and its maintenance). Testing it
most effective in early phases of the development.

 From testing the functionality to checking all other aspects of software:
Testing is not focusing only to the system functionality but to all other attributes of the software:
 Documents (specifications)
 Design (model)
 Code
 Code+platform
 Production, acceptance
 Usage, business process
 Verification:
Its goal is to answer the question: “Have we done the system correctly?” Verification uses a

previous development step (i.e. functional specification prior to coding) as the reference. A
piece of code that fulfils its specification is verified.

 Validation:
Its goal is to check whether correct product has been built, i.e. whether it fulfils the customers

needs. Thus, any step in the development process can be validated against user
requirements.

The goal of testing may be verification or validation.

7

7TSK09/20/23

Realities in Software Testing
● Testing can show the presence of errors but cannot

show the absence of errors (Dijkstra)
● All defects can not be found
● Testing does not create quality software or remove

defects
● Building without faults means – among other – testing

very early
● Perfect development process is impossible, except in

theory
● Perfect requirements: cognitive impossibility

 Testing can show the presence of errors but cannot show the absence of errors:
There are still some errors never found in the software.
 All defects can not be found:
Even for simple programs/applications, the number of possible input combination or possible

paths through the program is so large that all cannot be checked.
 Testing does not create quality software or remove defects:
It is the responsibility of development.
 Building without faults means – among other – testing very early:
A popular “argument” against testing is: “We should build correctly from the very beginning

instead of looking for faults when all is ready”. Sure. But “correctly from the very beginning”
means among other things thorough checking very early and all the time in the
development process. Inspections of requirements specifications and design documents
may to some extent replace the system test and acceptance test, but that does not mean
“development without test”!

 Perfect development process is impossible, except in theory:
In practice, the way from concept to ready product cannot be guaranteed to be error-free

(inaccurate requirements specifications, cognitive errors, organizational errors). Therefore
the need to test the final product, regardless how perfect development is.

 Perfect requirements: cognitive impossibility:
Validation of requirements – are they what we really want? – is a kind of testing. But it is often

impossible to define all requirements correctly in advance. Testing of the first version of a
product is often a kind of additional requirements engineering: “is it what is really needed?

8

8TSK09/20/23

1.2-Testing Terminology
● Not generally accepted set of terms
● ISEB follows British Standards BS 7925-1 and BS 7925-2

– http://www.testingstandards.co.uk/bs_7925-1.htm
– http://www.testingstandards.co.uk/bs_7925-2.htm

● ISO/IEC/IEEE 29119 Software Testing (1-5)
● Replace:

– IEEE 829 Test Documentation
– IEEE 1008 Unit Testing
– BS 7925-1 Vocabulary of Terms in Software Testing
– BS 7925-2 Software Component Testing Standard

● ISTQB Glossary https://www.istqb.org/downloads/glossary.html

 Not generally accepted set of terms:
Different experts, tools vendors, companies,

and countries use different terminologies
(sometimes very exotic). These problems
arise very obviously, e.g. after merge or
acquisition of more companies.

 ISEB follows British Standards BS 7925-1
and BS 7925-2:

BS are owned by British Standards Institution
(BSI). These two standards were developed
by British Computer Society (BCS), Specialist
Interest Group In Software Testing (SIGIST)
in 1998.

 Other standards in software testing provide
partial terminologies:

 QA standards ISO series 9000, 10000,
12000, 15000

 CMMI
 Industry specific standards
 Testing standards BS 7925-1, BS 7925-2,

IEEE 829, IEEE 1008, IEEE 1012

https://www.istqb.org/downloads/glossary.html

9

9TSK09/20/23

Why Terminology?
● Poor communication
● Example: component – module – unit – basic – design –

developer,... testing
● There is no ”good” and ”bad” terminology, only

undefined and defined
● Difficult to describe processes
● Difficult to describe status

 Poor communication:
If every test manager puts different meaning to

each term, he/she spends lot of time on
defining what is what.

 Example: component – module – unit – basic
– design – developer, ... testing:

Not only names differ but their precise meaning
as well, which makes mapping difficult. Still
worse if the same word means two
completely different things, like “component”
(either module, unit or “an independent
component for component-based
development”).

 There is no ”good” and ”bad” terminology,
only undefined and defined:

Some people readily argue about the “right”
names for things but almost any defined,
standardized and generally accepted
terminology is almost always better than a
“better” but not standardized terminology.

 Difficult to describe processes:
Without adopted and accepted test

terminology, process definition is difficult. The
sentence like “component integration testing
is followed by system testing” means nothing
unless “component integration testing” and
“system testing” are defined.

 Difficult to describe status:
“This product has passed Internal Acceptance

Test and Final Quality Checkpoint” – hard to
tell whether it is a good or bad product
without knowing what these terms mean.

10

10TSK09/20/23

money

money

Development

Testing

products

1.3-Why Testing is Necessary (2)

 In Development, “money” (investment) result in products, that can be sold any yield
revenue.

 In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

 Testing produces three kind of outputs:
 risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
 bug information: input to development to enable them to remove those bugs (and, possibly,

to the customer to let them avoid the bugs)
 process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

11

11TSK09/20/23

money

money

Development

Testing

products

risk information

bug information

process information

1.3-Why Testing is Necessary (2)

 In Development, “money” (investment) result in products, that can be sold any yield
revenue.

 In Testing, it’s unclear from business perspective how “money” (investments) result in
anything of value.

 Testing produces three kind of outputs:
 risk information: probability that the product will fail in operation – this information is

necessary for better delivery decisions
 bug information: input to development to enable them to remove those bugs (and, possibly,

to the customer to let them avoid the bugs)
 process information: statistics and other metrics allow to evaluate processes and

organization and identify faults in them
Unless there are customers for these outputs (managers willing to base their delivery decisions

on test results, developers ready to fix defects found in testing, and process owners or
projects managers ready to analyze and improve their processes), testing does not produce
anything of value.

In other words, high-level testing in low-level environment does not add any immediate value,
except as an agent of organizational change.

12

12TSK09/20/23
12

0.1 x

1 x

10 x

100 x

Requirements Design Testing MaintenanceCoding

Cost of finding and
correcting fault

Product Lifecycle Phase

1.3-Why Testing is Necessary (3)

The cost of discovering, localizing, correcting and removing a fault is often hundreds or
thousands of times higher in ready product than it is in the early states of development.

The cost of re-testing, regression testing, and updating or replacing the faulty software multiply
very quickly after release (especially in mass production).

Test is most effective in early phases:
Contrary to traditional approach, test need not wait until development is ready. Test – reviews,

inspections and other verification techniques for documentation and models - is actually the
most effective in very early stages of any development process.

13

13TSK09/20/23

Testing and Quality
● Test measures and supports quality
● Testing is a part of Quality Assurance
● Many qualities:

– Functional quality (traditional focus)
– Non-functional quality (e.g. Performance)
– Quality attributes (maintainability, reusability, testability, ...)
– Usability for all stackeholders (vendor, retail merchant, operator,

end-user, ...)
● Test techniques: tools to measure quality efficiently and

effectively
● Test management: how to organize this

 Test measures and supports quality:
Test has two goals: to measure and visualize (the level of quality becomes known) quality and

to support achieving quality by identifying product and process faults.
 Testing is a part of Quality Assurance:
The goal is to achieve planned and known quality, not to test. If it could be achieved without

testing, test would disappear. The goal for testing is therefore to minimize the volume of
testing without compromising quality or to achieve as good (reliable) quality measurement
as possible with given resources and time, not to “test as much as possible”.

 Many qualities:
 Functional quality: the system does what the user required.
 Non-functional quality: these aspects (e.g. performance) are growing in importance. Cannot

be reliably engineered without extensive testing.
 Quality attributes: there are other attributes (e.g. maintainability, reusability, testability, …)

that must be check by testing too.
 Usability for all stakeholders: “Usability” is not only important but multidimensional. What is

comfortable for the operation may be uncomfortable for the end-user. Therefore growing
need for measuring and quality assessment in this area.

 Test techniques: tools and methods to measure quality efficiently and effectively:
Test theory contains knowledge how to test efficiently (so that desired levels of quality and test

reliability are achieved) and effectively (so that it is done as cheaply as possible).
 Test management: how to organize this:
Test management has much in common with general project and process management.

14

14TSK09/20/23

Complexity
● Software – and its environment – are too complex to

exhaustively test their behavior
● Software can be embedded
● Software has human users
● Software is part of the organization’s workflow

 Software is too complex to exhaustively test its behaviour:
Even for relatively simple programs/applications, the number of possible input combinations or

possible paths through the program is so large that all cannot be checked. Then testing is
necessary as a king of art of predicting under uncertainty, choosing the few tests we can
afford to run that give us best confidence in program’s future correct behavior.

 Software environment is too complex to test it exhaustively:
A simple piece of code can be run on different PC-machines, OS (and their versions), with

different printers, on different browsers. The number of combination easily becomes huge.
 Software can be embedded:
The testing products means testing SW, HW and “mechanics” around. Again, complexity. Again,

methods required to make the best of this mess.
 Software has often human users:
For most applications, the behavior (and needs) of the users cannot be fully predicted by the

engineering means only. Testing (acceptance, usability) helps to tackle this aspect.
 Software is part of the organization’s workflow:
Engineering considerations are not the only important considerations for many software

products. Any useful knowledge about product quality is a combination of engineering
quality and the product’s quality contribution during organizational or marketing usage.

15

15TSK09/20/23

Exhaustive Testing
● Exhaustive testing is impossible
● Even in theory, exhaustive testing is wasteful because it

does not prioritize tests
● Contractual requirements on testing
● Non-negligent practice important from legal point of

view

 Exhaustive testing is impossible:
Even for modest-sized applications with few

inputs and outputs, the number of test cases
quickly becomes huge.

 Contractual requirements on testing:
The contract between the vendor and the

customer may contain clauses on the
required amount of testing, acceptable
reliability levels, or even on specific test
techniques or test coverage measures.

 Non-negligent practice important from the
legal point of view:

If you ever get sued by your customer, his or
her lawyers will sure try the trick of accusing
you of negligence because your testing was
not “exhaustive”. As defense, the
impossibility of exhaustive testing should be
raised, and you should be able to prove that
your testing was performed according to a
non-negligent practice.

16

16TSK09/20/23

How much testing?
● This is a risk-based, business decision

– Test completion criteria

– Test prioritization criteria

– Decision strategy for the delivery

– Test manager presents products quality

● Test is never ready

● The answer is seldom ”more testing” but rather ”better testing”, see the completion
criteria:
– All test cases executed

– All test cases passed

– No unresolved (serious) incident reports

– Pre-defined coverage achieved

– Required reliability (MTBF) achieved

– Estimated number of remaining faults low enough

 This is a risk-based, business decision:
 Test completion criteria – must be specified in advance in test plan
 Test prioritization criteria - scales on which to compare test cases’ relative importance

(severity, urgency, probability, visibility, business criticality, etc.)
 Decision strategy for the delivery – must be specified in advance (what shall happen if test

completion criteria are not fulfilled)
 Test manager presents products quality - he/she is responsible for the estimation and

presentation of product quality but the business decision based on this data is made by
responsible manager (project manager, project owner, product owner, etc.).

 Test is never ready:
As exhaustive testing is not possible, we can always test a little more, and there is always some

justification for it in (the diminishing) probability that more faults will be found. Unless
completion criteria are established and test cases prioritized, the probability of finding more
faults cannot be reliably estimated

 The answer is seldom “more testing” but rather “better testing”:
Testing must be based on the combination of completion criteria:
 All test cases executed
 All test cases passed
 No unresolved (serious) incident reports
 Pre-defined coverage achieved
 Required reliability (MTBF) achieved
 Estimated number of remaining faults low enough

17

17TSK09/20/23

Risk-Based Testing
●

● Testing finds faults, which – when faults have been
removed – decreases the risk of failure in operation

● Risk-based testing

 Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure in operation as

this is the most obvious indication of quality software.
 Risk-based testing
 The chosen amount and quality of testing shall be based on how much risk is acceptable
 Test design (choosing what to test) shall be based on the involved risks
 The order of testing shall be chosen according to the risks
 Error: the ”mistake” (human, process or machine) that introduces a fault into software:
 Human mistake: users forget a need. Requirements engineer misinterprets users’ need.

Designer makes a logical mistake. Programmer makes a coding mistake.
 Process mistake: requirements not uniquely identifiable, no routines for coping with

changing/new requirements, not enough time to perform design inspections, poor control
over programmers’ activities, poor motivation, …

 Machine mistake: incorrect compiler results, lost files, measurement instruments not precise
enough…

 Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient bandwidth of a bus

or a communication link.
 Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A faulty SW or

HW “crashes” the system. A faulty system introduces longer delays than allowed during
heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

18

18TSK09/20/23

Base terms connected with “error”
● Error: the ”mistake” (human, process or machine) that

introduces a fault into software
● Fault: ”bug” or ”defect”, a faulty piece of code or HW
● Failure: when faulty code is executed, ti may lead to

incorrect results (i.e. to failure)

Error Fault Failurecreate cause

• Testing finds faults, which decreases the risk of failure in operation
Testing can be based on any criteria, but the most important is the risk of failure

in operation as this is the most obvious indication of quality software.
• Risk-based testing

• The chosen amount and quality of testing shall be based on how much
risk is acceptable

• Test design (choosing what to test) shall be based on the involved risks
• The order of testing shall be chosen according to the risks

• Error: the ”mistake” (human, process or machine) that introduces a fault into
software:

• Human mistake: users forget a need. Requirements engineer
misinterprets users’ need. Designer makes a logical mistake.
Programmer makes a coding mistake.

• Process mistake: requirements not uniquely identifiable, no routines for
coping with changing/new requirements, not enough time to perform
design inspections, poor control over programmers’ activities, poor
motivation, …

• Machine mistake: incorrect compiler results, lost files, measurement
instruments not precise enough…

• Fault: “bug” or “defect”, a faulty piece of code or HW:
Wrong code or missing code, incorrect addressing logic in HW, insufficient

bandwidth of a bus or a communication link.
• Failure: when faulty code is executed, ti may lead to incorrect results (i.e. to

failure):
A faulty piece of code calculates an incorrect result, which is given to the user. A

faulty SW or HW “crashes” the system. A faulty system introduces longer
delays than allowed during heavy load.

When a failure occurs during tests, the fault may by identified and corrected.
When a failure occurs in operation, it is a (small or large) catastrophe.

19

19TSK09/20/23

Cost of Failure
● Reliability: the probability of no failure
● Famous: American Airlines, Ariane 5 rocket, Heathrow

Terminal 5
● Quality of life
● Safety-critical systems
● Embedded systems
● Usability requirements for embedded systems and Web

applications

 Reliability: the probability of no failure:
The probability that software will not cause the failure of a system for a specific time under specified

conditions.
 Famous: American Airlines, Ariane 5 rocket, Heathrow Terminal 5:
The financial cost can be shocking, many billions of dollars. As compared to the estimated cost of

additional testing that would probably have discovered the fault (a few hundred thousand dollars).
 American Airlines: new booking system Sabre (1988) with complex mathematical algorithms for

optimization of the numbers of business class and economy class passengers. It had a fault, which
resulted in approximately 4 passengers fewer on every flight. $50 million in lost revenue after a few
months’ operation were the first indication there was a fault at all!

 Ariane 5 rocket: an unmanned Ariane 5 rocket (1996) exploded just forty seconds after its lift-off from
Kourou. 10 years of development costing $7 billion, the rocket itself and its cargo were valued at
$500 million. 64-bit floating point number relating to the horizontal velocity with respect to the
platform was converted to a 16 bit signed integer which overflowed. Could easily be found if tested.

 Heathrow Terminal 5: 300 flights were cancelled during the first five days as “teething problems” at
the new Terminal 5 caused chaos (2008). It went about a combination of factors. Some were
technical, involving glitches with the sophisticated new baggage set-up. But other issues were more
mundane. Employees arriving for work, for example, could not find their way to the staff car park.
Testing of new terminal took 6 months and 15,000 volunteers were called to help test out facilities.
The trials had been designed using lessons learned from the security and baggage delays faced by
passengers at other terminals over the past few months.

 Quality of life:
As anyone using a PC realizes, failures need not be catastrophes to sharply reduce the joy of living.
 Safety-critical systems:
More and more safety-critical systems contain software – the necessity of high safety and reliability

grows. The cost of failure is injury or human life (railway, aircraft, medical systems). For many safety-
critical systems the important attribute is usability (low usability can cause “operator mistake” or
“human factor” in an accident, coming usually from confusing or unusable information, especially in
stress situations).

 Embedded systems
Embedded systems (whether safety-critical or not), require high-quality software, because of the difficulty

(or impossibility) of updates. Remember the cost of software errors in some mobile phones.
 Usability requirements for embedded systems and Web applications:
Embedded systems and Web applications are mass consumer products, where customers require easy

usage. Failure to provide it results in lost revenues or market shares, which is a novel experience for
software industry, used more to putting requirements on customers than the other way round!

20

20TSK09/20/23

Test Process Definition
● Test Planning
● Test Specification
● Test Execution
● Test Recording & Evaluation
● Completion Criteria

 Test process as part of development or
production process

Test is a part of QA, and test process should
not be defined separately, but should be seen
in the context of overall development
process.

 Large companies have own process
definitions

Most development and production companies
have own test processes. There can be of
course similarities (though used
terminologies are often strikingly different),
but nevetheless many thousands different
test processes exist in industrial reality.

 “COTS” test process
COTS (Commercial Off The Shelf)
It is possible to buy a test processes. The most

known vendor today is probably IBM Rational
with its RUP – Rational Unified Process (test
process is part of it). Such a process
contains the descriptions of the workflow,
example documents as well as tools and
methods for adapting it to the customer’s
environment. Consulting companies, QA and
test tool vendors may have their own test
processes for sale, often tailored to the way
their tools work.

 Test process and test strategy
Test process (how testing is done) is a

realization of test strategy: required product
quality and test reliability, used development
process, etc.

21

21TSK09/20/23
21

Test
Strategy

Project
Specification

Test
Process

Applied
Test

Process

Test
Plan

Exceptions
to the Test
Strategy

Test Planning

A company’s Test Strategy together with its
Test Process (defined in the organization) are
adopted to the current project based on a
Project Specification. This results into an
Applied Test Process, i.e. an overall vision
“how we will test this time”. This vision is the
implemented (described in detail) in a Test
Plan. Often, Test Plan is a document written
in a natural language.

The process of creating a Test Plan is test
planning. The is mostly done very early
during project. Later, the processes of test
estimation, monitoring and control may lead
to changes in the test plan.

22

22TSK09/20/23

Test Plan’s Goal
● High-level test plan and more detailed test plans
● Related to project plan
● Follows QA plan
● Configuration management, requirements, incident

management

Even the best test plan will not work unless it is
synchronized with other areas, project and
technical.

 High-level test plan and more detailed test
plans

Depending on project size and complexity, test
plan can sensibly be divided into one high-
level test plan and some detailed test plans.
The division can follow test area or test level,
or specific aspects of testing.

 Project plan
Test plan must be inspected for correctness

and compliance with overall project plan.
Sometimes (in small projects) the test plan is
the part of a project plan.

 Follows the QA plan
Hopefully, the function and contents of a test

plan is not “discovered” anew for each
project, but included in the company’s quality
strategy and project’s quality plan.

 Configuration management, requirements,
incident management

These areas may either be the part of a test
plan or belong somewhere else (CM Plan),
depending on the overal QA strategy.

23

23TSK09/20/23

Test Specification
The complete documentation of the test design, test
cases and test procedures for a specific test item.
(ISTQB)

● Test specification defines what to test
● Test specification is part of testware
● Basic building blocks of test specifications are test cases
● Test specification – instruction – script
● Test specification – requirements
● Test specification - reporting

 Test specification defines what to test
Test specification are repositories of test cases. They should be free from organizational issues,

which belong to the test plan(s).
 Test specification is part of testware
Testware – test cases, test scripts, test data, etc. is often under CM control (manages either by

test tool or by a separate tool).
 Basic building blocks of test specifications are test cases
Test cases are generated when applying test design techniques. They shell be general and

repeatable.
 Test specification – instruction – script
Test cases need not contain all detailed information on how to perform them. This information

may be put into a separate description, sometimes called test instructions (this approach is
not practical because of maintenance difficulties).

If test execution is automated, then the instructions for a test tool are called test script (test
program). Test script can replace test case (instructions).

 Test specification – requirements
It is desirable that for every test case, there is a link to the requirements behind it and for every

requirement, there are links to all test cases that verify it. This is very hard to achieve and
maintain without using test tools (test management tools, e.g. Test Manager).

 Test specification – reporting
The test specification must support logging and reporting during and after test execution, mainly

through the identification of test cases and their steps. This can be easily automated by
using test tools (test running tools, e.g. Robot)

24

24TSK09/20/23

Test Case
● Unique name/title
● Unique ID
● Description
● Preconditions / prerequisites
● Actions (steps)
● Expected results

Labs

 Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

 Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

 Description
Brief description explaining what functionality

the case case covers.
 Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
 Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

 Expected results
Reaction of the system to the performed action.

25

25TSK09/20/23

1.4 - Fundamental Test Processs - terms (ISTQB)
● test case - A set of input values, execution preconditions, expected results and execution

postconditions, developed for a particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a specific requirement.

● test case result - The final verdict on the execution of a test and its outcomes, such as pass, fail,
or error. The result of error is used for situations where it is not clear whether the problem is in
the test object.

● test case specification - A document specifying a set of test cases (objective, inputs, test
actions, expected results, and execution preconditions) for a test item.

● test specification - A document that consists of a test design specification, test case
specification and/or test procedure specification.

● test script - Commonly used to refer to a test procedure specification, especially an automated
one.

● test procedure specification - A document specifying a sequence of actions for the execution
of a test. Also known as test script or manual test script.

● Test Design Specification - A document specifying the test conditions (coverage items) for a
test item, the detailed test approach and identifying the associated high-level test cases.

Labs

• Unique name/title
Short test case title enhances readability of the

specification and test reports – descriptive
unique name of the test case.

• Unique ID
Identification of the test case. All test cases

should follow an identical, defined format.
This ID must be permanent (adding or
removing test cases shell not change ID) –
cryptic unique identification of the test case.

• Description
Brief description explaining what functionality

the case case covers.
• Preconditions / prerequisites
Exact description of required system state prior

the execution of the test case.
• Actions (steps)
Each step of the test case shell be numbered

(or identified by unique ID). The action
describes what the tester must do to perform
the step (e.g. enter value X into the field F).

• Expected results
Reaction of the system to the performed action.

26

26TSK09/20/23

Test Execution
● Manual
● Automated
● Test sequence
● Test environment
● Test data

 Manual
Tester follows the description from the test case and performs step by step all specified actions.

Prone to errors, boring (monkey testing) and time-consuming. It is recommended that the
author of the test case performs it first.

 Automated
Test tool executes test case according to predefined instructions (test scripts or test program).

The automation scope can include any of / all of the following:
 Preparation (set-up to fulfill preconditions)
 Execution
 Result evaluation (comparing actual and expected results)
 Clean-up (putting system back into some known state)
 Test sequence
Sometimes it is not practical to execute each test case separately but it is better to put test

cases into a sequence, e.g.:
 Insert new record
 Search existing record
 Modify existing record
 Delete existing record
 Test environment
There are more environments used for developing, testing and maintaining software

applications (DEV – development, IT – functional and performance testing, QA –
acceptance testing, PROD – production). Configuration files of test environment as part of
testware are under CM control.

 Test data
Test data are various input and output files (for expected and actual results) that must be

managed properly as part of testware. If test data are taken from the production, they must
be degraded.

27

27TSK09/20/23

Test Recording & Evaluation
● Recording actual outcomes and comparison against

expected outcomes
● Off-line test result evaluation
● Test log
● Test report
● Recording test coverage
● Incident management

 Recording actual outcomes and comparison against expected outcomes
Manual testing: If actual and expected outcomes match, then test case passed. If not, then test case

failed, actual outcomes are recorded and incident (defect) is created and assigned to development.
Automated testing: Comparison is done automatically, everything is recorded and even incidents are

created.
 Off-line test result evaluation
Sometimes the immediate result (pass/fail) is impossible (too fast execution to allow on-line evaluation by

a lower analysis tool or the final result is available only after some other tests have been performed,
etc.), so during test execution the results are gathered for the evaluation, which is done later.

 Test log
It is a log of “all” (relevant and important) what happened during test execution. This activity (log creation)

is best to automate, as it is repetitive, boring and requires exactness. It is used for (1) off-line
evaluation,(2) failure analysis and debugging and (3) for archiving and future reference.

 Test report
It is a summary of the results of all executed test cases. Must contain as well complete information on

configuration and versions of test environment, testware and test object. Some test tools are capable
to produce test report.

 Recording test coverage
If test cases are mapped to requirements, test coverage can be easily derived. When executing test

cases, the results are projected into requirements with the information how much functionality was
successfully tested.

 Incident management
Answer the following questions:
1. Was this really a failure?
2. What presumably caused this failure?
3. How to assign correction responsibility?
Incident must be repeatable – put enough information to the incident report to enable reproducing the

incident by the developer who is fixing it.

28

28TSK09/20/23

Test Completion
● Test completion criteria must be specified in advance
● Decision strategy for the release/delivery decision must be specified in advance
● Test manager is responsible for the estimation and presentation of the product

quality, not for release/delivery decision
– Run TC
– Passed TC
– Failed TC
– Executed TC
– Failure intensity
– Number of incident reports
– Estimation of product quality
– Reliability of this estimation
– Projected estimation of product quality

 Test completion criteria must be specified in advance
In the test plan or similar document.
 Decision strategy for the release/delivery decision must be specified in advance
What shall happen if test completion criteria are not fulfilled, but deadlines are approaching and

there is strong pressure to release? The strategy for making this decision should be defined
in advance.

 Test manager is responsible for the estimation and presentation of the product quality, not
for release/delivery decision

It is the responsibility of test manager to preset to project management accurate and up-to-date
data on:

1. Number of percentage of run test cases
2. Number and percentage of passed tests
3. Number and percentage of failed tests
4. Trends in test execution (cumulative number of executed test cases)
5. Trends in failure intensity
6. Similar data on the number of incident reports, their status and trends
7. Estimation of product quality based on the data available
8. Reliability (level of significance) of this estimation
9. Projected estimation of product quality and test reliability for various scenarios

29

29TSK09/20/23

Completion Criteria
● All test cases executed
● All test cases passed
● No unresolved incident reports
● No unresolved serious incident reports
● Number of faults found
● Pre-defined coverage achieved

– Code coverage

– Functional coverage

– Requirements coverage

– If not, design more test cases

● Required reliability (MTBF) achieved
● Estimated number of remaining faults low enough

 All test cases executed
It is a sensible criterion, provided good quality, coverage and reliability of those tests (otherwise the less

test cases we have, the easier to achieve completion).
 All test cases passed
The previous criterion plus additionally that there must be no failed tests – strong requirement not

achievable in practice.
 No unresolved incident reports
It may be the same as the previous one but not necessarily: some incident reports may be postponed,

rejected (e.g. caused by faults of test environment or testware, etc.).
 No unresolved serious incident reports
The previous criterion might be too strong – we can divide incident reports according to severity (e.g. 1

and 2 must be resolved).
 Number of faults found
Generally a useless criterion, as it is the estimated number of remaining faults that matter. The

assumption is that many found faults means few remaining (this can be wrong – many found faults
may mean many remaining).

 Pre-defined coverage achieved
Generally better that “all tests… no incidents…” family, because they address the issue of achieved test

quality/reliability as well:
 Code coverage: there is a number of different code coverage measures that tell what

proportion of tested code have been exercised by executed tests.
 Functional coverage: even very high code coverage does not guarantee that “all” (paths,

user scenarios) has been tested. Therefore, it should be complemented by some kind of
functional coverage.

 Requirements coverage: all code and all functions may have been tested, but in order to
discover missing functionality, tests should cover all requirements.

 Required reliability (MTBF) achieved
This can only be calculated if statistical testing is used (MTBF – Mean Time Between Failures).
 Estimated number of remaining faults low enough
Based on the number and frequency of faults discovered so far during testing, an estimation of the

number of remaining faults can be made.

30

30TSK09/20/23

1.5-Re-Testing and Regression Testing
Definitions
● Re-testing: re-running of test cases that caused failures

during previous executions, after the (supposed) cause
of failure (i.e. fault) has been fixed, to ensure that it
really has been removed successfully

● Regression testing: re-running of test cases that did NOT
cause failures during previous execution(s), to ensure
that they still do not fail for a new system version or
configuration

● Debugging: the process of identifying the cause of
failure; finding and removing the fault that caused
failure

 Definition of Re-testing (BS 7925-1)
Running a test more than once.
 Definition of Regression Testing (BS 7925-1)
Re-testing to a previously tested program

following modification to ensure that faults
have not been introduced or uncovered as a
result of the changes made.

 Definition of Debugging (BS 7925-1)
The process of finding and removing the

causes of failures in software (don’t mix with
testing). Debugging is NOT part of testing,
but has many aspects in common with
testing. During debugging, test cases may be
re-run in order to study failure more in detail.
Re-running of test cases during debugging is
NOT re-test or regression testing. Additional
“debugging test cases” may be created and
run to help expose suspected fault or
eliminate alternative sources of failures
(these are not added to test suite and are
discarded after usage.

31

31TSK09/20/23

Re-testing
● Re-running of the test case that caused failure

previously
● Triggered by delivery and incident report status
● Running of a new test case if the fault was previously

exposed by chance
● Testing for similar or related faults

 Re-running of the test case that caused failure previously
A test case has caused a test object to fail. The fault that (supposedly) caused this failure has

been discovered and removed (fixed). The very same test case is executed on the new
(corrected) version of the system to ensure that the fault has really been successfully fixed.

 Triggered by delivery and incident report status
Re-testing is normally done after the delivery of a fixed build and after the corresponding

incident report has been put into a “fixed” (“corrected”, “re-test”, “put into build”, or similar
name) status. Some kind of private re-test before formal release may be used as well.

 Running of a new test case if the fault was previously exposed by chance
When failure occurred by chance without any intentional test case being executed (e.g. by

“smoke-test”, “sanity-check”, or “ad-hoc” testing), a new test case should be designed and
added. Re-testing means then the execution of this new test case.

 Testing for similar or related faults
During re-testing, even test cases looking for similar faults may be executed. For example if a

record deletion from a file caused failure, even other record deletion routines may be
tested. Re-testing related faults is advisable too. For example if a record deletion method
has been fixed, then other methods belonging to the same class can be re-tested after
correcting the fault. This can be defined as “increased testing”, or new test design caused
by faults already found.

32

32TSK09/20/23

Regression Testing
● Regression due to fixing the fault (side effects)
● Regression due to added new functionality
● Regression due to new platform
● Regression due to new configuration or after the

customization
● Regression and delivery planning

 Regression due to fixing the fault (side effects)
On average, according to empirical data, 10-25% of all fixes actually introduce new faults,

sometimes in areas seemingly “far away” (temporally, functionally or structurally) from the
original fault. To be able to discover the new faults, test cases seemingly “far away” from
the fixed fault must be executed on fixed builds.

 Regression due to added new functionality
Adding new functionality may introduce faults into already existing functionality, or expose faults

existing previously, but not found. Therefore, old functionality must be tested again for
releases with new functionality.

 Regression due to new platform
A system that executes correctly in one environment may fail in another environment, either

due to hidden faults or interface faults. Therefore, regression testing may be required even
when not a single software instruction has been changed.

 Regression due to new configuration or after the customization
Sometimes called “configuration testing”. For example, a Java script depends on HW, operating

system and browser of the client machine. Including different versions of them, the number
of possible combinations is very large, requiring impossibility large amount of regression
testing. Special strategies are available to tackle this.

 Regression and delivery planning
To decrease the amount of regression testing, a regression test suite may be run once on a

release with many fault corrections and new functionality added. If an incremental
methodology is used (e.g. RUP), then some increments (usually the latest ones) are
focusing only on bug fixing which means that only re-testing and regression testing is
needed. Regression testing is often used in maintenance when emergency fixes and “extra”
functionality is introduced.

33

33TSK09/20/23

Regression Schemes
● Less frequent deliveries
● Round-robin scheme
● Additional selection of test cases
● Statistical selection of test cases
● Parallel testing
● “Smoke-test” for emergency fixes
● Optimisation or regression suite:

– General (understanding system, test case objectives, test coverage)
– History (decreased regression for stable functionality)
– Dependencies (related functionality)
– Test-level co-ordination (avoiding redundant regression on many levels)

 Less frequent deliveries
If a regression test takes longer than the time between releases, decreasing the delivery frequency may be an option.

If a number of fixes and functionality enhancements are delivered together, less frequent deliveries are possible
without increasing the overall development time.

 Round-robin scheme
Example: A regression test suite has 300 test cases. It takes 1 day to execute 100 test cases. Releases come every

day. Test cases no 1-100 are executed on release N, 101-200 on N+1, 201-300 on N+2, then again 1-100 on
N+1, etc. Even if no release is fully regression tested, a relatively good measure of product quality is achieved.

 Additional selection of test cases
The regression test suite may be pruned to fit the available time. A selection of regression test cases may be used for

most releases, while the complete test suite will be executed only before external releases, quality checkpoints,
project milestones, etc.

 Statistical selection of test cases
Provided that the data on the probability distribution of user actions is available, test cases can be ordered according

to their “importance”, i.e. the relative frequency of the user action that they test. In this way, even if the complete
regression test suite is not executed, the reliability level can be estimated for releases.

 Parallel testing
By dividing test execution into a number of parallel tracks, that can execute independently and in parallel, calendar

test execution time can be significantly decreased. This applies both to manual and to automated testing. The
cost is that multiple amount of test equipment and of testers are required.

 “Smoke-test” for emergency fixes
Emergency fix – exceptional release that fixes one fault (or low number of faults) or sometimes introduces a new

(small in scope) functionality and its delivery is urgently required. As changes in the system are relatively small,
complete testing is not needed.

“Smoke-test” or “sanity-check” means execution of a subset of the most important test cases from the regression suite
with the goal to check if there is not major problem in the system after the change. Even in the emerging
situation, some kind of “smoke-test” must be performed.

 Optimisation of regression suite
 General – basic test techniques can help choose test cases for regression test suites effectively.

Required level of test coverage can be used to estimate the needed amount of regression testing.
Good system understanding is required to identify and remove repetitive or less important lest cases.
Redundant test cases can be removed.

 History – regression test cases may become obsolete with time. Stable functionality where faults are
no longer discovered during regression testing, need not be tested as extensively as new, unstable
functionality, or as a system area with a history of many faults.

 Dependencies – provided a well-designed system with clear-cut dependencies and interfaces, it is
possible to minimize the amount of regression for areas that are not related and not connected to the
area, where recent changes have occurred.

 Test-level co-ordination – savings in regression test time can often be achieved by coordinating tests
run on different levels, to avoid repetition.

34

34TSK09/20/23

Regression and Automation
● Regression test suites under CM control
● Incident tracking for test cases
● Automation pays best in regression
● Regression-driven test automation
● Incremental development

 Regression test suites under CM control
All test cases shell be archived and under version control to be able to return back to already

not used test cases. Regression test cases are changing from release to release. This
applies even more to automated regression testing which increases the amount of
testware: test scripts, test programs, test data, test configurations, etc.

 Incident tracking for test cases
Test cases (especially test scripts, test programs, test data) can be faulty or changed for other

reasons (e.g. effectiveness). These changes should be controlled and traceable like any
software changes. The development and maintenance of testware should be handled like
development and maintenance of any other software, i.e. planned, designed, under version
management, etc.

 Automation pays best in regression
When test automation is considered, it shall be first of all applied to regression testing. The

strategy for regression testing must therefore be known before the automation strategy is
developed. Large amount of regression requires automation (the automation is effective
starting from number of releases > 3). Performance testing cannot be done without tools
(load generation, monitoring, performance measurement, etc.). These tools and test cases
may therefore be candidates to be included in regression testing.

 Regression-drive test automation
Introducing test automation into projects must be planned according to the needs of the

regression test strategy.
 Incremental development
New development methods (“incremental development”, “daily build”, “Rapid Application

Development”, RUP, etc.) become increasingly popular. They are characterized by frequent
deliveries, incremental functionality growth, and fast feedback from test to development.
Therefore, they require heavy regression testing, which makes both test automation and
other techniques for regression optimization especially important.

35

35TSK09/20/23

1.6-Expected Results
Why Necessary?
● Test = measuring quality = comparing actual outcome

with expected outcome
● What about performance measurement?
● Results = outcomes; outcomes ≠ outputs
● Test case definition: preconditions – inputs – expected

outcomes
● Results are part of testware – CM control

 Test = measuring quality = comparing actual outcome with expected outcome
Test is verifying whether something is correct or not – means by definition comparing two

values: actual and expected. Random testing is (1) normally not really testing at all (2) or
testing actual results against our vague and unspecified outcome expectations.

 What about performance measurement?
Performance measurement = benchmarking.
Performance requirements are notoriously vague or absent, but performance testing is thriving.

Explanation? It is then either testing against informal, unspecified “random requirements” or
a kind of requirement engineering (trying to find out what the requirements should be) by
running ready product.

 Results = outcomes; outcomes ≠ outputs
Application outputs can be test case outcomes, but not all test cases outcomes are outputs –

performance levels, state transitions, data modifications are possible test case outcomes
which are not application outputs. In order to evaluate them, test environment must provide
access to them: through special test outputs, debug tools, etc.

 Test case definition: preconditions – inputs – expected outcomes
When expected test result/outcome is missing, then it is NOT a test case specification at all.

Unspecified or insufficiently specified expected outcomes make some failures harder to
discover.

 Results are part of testware – CM control
Often, the expected outcome is a data file. Unless it can be incorporated in a test specification,

it will require to be under separate CM control. Changing the expected outcome file will
have the same effect as directly changing the test specification – a common baseline for
them will therefore be required.

36

36TSK09/20/23

Types of Outcomes
● Outputs
● State transitions
● Data changes
● Simple and compound results
● “Long-time” results
● Quality attributes (time, size, etc.)
● Non-testable?
● Side-effects

 Outputs
They are most easily observable, therefore often utilized as outcomes/results. Outputs have

very many forms: displayed or changed GUI objects, sent messages or signals, printouts,
sounds, movements.

 State transitions
Does the system perform correct state transition for a given set of inputs? Outputs following

transitions are often used to judge, but the new state is the expected outcome.
 Data changes
Has data changed correctly?
 Simple and compound results
Results may be simple (“Error message appears”) or compound (“new record put into

database, index updated, display adjusted, message sent…”).
 “Long-time” results
For example, testing for long-time stability: system still works correctly after a week.
 Quality attributes (time, size, etc.)
Most non-functional requirements are of this kind.
 Non-testable?
1) Possibly valid requirements, but formulated in a non-testable way, e.g. “sufficient

throughput to handle typical traffic”.
2) Valid, measurable requirements, which cannot be measured due to technical constraints.
 Side-effects
Implicitly, every test case has an invisible clause in expected outcome definition “the program

does this… and nothing incorrect happens”. “Nothing incorrect” is easily implied, but
impossible to verify.

37

37TSK09/20/23

Sources of Outcomes
Finding out or calculating correct expected outcomes/results is
often more difficult than can be expected. It is a major task in
preparing test cases.
● Requirements
● Oracle
● Specifications
● Existing systems
● Other similar systems
● Standards
● NOT code

 Requirements
Sufficiently detailed requirement specifications can be used directly as the source of expected

test results. Most often however, requirements do not have sufficient quality.
 Oracle
According to BS 7925-1 it is “a mechanism to produce the predicted outcomes to compare with

the actual outcomes of the software under test”; often a program, another similar
application, etc.

 Specifications
Specifications other than requirement specification (e.g. design specification, use case

specification, interface specification, function specification) are generally a good source of
expected outcomes – verification means testing whether system works “according to
specification”.

 Existing systems
Previous, verified versions of the same system can be used as oracle for getting correct

expected results.
 Other similar systems
Any other software – commercial or not – that has already been sufficiently verified and

implements part of the functionality of the tested system, often makes a good oracle.
 Standards
Many standards, e.g. in telecommunications, contain detailed specifications that can be used as

expected test results. A good example of a test case suite built entirely around standard
specification is Sun’s test suite for verification whether a JVM (Java Virtual Machine)
conforms to Sun’s Java standard.

 NOT code
(nor the same specification if specification is the test object), Because anything compared to

itself (the same source of expected and actual outcomes) will always give “correct” results.

38

38TSK09/20/23

Difficult Comparisons
● GUI
● Complex outcomes
● Absence of side-effects
● Timing aspects
● Unusual outputs (multimedia)
● Real-time and long-time difficulties
● Complex calculations
● Intelligent and “fuzzy” comparisons

 GUI
Notoriously difficult expected results. Prone to frequent changes, complex, often asynchronous. If treated

on pixel level, often useless, require some kind of object approach. Most tools existing today to not
cope well with moving or scrolling components.

 Complex outcomes
Actually, GUI outputs are one of them. Comparison may be difficult simple because the results are large

and complex.
 Absence of side-effects
For most test cases, there are infinitely many possible outcomes that must not happen. For a test case

“press key” with expected outcome “text <<key pressed>> appears” there are innumerable things
that are expected NOT to happen: program does not crash, database is not deleted, no – say –
blinking green triangle appears in the middle of the screen… etc. Verifying this is impossible, on the
other hand some degree of observant caution is necessary.

 Timing aspects
Outcomes that either occur very quickly or last very short time, or are asynchronous, or occur after

undefined delay may all be hard to verify correctly.
 Unusual outputs (multimedia)
Video sequences, complex graphics, sounds, smells, etc. are very hard to test.
 Real-time and long-time difficulties
(it is a sub-set of “absence of side effects”)
For real-time, multithread applications there may exist hidden faults that only cause failure when certain

rare timing conditions are fulfilled. Such failures are not easily repeatable. During long-time
execution a gradual “decay” of software may occur (stability testing aims at those problems). Typical
example of such problems are memory-leaks.

 Complex calculations
Their results are hard to verify, may only “look right”. AA booking system fault 1988.
 Intelligent and “fuzzy” comparisons
Whenever correct result is not fully deterministic or analogue rather than discrete, it is difficult to verify.

39

39TSK09/20/23

1.7-Prioritization of Tests
Why Prioritize Test Cases?
● Decide importance and order (in time)
● “There is never enough time”
● Testing comes last and suffers for all other delays
● Prioritizing is hard to do right (multiple criteria with

different weights)

 Decide importance and order (in time)
To prioritize test cases means to measure their

importance on an ordinal scale, then plan
test execution accordingly (typically, in
descending order of importance, i.e. more
important cases before less important).

 “There is never enough time”
Dedicated testers easily become paranoid –

they suspect faults everywhere and want to
verify every tiny detail. To balance this desire
with business reality, we must choose what is
most important to test, i.e. prioritize.

 Testing comes last and suffers for all other
delays

The day for customer delivery is often holy, but
development is nevertheless delayed.
Planned test time is cut as a result, often with
short notice, with no time for re-planning.
Keeping ones test cases prioritized so that
most important are run first guarantees that
we will…

 Prioritizing is hard to do right (multiple criteria
with different weights)

Prioritizing test cases is not an easy job. There
are different criteria and different methods to
apply them. Prioritizing test cases is part not
only of testing but of risk management.

40

40TSK09/20/23

Prioritization Criteria
● Severity (failure)
● Priority (urgency)
● Probability
● Visibility
● Requirement priorities
● Feedback to/from

development
● Difficulty (test)

● What the customer wants
● Change proneness
● Error proneness
● Business criticality
● Complexity (test object)
● Difficult to correct

This is a tentative list of possible prioritization criteria (scales on which to compare test cases’
relative importance). This list is not ordered (i.e. it gives no clue to which criteria are more
important). The criteria are not independent nor exclusive. For operational usage, they must
be defined more in details. Put them into columns are mark each test case with the level of
importance:

 H – high
 M – medium
 L – low
 Severity (failure); the consequences of failure (in operation): 1 – fatal, 2 – serious, 3 –

disturbing, 4 – tolerable, 5 – minor
 Priority (urgency): how important it is to test this particular function as soon as possible: 1 –

immediately, 2 – high priority, 3 – normal queue, 4 – low priority
 Probability: the (estimated) probability of the existence of faults and failure in operation
 Visibility: if a failure occurs, how visible it is? (it relates to “severity”)
 Requirement priorities: if requirements are prioritized, the same order shall apply to test

cases
 Feedback to/from development: do the developers need test results to proceed? (similar to

“priority”). Do the developers know a specific tricky area or function?
 Difficulty (test): is this test case difficult to do (resource- and time-consuming?)
 What the customer wants: ask the customer what he prefers (it relates to “requirements

priorities”)
 Change proneness: does this function change often?
 Error proneness: is it a new, badly designed, or well-knows “stinker” feature?
 Business criticality: related to “severity” and “what the customer wants”
 Complexity (test object): related to “error proneness”
 Difficult to correct: a fault known to be difficult to correct, may be given lower priority

(provided severity is sufficiently low)

41

41TSK09/20/23

Prioritization Methods
● Random (the order specs happen)
● Experts’ “gut feeling”
● Based on history with similar projects, products or

customers
● Statistical Usage Testing
● Availability of: deliveries, tools, environment, domain

experts…
● Traditional Risk Analysis
● Multidimensional Risk Analysis

– analytic hierarchy process (AHP)

 Random (the order specs happen)
No method at all, but “the order test specs

happen” may actually mirror both the
“priority” and “business criticality” as well as
“requirements prioritization” – the not so bad.

 Experts’ “gut feeling”
Experts with testing, technical and domain

(application) knowledge do the prioritization.
Experts are good to have, but their “gut
feeling” may often be misleading, unless
structured methods (see below) are followed.

 Based on history with similar projects,
products or customers

Documented data on previous fault history,
priority, severity, etc. is used to prioritize test
cases for current project/product according to
some chosen criterion (or a chosen
combination of criteria).

 Statistical Usage Testing
The main criteria is the long-time frequency of

usage in operation. The underlying
assumption is that frequency of usage
correlates strongly with severity, probability,
visibility, “what the customer wants”, and
business criticality. Test suite is randomly
generated based on known probability
distribution of user actions.

 Traditional Risk Analysis
Importance = probability * consequence.

Rough-and-ready method, easy to use, easy
to misuse. Does not give any support to
accommodate multiple prioritization criteria.

 Multidimensional Risk Analysis
Prioritization based on statistical decision

theory. Very seldom used in managerial
practice.

43

43TSK09/20/23

2.1-Models for Testing
Verification, Validation and Testing
● Verification: The process of evaluation a system or

component to determine whether the products of the
given development phase satisfy the conditions
imposed at the start of that phase – building the system
right

● Validation: The determination of the correctness of the
products of software development with respect to the
user needs and requirements – building the right system

● Testing: The process of exercising software to verify that
is satisfies specified requirements and to detect errors

Testing is not only test execution. Static
analysis can be performed before the code
has been written. Writing and designing test
cases is also part of testing. Reviews of
requirement specifications and models, and
of any other documents, belong to testing as
well.

44TSK09/20/23

3.1.36 verification:
● (A) The process of evaluating a system or component to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.
● (B) The process of providing objective evidence that the software and its associated products

conform to requirements (e.g., for correctness, completeness, consistency, accuracy) for all life cycle
activities during each life cycle process (acquisition, supply, development, operation, and
maintenance); satisfy standards, practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life
cycle activities (e.g., building the software correctly).

3.1.35 Validation:

• (A) The process of evaluating a system or component during or at the end of the development process
to determine whether it satisfies specified requirements.

• (B) The process of providing evidence that the software and its associated products satisfy system
requirements allocated to software at the end of each life cycle activity, solve the right problem (e.g.,
correctly model physical laws, implement business rules, use the proper system assumptions), and
satisfy intended use and user needs.

• NOTE—For (A), see IEEE Std 610.12-1990 [B3].

• NOTE—For subdefinition (A), see IEEE Std 610.12-1990 [B3].

IEEE standards

45TSK09/20/23

BS 7925-1
● verification: The process of evaluating a system or

component to determine whether the products of the
given development phase satisfy the conditions
imposed at the start of that phase. [IEEE]

● validation: Determination of the correctness of the
products of software development with respect to the
user needs and requirements. [IEEE]

46TSK09/20/23

ISTQB Glosary

Verification Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that specified requirements have
been fulfilled.

Validation Ref: ISO 9000
● Confirmation by examination and through provision of

objective evidence that the requirements for a specific
intended use or application have been fulfilled.

47TSK09/20/23

V&V – Where is truth?

http://www.chambers.com.au/glossary/verification_validation.php

48TSK09/20/23

V&V – Where is truth?

http://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/

49

49TSK09/20/23

Requirements
Analysis

Functional
Specifications

Design
Specifications

Coding

Testing

Maintenance

2.1-Models for Testing (2)
Waterfall Model

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Functional Specifications
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the functional
specification.

Design Specifications
Once the functional specifications are developed, software engineers should have a complete

description of the requirements the software must implement. This enables software engineers to
begin the design phase. It is during this phase that the overall software architecture is defined and
the high-level and detailed design work is performed. This work is documented in the design
specifications.

Coding
The information contained in the design specifications should be sufficient to begin to the coding phase.

During this phase, the design is transformed or implemented in code. If the design specifications are
complete, the coding phase proceeds smoothly, since all of the information needed by software
engineers is contained in these specifications.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the functional and design specifications already in
the coding phase. These tests determine if the software meets defined requirements. A software
validation test plan defines the overall validation testing process. Individual test procedures (test
cases, test scripts, test programs) are developed based on a logical breakdown of requirements. The
results of the testing activities are usually documented in a software validation test report. Following
the successful completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

50

50TSK09/20/23

Iterative

Analysis

Functional
Specifications

Design

Coding

Testing

Maintenance

Feedback

Main cycle

Requirements Analysis
During the requirements analysis phase, basic market research is performed and potential customer

requirements are identified, evaluated, and refined. The result of this phase of the process is usually
a marketing requirement or product concept specification. Requirements in the concept specification
are usually stated in the customer’s language.

Requirements Definition
Requirements in the concept specification are reviewed and analysed by software engineers in order to

more fully develop and refine the requirements contained in the concept specification. Requirements
from the concept specification must be restated in the software developer’s language – the software
requirements specification.

Design
Once the SRS is developed, software engineers should have a complete description of the requirements

the software must implement. This enables software engineers to begin the design phase. It is during
this phase that the overall software architecture is defined and the high-level and detailed design
work is performed. This work is documented in the software design description.

Coding
The information contained in the SDD should be sufficient to begin to the coding phase. During this

phase, the design is transformed or implemented in code. If the SDD is complete, the coding phase
proceeds smoothly, since all of the information needed by software engineers is contained in the
SDD.

Testing
According to the waterfall model, the testing phase begins when the coding phase is completed. Tests

are developed based on information contained in the SRS and the SDD already in the coding phase.
These tests determine if the software meets defined requirements. A software validation test plan
defines the overall validation testing process. Individual test procedures (test cases, test scripts, test
programs) are developed based on a logical breakdown of requirements. The results of the testing
activities are usually documented in a software validation test report. Following the successful
completion of software validation testing, the product may be shipped to customers.

Maintenance
Once the product is being shipped, the maintenance phase begins. This phase lasts until the support for

the product is discontinued. Many of the same activities performed during the development phases
are also performed during the maintenance phase.

51TSK09/20/23

2.1-Models for Testing (4)

Time

Analysis

Design

Coding

Testing

Waterfall Iterative XP

Waterfall Extreme programming (XP)Iterative (RUP, SCRUM)

2.1-Models for Testing (4)

• Waterfall
There is no ideal model. Waterfall model is the right one in ideal world.
Analysis - I understand everything
Design - I design perfect solution with complete and right knowledge of customer and target

platform
Coding - Design is coded without bugs
Testing – Well, why the hell test ideal system? Testing can be omitted…
Eureka!!! the system is accepted and it fulfills all stakeholder needs
but ideal does not exist in reality therefore waterfall model is out of touch with reality
• Iterative (RUP, SCRUM)
The development is divided into iterations. In the first iteration we focus on a big picture. The

project is split into small pieces (iterations), in which we deliver product to the customer to
get customer feedback. Iterations are here to reduce time we are walking the wrong way
(one iteration usually takes 2- 3 weeks). The iteration must not be changed during
processing, all plans/bugs/etc must be planned for the next iteration. There must be no
disturbance from the iteration plan - focus on the target. The iteration should end as
planned and evaluated. Unfinished tasks together with bugs found in this iteration must be
estimated again and planned for the beginning of the next iteration. Do not save bugs for
later, unfixed bug means the work was not done. One or two iterations are planned just to
remove bugs (no new functionality is implemented). In SCRUM terminology an iteration is
called a Sprint.

• Extreme programming (XP)
It goes about agile software development methodology (rapid development), the set of daily

practices that embody and encourage particular XP values: communication (simple design,
common metaphors, collaboration of users and programmers, frequent verbal
communication and feedback), simplicity (starting with the simplest solution), feedback
(from the system by writing unit tests and running periodic integration tests, from the
customer by acceptance testing, from the team by quick response to new requirements),
courage (design and code for today and not for tomorrow – developers feel comfortable
with refactoring their code when necessary) and respect between team members.

51

52

52TSK09/20/23
 Specifications -> Design -> Implementation -> Testing

System
Integration Testing

Test
Preparation

Test
Execution

User
Requirements

Acceptance
Testing

System
Specifications

System
Testing

Design Component
Integration Testing

Implementation Component
Testing

Code

Coding
errors

Design errors

Errors in system specifications

Errors in user requirements

V-model: Levels of Testing

For each stage in the model there are
deliverables to the next stage, both
development and testing. Such a delivery is
an example of a baseline.

For example, when the user requirements are
ready, they are delivered both to the next
development stage and to the corresponding
test level, i.e. acceptance testing. The user
requirements will be used as input to the
system specification (where the system
requirements will be the deliverable to the
next stage) and the acceptance test design.

Note that this is a simplified model. In reality,
the arrows should point in both directions
since each stage naturally will find faults and
give feedback to the previous stages.

53

53TSK09/20/23

Test Levels
● Component testing
● Component integration testing
● System testing (functional and non-functional)
● System integration testing
● Acceptance testing
● Maintenance testing

 The objectives are different for each test level
(see the V-model)

 Test techniques used (black- or white- box)
 Object under test, e.g. component, grouped

components, sub-system or complete system
 Responsibility for the test level, e.g.

developer, development team, an
independent test team or users

 The scope of testing

54

54TSK09/20/23

Component Testing
● Component Testing
● First possibility to execute anything
● Different names (Unit, Module, Basic, … Testing)
● Usually done by programmer
● Should have the highest level of detail of the testing

activities

The objective of component (unit, module)
testing is to find bugs in individual
components (units, modules) by testing them
in an isolated environments. Component
testing is the first dynamic testing activity in
the development life cycle. Traditionally (and
most practically) component testing have
been performed by programmers. One major
reason for this is that component testing
tends to require knowledge of the code which
is why developers are well suited for this.
Unfortunately component testing is often
viewed more as a debugging activity than as
a testing activity.

Mature ladder:
 Developers are checking their own modules

with little or no documentation (they are blind
for their own faults)

 Buddy checking of modules by peer
developers who didn’t develop the modules
(a good compromise)

 Planned activity, design of test cases,
recording of test results and qualified
decision about test completion criteria

55

55TSK09/20/23

Component
Test

Planning

Component
Test

Specification

Component
Test

Execution

Component
Test

Recording

Component
Test

Completion?

BEGIN

END

Fix component test plan and repeat

Fix component test specification and repeat

Fix component test specification and repeat

Fix component and repeat

Component Test Process (BS 7925-2)

 Component Test Planning
The component test planning contains two phases. In the first phase the overall project test strategy (generic) and the

project test plan (project specific) are defined. The project test strategy includes test case selection methods,
documentation, entry and exit criteria as well as the component test process itself. The project test plan contains
information of the scope of the project, the resources needed and how to apply the strategy in the current project.
The second phase of the planning deals with components individually. For each component a separate
component test plan is produced (to list the specific test case design techniques, the test measurement
techniques, the tools including stubs and drivers and the test completion criteria that apply to the specific
component).

 Component Test Specification
Component test specification is the activity of applying the test design techniques specified in the component test plan

to the information in the design specification, producing a number of test cases. The test cases should be
documented in the component test case specifications. Each test case should also have a unique name and
contain enough detailed instructions on how to perform the test case and a reference to the requirement that is
tested by that test case.

 Component Test Execution
During component test execution, the test cases are executed on the actual module, preferable in the priority order.

However, things might happen during the execution of the test cases which may force deviations from the
planned order of execution. This is normal and quite all right as long as the deviations are conscious choices.

 Component Test Recording
During the execution of test cases, test results are produced. Basically there are two types of results: logs and

pass/fail results. A log is just a chronological list of events that took place during the execution. The second type
of result is the result of comparing the actual and the expected output. After a fault is located it usually pays off to
investigate where the fault was first introduced in the design process and it is a good practice to correct the fault
in all documents that contain the fault. A component test report is the document which contains a summary of all
results of the second type.

 Component Test Completion?
Based on the information in the component test reports, the specified exit criteria in the test strategy and/or the test

plans, and the current time budget, the decision whether or not to continue testing, can be performed. Here there
are also several options:

 Enough coverage has been obtained and quality of test object is OK => component testing can be
ended and the component delivered to the next level of testing (usually to component integration
testing).

 All test cases have been executed but enough coverage has not yet been achieved => more test cases
have to be designed and executed to increase the coverage.

 Time is out but the quality of the test object is too low => negotiate with project stakeholders to get
more time to test and to correct faults (this is however typically NOT the responsibility of the test sub-
project).

56

56TSK09/20/23

Component Testing Check List
● Algorithms and logic
● Data structures (global and local)
● Interfaces
● Independent paths
● Boundary conditions
● Error handling

● Algorithms and logic:
● - Have algorithms and logic been correctly implemented?
●

● Data structures (global and local):
● - Are global data structures used?
● - If so, what assumptions are made regarding global data?
● - Are these assumptions valid?
● - Is local data used?
● - Is the integrity of local data maintained during all steps of an algorithm’s

execution?
●

● Interfaces:
● - Does data from calling modules match what this module expects to

receive?
● - Does data from called modules match what this module provides?
●

● Independent paths:
● - Are all independent paths through the modules identified and exercised?
●

● Boundary conditions:
● - Are the boundary conditions known and tested to ensure that the module

operates properly at its boundaries?
●

● Error handling:
● - Are all error-handling paths exercised?
●

57

57TSK09/20/23

Rational Unified Process (RUP)
• Iterative development
• Requirement management
• Component base architecture

• Visual modeling
• Software Quality Verification
• Change Management

Inceprtion Elaboration Construction Transaction

Milestone Milestone Milestone Milestone

Time

RUP is an example of object-oriented methodologies that emphasize the incremental, iterative, and concurrent nature
of software development.

RUP is a product process developed by Rational Software Corporation that provides project teams with a guide to
more effective use of the industry-standard Unified Modeling Language (UML). RUP also provides software-
engineering best practices through templates, guidelines, and tools. Most of the tools are, as you might guess,
also provided by Rational.

The RUP is based on four consecutive phases. The purpose of the inception phase is to establish the business case
for the project. This is done by creating several high-level use case diagrams, defining success criteria, risk
assessment, resource estimate, and an overall plan showing the four phases and their approximate time frames.
Some deliverables the inception phase might include are:

• A vision statement
• An initial set of use cases
• An initial business case
• An initial risk assessment
• An initial project plan
• Prototypes
The purpose of the elaboration phase is to analyze the problem domain, establish the overall product architecture,

eliminate the highest risks, and refine the project plan. Evolutionary prototypes are developed to mitigate risks
and address technical issues and business concerns. Some key deliverables this phase might include are:

• A relatively complete use case model supplemented with text as appropriate
• Architecture description
• Revised risk assessment
• Revised project plan
• Initial development plan
• Initial user manual
During the construction phase, the remaining components are developed, and thoroughly tested. Key deliverables

from this phase include:
• Software product operating on target platform
• Revised user manual
• Complete description of current release
The purpose of the transition phase is to transition the product from development to the user community. Activities that

would typically be performed include:
• Beta testing by users
• Conversion of existing information to new environment
• Training of users
• Product rollout

58TSK09/20/23

Rational Unified Process (RUP)

59TSK09/20/23

Test Driven Development
● TDD adopts a “Test-First” approach in which unit tests

are written before code.
● This idea, which dates back to ancient times, was

formalized in the mid-1990s by Kent Beck, who made it
one of the pillars of the Extreme Programming (XP)
methodology.

● TDD is a way of managing fear during programming.

60

60TSK09/20/23

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

61

61TSK09/20/23

TDD – Clean Tests
● The test code is as important if not more important than

the production code!
– readability
– simple, clear and as dense a test as possible
– a unit test should represent only one concept and contain

only one assertion

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

62

62TSK09/20/23

TDD – Clean Tests
● 5 other rules that can be easily memorized using the

acronym FIRST:
– Fast: a test must be fast to be executed often.
– Independent: tests must not depend on each other.
– Repeatable: a test must be reproducible in any environment.
– Self-Validating: a test must have a binary result (Failure or

Success) for a quick and easy conclusion.
– Timely: a test must be written at the appropriate time, i.e.

just before the production code it will validate.

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

63

63TSK09/20/23

Test Driven Development

1. Add a test
 In test-driven development, each new feature begins with writing a test. Write a test that

defines a function or improvements of a function, which should be very succinct. To write a
test, the developer must clearly understand the feature's specification and requirements.
The developer can accomplish this through use cases and user stories to cover the
requirements and exception conditions, and can write the test in whatever testing
framework is appropriate to the software environment. It could be a modified version of an
existing test. This is a differentiating feature of test-driven development versus writing unit
tests after the code is written: it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails
 This validates that the test harness is working correctly, shows that the new test does not

pass without requiring new code because the required behavior already exists, and it rules
out the possibility that the new test is flawed and will always pass. The new test should fail
for the expected reason. This step increases the developer's confidence in the new test.

3. Write the code
 The next step is to write some code that causes the test to pass. The new code written at this

stage is not perfect and may, for example, pass the test in an inelegant way. That is
acceptable because it will be improved and honed in Step 5.

 At this point, the only purpose of the written code is to pass the test. The programmer must
not write code that is beyond the functionality that the test checks.

4. Run tests
 If all test cases now pass, the programmer can be confident that the new code meets the test

requirements, and does not break or degrade any existing features. If they do not, the new
code must be adjusted until they do.

5. Refactor code
 The growing code base must be cleaned up regularly during test-driven development. New

code can be moved from where it was convenient for passing a test to where it more
logically belongs. Duplication must be removed. Object, class, module, variable and method
names should clearly represent their current purpose and use, as extra functionality is
added. As features are added, method bodies can get longer and other objects larger. They
benefit from being split and their parts carefully named to improve readability and
maintainability, which will be increasingly valuable later in the software lifecycle. Inheritance
hierarchies may be rearranged to be more logical and helpful, and perhaps to benefit from
recognized design patterns. There are specific and general guidelines for refactoring and
for creating clean code.[6][7] By continually re-running the test cases throughout each
refactoring phase, the developer can be confident that process is not altering any existing
functionality.

 The concept of removing duplication is an important aspect of any software design. In this
case, however, it also applies to the removal of any duplication between the test code and
the production code—for example magic numbers or strings repeated in both to make the
test pass in Step 3.

Repeat
 Starting with another new test, the cycle is then repeated to push forward the functionality.

The size of the steps should always be small, with as few as 1 to 10 edits between each
test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the
programmer should undo or revert in preference to excessive debugging. Continuous
integration helps by providing revertible checkpoints. When using external libraries it is
important not to make increments that are so small as to be effectively merely testing the
library itself,[4] unless there is some reason to believe that the library is buggy or is not
sufficiently feature-complete to serve all the needs of the software under development.

64

64TSK09/20/23

Test Driven Development
● Test structure - Effective layout of a test case ensures all required actions

are completed, improves the readability of the test case, and smooths the
flow of execution. Consistent structure helps in building a self-documenting
test case. A commonly applied structure for test cases has (1) setup, (2)
execution, (3) validation, and (4) cleanup.

● Setup: Put the Unit Under Test (UUT) or the overall test system in the state
needed to run the test.

● Execution: Trigger/drive the UUT to perform the target behavior and
capture all output, such as return values and output parameters. This step
is usually very simple.

● Validation: Ensure the results of the test are correct. These results may
include explicit outputs captured during execution or state changes in the
UUT.

● Cleanup: Restore the UUT or the overall test system to the pre-test state.
This restoration permits another test to execute immediately after this one.
[8]

65

65TSK09/20/23

Individual best practices states that one should
● Separate common set-up and teardown logic into test support services

utilized by the appropriate test cases.
● Keep each test oracle focused on only the results necessary to validate its

test.
● Design time-related tests to allow tolerance for execution in non-real time

operating systems. The common practice of allowing a 5-10 percent margin
for late execution reduces the potential number of false negatives in test
execution.

● Treat your test code with the same respect as your production code. It also
must work correctly for both positive and negative cases, last a long time,
and be readable and maintainable.

● Get together with your team and review your tests and test practices to
share effective techniques and catch bad habits. It may be helpful to review
this section during your discussion.

66

66TSK09/20/23

Practices to avoid - "anti-patterns"
● Having test cases depend on system state manipulated from

previously executed test cases (i.e., you should always start a
unit test from a known and pre-configured state).

● Dependencies between test cases. A test suite where test
cases are dependent upon each other is brittle and complex.
Execution order should not be presumed. Basic refactoring of
the initial test cases or structure of the UUT causes a spiral of
increasingly pervasive impacts in associated tests.

● Interdependent tests. Interdependent tests can cause
cascading false negatives. A failure in an early test case breaks
a later test case even if no actual fault exists in the UUT,
increasing defect analysis and debug efforts.

67

67TSK09/20/23

Practices to avoid - "anti-patterns"
● Testing precise execution behavior timing or

performance.
● Building "all-knowing oracles". An oracle that inspects

more than necessary is more expensive and brittle over
time. This very common error is dangerous because it
causes a subtle but pervasive time sink across the
complex project.

● Testing implementation details.
● Slow running tests.

68TSK09/20/23

Test Driven Development
Myth

● You create a 100% regression test suite
Reality

Although this sounds like a good goal, and it is, it unfortunately isn't realistic for several reasons:

● I may have some reusable components/frameworks/... which I've downloaded or purchased which
do not come with a test suite, nor perhaps even with source code. Although I can, and often do,
create black-box tests which validate the interface of the component these tests won't completely
validate the component.

● The user interface is really hard to test. Although user interface testing tools do in fact exist, not
everyone owns them and sometimes they are difficult to use. A common strategy is to not automate
user interface testing but instead to hope that user testing efforts cover this important aspect of
your system. Not an ideal approach, but still a common one.

● Some developers on the team may not have adequate testing skills.

● Database regression testing is a fairly new concept and not yet well supported by tools.

● I may be working on a legacy system and may not yet have gotten around to writing the tests for
some of the legacy functionality.

69TSK09/20/23

Test Driven Development
Myth
● You only need to unit test

Reality
● For all but the simplest systems this is completely false.
● The agile community is very clear about the need for a

host of other testing techniques.

70TSK09/20/23

Test Driven Development
Myth
● TDD is sufficient for testing

Reality
● TDD, at the unit/developer test as well as at the

customer test level, is only part of your overall testing
efforts.

● At best it comprises your confirmatory testing efforts,
but you must also be concerned about independent
testing efforts which go beyond this.

71TSK09/20/23

Test Driven Development
Myth

● TDD doesn't scale
Reality

This is partly true, although easy to overcome. TDD scalability issues include:

1) Your test suite takes too long to run. This is a common problem:

– First, separate your test suite into two or more components. One test suite contains the tests for the new functionality that
you're currently working on, the other test suite contains all tests. You run the first test suite regularly, migrating older tests
for mature portions of your production code to the overall test suite as appropriate. The overall test suite is run in the
background, often on a separate machine(s), and/or at night.

– Several levels of test suite -- development sandbox tests which run in 5 minutes or less, project integration tests which run
in a few hours or less, a test suite that runs in many hours or even several days that is run less often.

2) Not all developers know how to test.
● That's often true, so get them some appropriate training and get them pairing with people with unit testing skills.

3) Everyone might not be taking a TDD approach.

– Taking a TDD approach to development is something that everyone on the team needs to agree to do.
● they either need to start

● they need to be motivated to leave the team

● team should give up on TDD.

72

72TSK09/20/23

3.3. Static Analysis
Static Analysis
“Analysis of a program carried
out without executing the
program” – BS 7925-1
● Unreachable code
● Parameter type mismatches
● Possible array bound

violations
● Faults found by compilers
● Program complexity

Fault
Density

Complexity

 Unreachable code
Part of a code that you can’t reach, e.g.

uncalled functions or procedures. Also called
dead code.

 Parameter type mismatches
E.g. a variable declared with one type is sent to

a procedure, but the procedure expects a
variable of another type.

 Possible array bound violations
Trying to access an element index outside the

boundary value of the array.
 Faults found by compilers
Fault types found by compilers depend first of

all on the language – what is legal in it. For
example, data type mismatches, missing
files, possible division by 0, ranges without
stop value, misuse of variables.

 Program complexity
There are tools that can measure the

complexity of a program. It also presents the
percentage of loops, IF-statements, etc. High
complexity often causes problems, but
extremely complex programs are often given
to the most skilled people, who are aware of
the difficulties and thus makes an extra effort.
Therefore the fault intensity could be lower
for these programs.

73

73TSK09/20/23

A

BC

D

Static Analysis
● % of the source code changed
● Graphical representation of code properties:

– Control flow graph
1: (A) int n = read_num();
2: (A) if(n % 2 == 0){
3: (B) System.out.println(n + " is even.");
4: (C) } else {
5: (C) System.out.println(n + " is odd.");
6: (D) }

– Call tree
– Sequence diagrams
– Class diagrams

Data Flow Analysis

Labs

 % of the source code changed
Some tools can analyse and tell how many %

of the source code have been changed and
which parts that have been changed => input
to test case generation.

 Graphical representation of code properties
Depends on development tools features.

74

74TSK09/20/23

● Considers the use of data (works better on sequential code)
● Examples:

– Definitions with no intervening use
– Attempted use of a variable after it is killed
– Attempted use of a variable before it is defined

if(b > c){
 a=3;
 a=5;
 System.out.println(a);
}

a=3;
if(a < 3){
 b=7;
 System.out.println(b);
}

Note: Not to be confused with data flow testing
which is a dynamic test case selection
method.

 Considers the use of data
How are the variables used through the code?
 Definitions with no intervening use
IF B > C THEN A = 3;
 A = 3; IF A < 3 THEN
 A = 5; B = 7;
 Print A; Print B;
END; END;
 Attempted use of a variable after it is killed
For example an attempt to read a variable

outside its scope.
 Attempted use of a variable before it is

defined

75

75TSK09/20/23

A

BC

D

Labs

Static Metrics
● McCabe’s Cyclomatic complexity measure

M = E − N + 2P
E = number of edges
N = number of nodes
P = number of graph components

● Lines of Code (LoC)
● Fan-out and Fan-in
● Nesting levels

 McCabe’s Cyclomatic complexity
Is defined as the number of decisions in a program or control flow graph + 1.
 Lines of Code (LoC)
Lines of code. It’s a common measurement of the size of a program.
 Fan-out and Fan-in
Fan-out is the amount of modules a given module calls. Modules with high Fan-out are often found in the upper part of

the call tree.
Fan-in is the amount of modules that call a specific module. Modules with high Fan-in are often found in the lower part

of the call tree.
If a module has both high fan-in and fan-out, consider to redesign it.
 Nesting levels
For example many IF-statements nested into each other get a deep nesting level. This means that the code is difficult

to understand. It is even worse when the cyclomatic complexity is also high.
One nesting level:
IF X > 5 THEN
 PRINT “BIG”;
ELSE
 PRINT “SMALL”;
ENDIF;

Who nesting levels:
IF X > 5 THEN
 IF X < 10 THEN
 PRINT “BIG UNIT”;
 ENDIF;
ELSE
 IF X != 0 THEN
 PRINT “SMALL UNIT”;
 ENDIF;
ENDIF;

76

76TSK09/20/23

4-Dynamic Testing Techniques
● Black and White box testing
● Black box test techniques
● White box text techniques
● Test data
● Error-Guessing

This part deals with dynamic testing techniques
– methods that use executable test cases.
These techniques are further divided into two
groups (white-box and black-box testing
techniques).

77

77TSK09/20/23

4.1-Black- and White-box Testing
● Strategy

– What’s the purpose of testing?
– What’s the goal of testing?
– How to reach the goal?

● Test Case Selection Methods
– Which test cases are to be executed?
– Are they good representatives of all possible test cases?

● Coverage Criteria
– How much of code (requirements, functionality) is covered?

A good way of dealing with a testing problem is
to first clarify the purpose of testing, then to
define a goal and finally to develop a strategy
for how to reach the goal.

Once the goal has been defined, a test case
selection strategy can be constructed. The
obvious strategy would be to test everything,
but due to infinite possibilities of choosing
input this strategy is simply not feasible. Thus
we need to carefully select the test cases that
are to be executed. These test cases should
be good representatives of all the possible
test cases. To simplify the selection there
exists a large number of test case selection
methods, most of them are associated with
coverage criteria to determine when to stop
testing.

Coverage is a measurement of how much has
been done compared to the total amount of
work.

78

78TSK09/20/23

Test Case Selection Methods
● White-box / Structural / Logic driven

– Based on the implementation (structure of
the code)

● Black-box / Functional / Data driven
– Based on the requirements (functional

specifications, interfaces)

Test cases for dynamic execution are usually
divided into two groups depending on the
source of information used for creating the
test case.

 White-box
Test cases are based on information about the

implementation of the test object (structure of
the code). The inputs of white-box test cases
are generated from the implementation
information (from the code). The testing is
based on the program logic.

 Black-box
Test cases are aimed at testing the functionality

of the test object. The inputs of black-box test
cases are taken either from the requirements
or from a model created from the
requirements. Testing is based on inputs and
respective outputs.

When the input of a test case is determined,
the next step is to define the expected output.
All test cases always take the expected
output from the requirements for that
particular input to find out how the object
under test should react on that input.

79

79TSK09/20/23

White-box

Black-box

Component test Comp. Integration test System test Acceptance test

Importance of Test Methods

The two types of test cases are used a little bit differently in the development lifecycle. White-
box test cases are mostly used in the early test phases of the development lifecycle and
are of less usage higher up in the testing hierarchy.

There are two reasons for this:
1. The most important is that most white-box methods require extensive knowledge of the

code and other parts of the implementation. Later test phases are usually performed by
dedicated test specialists with neither deep implementation knowledge nor access to this
information.

2. The other reason for not using white-box test case selection methods in later test stages is
related to coverage. White-box test cases are usually more fine grained than black-box test
cases. Fine grained test case selection methods require a large number of test cases in
order to reach high coverage.

Black-box testing techniques are used throughout the development lifecycle. The main
advantage with black-box testing techniques is that they only depend on the requirements,
which means that test cases can be prepared before the implementation is complete.

Both methods are important. If only white-box testing would be performed, some requirements
are not tested (performance requirements). On the other hand if only black-box test cases
are used, some parts of the code might remain untested (special features called when a
certain value is entered in a certain cell).

80

80TSK09/20/23

Measuring Code Coverage
● How much of the code has been executed?
● Code Coverage Metrics:

– Segment coverage
– Call-pair coverage

● Tool Support:
– Often a good help
– For white-box tests almost a requirement

Code Coverage =
Executed code segments/call-pairs

All code segments/call-pairs

Code coverage metrics respond the question – How much of the code is being executed?
There are usually 2 metrics:

 Segment coverage
A segment is a set of program statements that are executed unconditionally or executed

conditionally based on the value of some logical expression. 85% is a practical coverage
value.

 Call-pair coverage
A call pair is an interface whereby one module invokes another. Call-pair coverage is especially

useful integration testing to ensure that all module interfaces are exercised. 100% is a
practical coverage value.

As already has been mentioned, white-box testing techniques use implementation information
to derive the input part of the test cases. Most often some aspect of the code, for instance
the source code statements, is used for this purpose. Even with quite small programs, the
task of keeping track of which statements that have already been tested and which
statements that yet remain to be tested is quite difficult. The solution to this problem is to
use a tool. There are a large number of commercial code coverage tools available for this.
They all work in the same manner: before the source code of the object to be tested is
compiled, the code is instrumented by adding extra instructions at strategic places in the
original code. This is done by the tool.

The source code with the extra instructions is then compiled as usual and test cases are then
executed in the normal way. The added instructions continuously log the progress of the
testing and from the results of the logging instructions the tool can calculate which parts of
the code that have been executed. Obviously the extra inserted instructions consume
execution resources thus distorting performance measurements, so this type of tool is not
appropriate during system testing.

Nevertheless, the use of such tools increase both the quality and the productivity of the testing
in the earlier test phases.

81

81TSK09/20/23

Requirements Based Testing
● How much of the product’s features is covered by TC?
● Requirement Coverage Metrics:

● What’s the test progress?
● Test Coverage Metrics:;

Requirement Coverage =
Tested requirements

Total number of requirements

Test Coverage =
Executed test cases

Total number of test cases

The basic for all black-box testing is the
requirements.

The simplest but still structured way of creating
test cases is to write one test case for each
requirement. The main drawback with this
approach is that most requirements require
more than one test case to be tested
thoroughly, and different requirements
require a different amount of test cases. In
this case we can create the coverage matrix
that tracks requirements to test cases and
vice versa. This feature is usually included in
test management tools.

Requirement Coverage responds the question:
How much of the product’s features is
covered by test cases?

Test Coverage responds the question: What’s
the test progress?

82

82TSK09/20/23

Creating Models
● Making models in general

– Used to organize information
– Often reveals problems while making the model

● Model based testing
– Test cases extracted from the model
– Examples

● Syntax testing, State transition testing, Use case based testing
– Coverage based on model used

A more elaborate way of creating black-box
test cases is to transform a set of
requirements into a model of the system and
derive the test cases from the model instead
of directly from the requirements.

In most model-based testing techniques there
are well defined coverage criteria which are
simple to calculate and interpret.

The main drawbacks with models are limited
scope and validation. Often the purpose of
the model and the modeling technique used,
limits the scope of the model. For instance a
syntax graph only captures the syntax of a
language. The semantic of that language
must be covered somewhere else. The result
is that several models need to be developed
and used in order to get a reasonable
coverage of the system under test.

The other problem with models is that errors
might be made when constructing the model
so care must be taken to validate the model
against the requirements.

However, a bonus with the model approach is
that the structured nature of the model often
fives the maker of the model a good overview
of the system, discovering mistakes and
discrepancies among the requirements.

83

83TSK09/20/23

Black-box Methods
● Equivalence Partitioning
● Boundary Value Analysis
● State Transition Testing
● Cause-Effect Graphing
● Syntax Testing
● Random Testing

 Cause-Effect Graphing
A model based method, which relates effects

with causes through Boolean expressions.
The main focus is on different combinations
of inputs from the equivalence classes.
Cause-effect graphing is a way of doing this
whilst avoiding the major combinatorial
problems that can arise.

 Syntax Testing
A model based method, which focuses on the

syntax or rules (how different parts may be
assembled) of a language (used during
implementation). This method generates
valid and invalid input data to a program. It is
applicable to programs that have a hidden
language that defines the data. Syntax
generator is needed.

 Random Testing
A model based method, which puts the end-

used of the system in focus and based on
usage profiles randomly selects test cases.
This is an example of statistical method
where standard deviation is measured.

84

84TSK09/20/23

Equivalence Partitioning
● Identify sets of inputs under the assumption that all

values in a set are treated exactly the same by the
system under test

● Make one test case for each identified set (equivalence
class)

● Most fundamental test case technique

Equivalence class partitioning is one of the
most basic black-box testing techniques. The
underlying idea is that the input domain can
be divided into a number of equivalence
classes. The characteristic of an equivalence
class is the assumption that all values
belonging to that class are handled in exactly
the same manner by the program.

If this assumption is true, then it would suffice
to select one single test case for each
equivalence class, since multiple test cases
from the same equivalence class would
repeat the same test.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested equivalence classes by the total
number of equivalence classes.

The workflow when using equivalence
partitioning is to analyze the specification and
try to identify all likely equivalence classes.
When doing this it is important to remember
that there may be dependencies between
different input variables. The next step is to
check that the whole input domain has been
covered, i.e. every possible input value
belongs to exactly one equivalence class.
The final step is to choose one
representative value form each equivalence
class to form the test case for that
equivalence class.

85

85TSK09/20/23

Negative
withdrawal

Even 10 less or
equal than 200

Uneven 10 less
than 200

More than 200

Enough money in
account

1. Withdrawal
refused

2. Withdrawal
granted

3. Withdrawal
refused

4. Withdrawal
refused

Not enough money
in account

5. Withdrawal
refused

6. Withdrawal
refused

7. Withdrawal
refused

8. Withdrawal
refused

85

invalid valid invalid

9 10 200 201

Amount to be
withdrawn

invalid

0-10

Equivalence Partitioning (Example)

Example: “A withdrawal from an ATM (Automatic Teller Machine) is granted if the account
contains at least the desired amount. Furthermore, the amount withdrawn must be an even
number of 10 EUR. The largest amount that can be withdrawn is 200 EUR.”

By analyzing the requirements we find several different independent dimensions to this
problem:

 Is there enough money in the account?
 Is the desired amount an even 10-number?
 Is the desired amount outside the correct 0-200 range?
One way to organize the information is to make a table as above. Each cell in the table

represents an equivalence class, which means that there should be eight test cases to
solve this testing problem with equivalence partitioning.

In this example one could argue that negative withdrawal is not technically possible, and even if
it was possible, the amount of money in the account would be irrelevant.

This discussion illustrates two difficult questions: how much should we really test? And which
tests are most important?

Mostly this boils down to a matter of taste. Our view is that it is better to include too much when
designing test cases that to miss vital functionality. Test cases should however always be
assigned a priority based on importance to the end user and importance to future testing.

High priority test cases above could be 2, 3, 4 and 6.
Medium priority test cases above could be 7 and 8.
Low priority test cases above could be 1 and 5.

86

86TSK09/20/23

Boundary Value Analysis
● For each identified boundary in input and output, create

two test cases. One test case on each side of the
boundary but both as close as possible to the actual
boundary line.

Boundary Value Analysis is a refinement of
equivalence class partitioning. Instead of
choosing any representative from each
equivalence class, interest is focused around
the boundaries of each class. The idea is to
select one test case for each boundary of the
equivalence class. The properties of a test
case is thus that is belongs to a defined
equivalence class and that it tests a value
that it is preferable on, or at least reasonably
close to one of the boundaries of the
equivalence class.

The main reason why boundaries are important
is that they are generally used by
programmers to control the execution of the
program, for instance through if- or case-
statements. Since the boundaries are being
built into the program, this is also where
mistakes are likely to happen

Not that every boundary will be tested twice
since there are two different equivalence
classes on the two sides of the border, and
that there well be a test for that boundary in
both these equivalence classes.

Coverage is measured by dividing the number
of executed test cases, i.e. the number of
tested boundaries by the total number of
boundaries.

87

87TSK09/20/23

invalid valid invalid

2 3 8 9
Temperature

8

3

Input:

+20,000

+8,0001

+8,0000

+3,0000

+2,9999

-20,000

Expected Output:

red light

red light

green light

green light

red light

red light

Boundary Value Analysis (Example)

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

88

88SK09/20/23

Boundary Value Analysis (Example)

Cvičení

X

Y

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

89

89SK09/20/23

Boundary Value Analysis (Strings)

Cvičení

● Length min/max
● Empty
● whitespaces and non-visible characters – spaces, tabs,

line break
● Separators – semicolon, comma, colon, quotation

marks, apostrophes
● Special characters
● UTF-8 - czech, chines, ...

Example: “A refrigerator has a red and a green indicator. The optimal temperature in the
refrigerator is between +3 an +8 degrees. If the temperature is within this interval, the green
indicator is lit, otherwise the red indicator is lit.”

The temperature range can be divided into three intervals (equivalence classes).
1. From –infinity (-273?) to but not including +3,0000 resulting in a red light
2. From +3,0000 to +8,0000 resulting in green light
3. From but not including +8,0000 to + infinity
When using boundary value analysis, there should be one test case for each boundary in every

equivalence class:
Test case 1a:
Negative infinity, even -273 is a little hard to create, and furthermore not very likely to occur. So

a good (?) estimation could be -20,000.
Test case 1b:
Here we have the problem of being close enough to the boundary since being on the boundary

is outside this interval. Is five valid digits a good estimate?
Test cases 2a and 2b:
Both boundaries are inside the interval so these values are the ones to choose.
Test case 3a:
Same discussion as in 1b.
Test case 3b:
Same discussion as in 1a.

90

90TSK09/20/23

Boundary Value Analysis - Comparison
● Error detection on common mistakes:

● Number of test cases (one dimensional) BVA = 2*EP

Requirement Mistake in impl. EP BVA

A < 18 A < =18 No Yes

A < 18 A > 18 Yes Yes

A < 18 A < 20 Maybe Yes

Which is better, Equivalence Partitioning (EP)
or Boundary Value Analysis (BVA)?

The answer depends on what we mean by
better. Test cases made by BVA will catch
more types of errors, but on the other hand
there will be more test caes, which is more
time consuming.

If you do boundaries only, you have covered all
the partitions as well:

 Technically correct and may be OK if
everything works correctly

 If the test fails, is the whole partition wrong,
or is a boundary in the wrong place – have to
test mid-partition anyway

 Testing only extremes may not give
confidence for typical use scenarios
(especially for users)

 Boundaries may be harder (more costly) to
set up

91

91TSK09/20/23

Conditions Valid
Partition

Tag Invalid
Partition

Tag Valid
Boundary

Tag Invalid
Boundary

Tag

Test Objectives?

● For a thorough approach: VP, IP, VB, IB
● Under time pressure, depends on your test objective

– minimal user-confidence: VP only?
– maximum fault finding: VB first (plus IB?)

92

92TSK09/20/23

State Transition Testing
● Model functional behaviour in state machine
● Create test cases

– A) Touching each state
– B) Using each transition (0-switch coverage)
– C) For every possible chain of transition (n-switch coverage)

● Coverage
– Depends on sub-strategy

State machine based testing is a quite useful model based black-box testing technique, since
any type of functionality that can be represented as a finite state machine can be tested
using this technique.

The first step when using state machine testing is to construct the model itself. Sometimes,
state machines are used by designers and constructors as implementation tools. In those
cases, the state machines can of course be used directly. Otherwise the state machine
model has to be constructed based on the requirements by the testers.

Often during construction of the state machine models, faults are found. One of the key
properties with a state machine is that all input types can occur regardless of the state of
the machine. If a state machine model previously has not been drawn, there are almost
always disregarded combinations of state and input, which are very easily discovered when
building the model.

When the model is finished, the next step is to construct test cases from it. There are several
different strategies. The simplest and least powerful is to cover each state in the model at
least once. As soon as there are more than one way of reaching a particular state, state
coverage will most likely leave some transitions untested. A more elaborate strategy is
therefore to focus on the transitions between the states. 0-switch coverage requires one
test case for each possible transition in the model. 1-switch coverage requires a test case
for every possible pair of consecutive transitions and finally n-switch coverage requires a
test case for every possible n-1 consecutive transitions in the model.

93

93TSK09/20/23

Lamps Off White On

Blue On

Green On

Red On

Reset

Reset

Reset

Reset

Reset

System On

Blue Key

Blue Key

Blue Key

Blue Key

Green Key Green Key

Green Key

Green Key

Red KeyRed Key

Red Key

Red Key

Red Key

Blue Key

Green Key

State Transition Testing (Example)

Example:
 Four keys, four lamps
 After the start, all lamps are off
 A colored key turns “its” lamp on, if all lamps are off
 Next colored key turns the white lamp on and the colored off
 The Reset key turns the white lamp off and resets the system

There are 5 states.
To determine how many transitions there are, it is helpful to calculate the number of transitions out from

each state (in our case there are 4 transitions):
(5*4 + 1) = 21 transitions (0-switch)
(5*4*4 + 4) = 84 pairs of transitions (1-switch)
It’s easy to understand that ‘time-outs’, common is real-time applications, will make it even more

advanced.
Create test cases:
 A) touching each state
 5 test cases – sufficient for such a simple system
 B) using each transition (0-switch coverage)
 21 test cases – if the white lamp did not turn on after the green lamp, it is necessary to use “each

transition” to catch this fault
 C) using every possible pair of transitions (1-switch coverage)
 84 test cases – if the Reset key does not work after the red lamp and the blue key (but works after all

other keys), finding this fault requires trying “all pairs of transitions”
To discover a fault which, for example, causes the system to hang after a thousand loops, still another

strategy is required.
The number of tested inputs is another dilemma. Should all possible inputs be tried in each state? The

strategy described here do not answer this question.

94

94TSK09/20/23

4.3-White-Box Test Techniques
● Test case input always derived from implementation

information (code)
● Most common implementation info:

– Statements
– Decision Points in the Code
– Usage of variables

● Expected output in test case always from requirements!

Labs

When creating white-box test cases the basis
in the implementation. The input part of the
test case is derived from the implementation.

Commonly used implementation properties
include code structure and how variables are
used in the code. Less common but
nevertheless interesting implementation
properties are call-structures and
process/object interactions.

Regardless of the white-box test method
chosen, expected output is always extracted
from the requirements and not from the
implementation itself.

95

95TSK09/20/23

Labs

White-box Test Methods
● Statement Testing
● Branch/Decision Testing
● Data Flow Testing
● Branch Condition Testing
● Branch Condition Combination Testing
● Modified Condition Testing
● LCSAJ Testing

 Statement Testing
The idea with statement coverage is to create enough test cases so that every statement in the

source code has been executed at least once
 Branch/Decision Testing
The idea with decision coverage is to execute every single decision in the code at least twice

(both possible outcomes of the decision should be executed in order to reach full decision
coverage)

 Data Flow Testing
Test cases are designed based on variable usage within the code
 Branch Condition Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes
 Branch Condition Combination Testing
A test case design technique in which test cases are designed to execute combination of

branch condition outcomes
 Modified Condition Testing
A test case design technique in which test cases are designed to execute branch condition

outcomes that independently affect a decision outcome
 LCSAJ Testing
Linear Code Sequence And Jump (LCSAJ) – Select test cases based on jump-free sequence

of code. It consists of the following three items: the start of the linear sequence of
executable statements, the end of the linear sequence, and the target line to which control
flow is transferred at the end of the linear sequence.

96

96TSK09/20/23

Labs

Control Flow Graphs
public void doAirconditioning() {

 double temp = readTemperature();

 Aircondition airCondState = null;

 if(temp <= 15) {

 airCondState = Aircondition.HEATING;

 }

 else if(temp >= 25) {

 airCondState = Aircondition.COOLING;

 }

 airCondState.execute();

}

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

This is a small piece of code, which
implements the temperature regulation. The
function “adjust_temperature” is called
without arguments. The first thing it does is to
read the current temperature, and then
depending on the value, either the heater is
switched on, the cooler is switched on, or the
system is left untouched. The global variable
control holds the current setting of the heater
and cooler.

To the right the is the corresponding control
flow graph. To aid the understanding of the
control flow graph strategic parts of the code
may be inserted in the diamonds and boxes.

McCabe’s cyclomatic complexity measure: No.
of diamonds + 1 (2 + 1 = 3) – it says that the
more decisions there are in a piece of code,
the more complex this piece of code is.

Statement Coverage =< Decision Coverage =<
McCabe’s Measure (3)

97

97TSK09/20/23

Labs

Statement Testing
● Execute every statement in the code at least once

during test case execution
● Requires the use of tools

– Instrumentation skews performance
● Coverage

Statement Coverage =
Executed statements

Total number of statements

Statement coverage is a fundamental white-
box testing technique. This idea of statement
coverage is to create enough test cases so
that every statement in the source code has
been executed at least once.

The workflow when using statement coverage
is to first execute all existing black-box test
cases that has been created while monitoring
the execution. This monitoring is in all but the
simplest test cases performed with tool
support. When all black-box test cases have
been executed, the tool can report which
parts of the code that remain untested. The
idea is now to construct new test cases that
will cover as many of the remaining
statements as possible. Start with the part of
the code that should be reached, walk
backward in the code to determine the values
of the input variables required to reach the
desired part of the code. With the specified
values of the input variables, check the
specification for the expected results, and
execute the new test case while monitoring.

One common mistake is to take the expected
result from the code itself. This will result in a
test case that well always succeed, which of
course is not the intention with testing.

98

98TSK09/20/23

Labs

Statement Coverage
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

When creating test cases for statement
coverage we can make use of the control
flow graph. We know the statement coverage
requires statements in the code to be
executed. We also know that the boxes and
the diamonds represent all the statements in
the code.

By following the two blue arrows through the
code we cover all the diamonds and all the
boxes are covered and thus we have
statement coverage (according to the relation
with McCabe measure there should be three
or less test cases and in this case two were
enough).

By examine the relation we can now also
deduce that in the optimal choice of test
cases, number of test cases for decision
coverage should be either two or three:

Statement Coverage (2) =< Decision Coverage
=< McCabe’s Measure (3)

99

99TSK09/20/23

Labs

Branch/Decision Testing
● Create test cases so that each decision in the code

executes with both TRUE and FALSE outcomes
– Equivalent to executing all branches

● Requires the use of tools
– Instrumentation skews performance

● Coverage

Decision Coverage =
Executed decision outcomes

2 * Total number of decisions

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

100

100TSK09/20/23

Labs

Branch/Decision Testing
public void doAirconditioning() {
 double temp = readTemperature();
 Aircondition airCondState = null;
 if(temp <= 15) {
 airCondState = Aircondition.HEATING;
 }
 else if(temp >= 25) {
 airCondState = Aircondition.COOLING;
 }
 airCondState.execute();
}

temp = readTemperature();

airCondState = null;

temp =< 15

temp >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

101

101TSK09/20/23

Labs

Path Coverage
● Coverage for all possible paths through code (all

combinations of decisions)
● Code with cycles

– Test all possible number of iterations → not possible
– Recommendation: 0 iteration, 1 iteration, n iteration

● Coverage

Path coverage =
number of tested paths

2^numberOfDecisions

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

102

102TSK09/20/23

Labs

Path Coverage
public void adjustTemperature2() {

 double temp1 = readTempeSensor1();

 double temp2 = readTempeSensor2();

 Aircondition acUnit1State = null;

 Aircondition acUnit2State = null;

 if(temp1 <=15) {

 acUnit1State = Aircondition.HEATING;

 }

 if(temp2>=25) {

 acUnit2State = Aircondition.COOLING;

 }

 acUnit1State.execute();

 acUnit2State.execute();

}

temp1 = readTempeSensor1();

temp2 = readTempeSensor2();

acUnit1State = null;

acUnit2State = null;

temp1 =< 15

temp2 >= 25

airCondState = HEATING

airCondState = COOLING

YES

YES

NO

NO

airCondState.execute();

Branch coverage and decision coverage are
two names for the same thing.

Decision coverage is a technique similar to
statement coverage. The idea with decision
coverage is to execute every single decision
in the code at least twice. Both possible
outcomes of the decision, i.e. true and false,
should be executed in order to reach full
decision coverage.

By the first glance statement and decision
coverage seem to yield exactly the same test
cases, since executing every decision with
both true and false outcomes will result in all
statements being executed, and in order to
execute all statements all outcomes of every
decision needs to be executed. However this
is not entirely true. There is one case in
which statement coverage can be reached
without having full decision coverage, and
that is with an IF-statement without an ELSE-
clause. In this case, one test case is enough
for statement coverage provided that the
decision in the IF-statement evaluates to true
for that case. Obviously we still need a
second test case with false outcome to reach
decision coverage.

Coverage is measured by dividing the number
of executed decision outcomes by the total
number of decisions times two.

The workflow is exactly the same as for
statement coverage, and the tools used for
monitoring coverage usually can be
configured to handle either one or both
coverage criteria.

103TSK09/20/23

Data flow coverage
01: public QResult quadratic(double a,
double b, double c) {

02: double disc = b*b - 4*a*c;

03: QResult r = new QResult();

04: if(disc < 0) {

05: r.isComplex = true;

06: } else {

07: r.isComplex = false;

08: }

09: if(!r.isComplex) {

10: r.r1 = (-b + Math.sqrt(disc))/(2*a);

11: r.r2 = (-b - Math.sqrt(disc))/(2*a);

12: }

13: return r;

14: }

line
category

definition c-use p-use

1 a,b,c

2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2

4 disc

5 r.isComplex
6

7 r.isComplex
8

9 r.isComplex
10 r.r1 a,b,disc
11 r.r2 a,b,disc
12

13
 r.isComplex

, r.r1, r.r2

14

Labs

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

103

104TSK09/20/23

Data flow coverage
line category

definition c-use p-use
1 a,b,c
2 disc a,b,c

3
 r.isComplex,

r.r1, r.r2
4
5 disc
6 r.isComplex
7
8 r.isComplex
9

10 r.isComplex
11 r.r1 a,b,disc
12 r.r2 a,b,disc

13
 r.isComplex,

r.r1, r.r2
14

Labs

Pairs
definition → use variables

Start → end c-use p-use
1→2 a,b,c
1→11 a,b,c
1→12 a,b
2→5 disc
2→11 disc
2→12 disc
3→10 r.isComplex

3→13
r.isComplex,

r.r1, r.r2
6→10 r.isComplex
6→13 r.isComplex
8→10 r.isComplex

8→13 r.isComplex
11→13 r.r1

12→13 r.r2

c-use(v): (c for computation) all variables that
are used to define other variables in the code
corresponding to v

p-use(v; v0): (p for predicate) all variables used
in taking the (v; v0) branch out of vertex v.

http://www.inf.ed.ac.uk/teaching/courses/st/
2011-12/Resource-folder/07_dataflow1.pdf

104

105TSK09/20/23

Branch Condition Testing
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

Case A B C

1 FALSE FALSE FALSE

2 TRUE TRUE TRUE

Labs

Každý oberand podmínky se musí provést pro
hodnotu true i false.

105

106TSK09/20/23

Modified condition/decision coverage
if(A || (B && C)) {

 //do something

} else {

 //do something else

}

• Test all combinations of
bools operands A, B, C

Labs

Case A B C

1 FALSE FALSE FALSE

2 TRUE FALSE FALSE

3 FALSE TRUE FALSE

4 FALSE FALSE TRUE

5 TRUE TRUE FALSE

6 FALSE TRUE TRUE

7 TRUE FALSE TRUE

8 TRUE TRUE TRUE

Každý oberand podmínky se musí provést pro
hodnotu true i false.

106

107TSK09/20/23

Modified condition/decision coverage
Case A B C Output
A1 FALSE FALSE TRUE FALSE
A2 TRUE FALSE TRUE TRUE

Case A B C Output
B1 FALSE FALSE TRUE FALSE
B2 FALSE TRUE TRUE TRUE

Case A B C Output
C1 FALSE TRUE TRUE TRUE
C2 FALSE TRUE FALSE FALSE

Case A B C Output
1 (A1,B1) FALSE FALSE TRUE FALSE

2 (A2) TRUE FALSE TRUE TRUE
3 (B2,C1) FALSE TRUE TRUE TRUE

4 (C2) FALSE TRUE FALSE FALSE

Labs

Modified Condition Decision Testing and Coverage
Modified Condition Decision Coverage (MCDC) is a pragmatic compromise

which requires fewer
test cases than Branch Condition Combination Coverage. It is widely used in

the development of
avionics software, as required by RTCA/DO-178B.
Modified Condition Decision Coverage requires test cases to show that each

Boolean operand (A, B
and C) can independently affect the outcome of the decision. This is less than

all the combinations (as
required by Branch Condition Combination Coverage).
For the example decision condition [A or (B and C)], we first require a pair of

test cases where
changing the state of A will change the outcome, but B and C remain constant,

i.e. that A can
independently affect the outcome of the condition:

107

108TSK09/20/23

Linear Code Sequence and Jump (LCSAJ)

Cvičení

1.int main (void) {

2. int count = 0, totals[MAXCOLUMNS], val =
0;

3. memset (totals, 0, MAXCOLUMNS *
sizeof(int));

4. count = 0;

5. while (count < ITERATIONS) {

6. val = abs(rand()) % MAXCOLUMNS;

7. totals[val] += 1;

8. if (totals[val] > MAXCOUNT) {

9. totals[val] = MAXCOUNT;

10. }

11. count++;

12. }

13. return (0);

14.}

LCSAJ
Block Start End Jump

to

1 1 5 13

2 1 8 11

3 1 12 5

4 5 5 13

5 5 8 11

6 5 12 5

7 11 12 5

8 13 13 −1

http://en.wikipedia.org/wiki/
Linear_code_sequence_and_jump

108

109

109TSK09/20/23

4.4-Test Data
Test Data Preparation
● Professional data generators
● Modified production data
● Data administration tools
● Own data generators
● Excel
● Test automation tools (test-running tools, test data

preparation tools, performance test tools, load
generators, etc.)

 Professional data generators
 Data generator controlled by syntax and semantics
 Stochastic data generator
 Data generator based on heuristic algorithms
 Combination of previous methods
 Modified production data
The data must be degraded (omitting sensitive data) before using as test data. The advantage

is that we have test data that are close to real production data. The disadvantage is that
data must be modified to have all combinations needed for test cases.

 Data administration tools
E.g. File-AID/Data Solution (Compuware), RC Extract (CA), Startool/Comparex (Serena),

Relational Tools for Servers (Princeton Softech), detailed knowledge of DB structure and
links is needed. Tools are ready for it’s sometimes difficult and laborious.

 Own data generators
Development resources are needed, suitable when combining with Excel. Sophisticated data

can be generated which are tailored to the needs of test cases.
 Excel
DB tables are stored in Excel, SQL scripts generate DB structures tailored to the needs of test

cases. The initial data has to be stored manually – laborious.
 Test automation tools
E.g. WinRunner, QuickTest Pro, LoadRunner, SilkPerformer, etc. Data can be generated during

nights, test data can be stored to database, Excel or text files. Tools are often expensive.

110

110TSK09/20/23

What Influences Test Data Preparation?
● Complexity and functionality of the application
● Used development tool
● Repetition of testing
● The amount of data needed

 Complexity and functionality of the
application

It directly influences the range of testing,
mutual linking and the amount of test data
(financial systems must be tested in more
details than registration systems).

 Used development tool
In case of using test automation tools, the

development environment must be
compatible with used test tools.

 Repetition of testing
The efficiency of using test automation tools is

higher the higher repetition of the same test
cases (regression testing) is (valid not only
for test data preparation but also for test
execution.

 The amount of data needed
Small data records are prepared by simple

tools (Excel, SQL scripts). Bigger data
records are prepared by automation tools.

111

111TSK09/20/23

Recommendation for Test Data
● Don’t remove old test data
● Describe test data
● Check test data
● Expected results

 Don’t remove old test data
Create test data archive for future use.
 Describe test data
Create your own information system from

metadata describing content, form and
effectiveness of test data.

 Check test data
Test data must be error free.
 Expected results
Don’t underestimate time needed for setting

expected results for generated test data.

	Slide 1
	Slide 2
	Historie
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	IEEE standards
	BS 7925-1
	ISTQB Glosary
	V&V – Where is truth?_clipboard0
	V&V – Where is truth?
	Slide 49
	2.1- Modely pro testování (3)_clipboard0
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	2.1- Modely pro testování (8)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	4.3.4 – Testování podmínek skoků (Branch Condition Testing)_clipboard1
	Slide 106
	4.3.6 – Testování změny podmínky_clipboard3
	4.3.7 – Testování LCSAJ (Linear Code Sequence and Jump)_clipboard4
	Slide 109
	Slide 110
	Slide 111

